MATHEMATICQ

B BYJU'S

POST CLASS NOTES

Thiangles

Similar Triangles

,$\ldots \rightarrow$ Same Shape
Similar Triangles
\cdots Different on Same size

Relation between Corresponding Sides and Angles

*Two triangles are similar, if

* Their corresponding angles are equal.

$$
\begin{aligned}
& \angle A=\angle P \\
& \angle B=\angle Q \\
& \angle C=\angle R
\end{aligned}
$$

* Their corresponding sides are in the same ratio.
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}=k$

Critchia for Similarity of Thiangles

Side-Side-Side (SSS)

- Corresponding sides are proportional.

$$
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CA}}{\mathrm{RP}}
$$

Angle-Angle-Angle (AAA) / Angle-Angle (AA)

* Corresponding angles are equal.
* Triangles are similar even if a pair of corresponding angles are equal.

Side-Angle-Side (SAS)

* Pair of adjacent corresponding sides are proportional and one angle is equal.
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{2}{3}$

$\angle B=\angle Q$

Ratio of Aheas of Similar Thiangles

Ratio of Area of Similar Triangles

$$
\frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2}
$$

Properties of Right-Angled Triangles
Similarity of triangles when a perpendicular is drawn from the vertex of the right angle.

$$
\Delta \mathrm{ABC} \sim \triangle \mathrm{ADC} \sim \Delta \mathrm{ADB}(\mathrm{AA} \text { Similarity) }
$$

All the three triangles have:

* A right-angle.
* A common angle.

Basic Proportionality Theorem

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

Proof is

Area of $\triangle \mathrm{APQ}=\frac{1}{2} \times \mathrm{AP} \times \mathrm{QN}$
Area of $\triangle \mathrm{PBQ}=\frac{1}{2} \times \mathrm{PB} \times \mathrm{QN}$
Area of $\triangle A P Q=\frac{1}{2} \times A Q \times P M$
Area of $\triangle \mathrm{QCP}=\frac{1}{2} \times \mathrm{QC} \times \mathrm{PM}$
Now,

$\frac{\text { Area of } \triangle \mathrm{APQ}}{\text { Area of } \triangle \mathrm{PBQ}}=\frac{\frac{1}{2} \times \mathrm{AP} \times \mathrm{QN}}{\frac{1}{2} \times \mathrm{PB} \times \mathrm{QN}}=\frac{\mathrm{AP}}{\mathrm{PB}}$
Similarly.

$$
\begin{equation*}
1 \tag{2}
\end{equation*}
$$

$\frac{\text { Area of } \triangle \mathrm{APQ}}{\text { Area of } \triangle \mathrm{QCP}}=\frac{\frac{1}{2} \times \mathrm{AQ} \times \mathrm{PM}}{\frac{1}{2} \times \mathrm{QC} \times \mathrm{PM}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$
The triangles drawn between the same parallel lines and on the same base have equal areas.
\therefore Area of $\triangle \mathrm{PBQ}=$ Area of $\triangle \mathrm{QCP}$
From (1), (2) and (3)
$\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$

Conuctise of Basic

Proportionality Theorem

If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

Proof:

If $\frac{A D}{D B}=\frac{A E}{E C}$, then $D E \| B C$.
Suppose a line $D E$, intersects the two sides of a triangle $A B$ and $A C$ at D and E, such that;
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$

Assume DE is not parallel to BC. Now, draw a line DE' parallel to BC. Hence, by Basic Proportionality Theorem,

$$
\begin{equation*}
\frac{A D}{D B}=\frac{A E^{\prime}}{E^{\prime} C} . \tag{2}
\end{equation*}
$$

From eq. 1 and 2, we get
$\frac{\mathrm{AE}}{\mathrm{EC}}=\frac{\mathrm{AE}^{\prime}}{\mathrm{E}^{\prime} \mathrm{C}}$
Adding 1 on both the sides
$\frac{\mathrm{AE}}{\mathrm{EC}}+1=\frac{\mathrm{AE}^{\prime}}{\mathrm{E}^{\prime} \mathrm{C}}+1 \Longrightarrow \frac{\mathrm{AE}+\mathrm{EC}}{\mathrm{EC}}=\frac{\mathrm{AE}^{\prime}+\mathrm{E}^{\prime} \mathrm{C}}{\mathrm{E}^{\prime} \mathrm{C}}$
$\frac{\mathrm{AC}}{\mathrm{EC}}=\frac{\mathrm{AC}}{\mathrm{E}^{\prime} \mathrm{C}} \Longrightarrow \mathrm{SO}_{0}, \mathrm{EC}=\mathrm{E}^{\prime} \mathrm{C}$

This is possible only when E and E' coincides.
But DE' || BC
$\therefore \quad \mathrm{DE} \| \mathrm{BC}$.

Phoperitics of

Right -Angled Triangles

Pythagoras Theorem

In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides.

Proof:

$\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$
$\therefore \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AB}}{\mathrm{AC}} \begin{gathered}\text { (corresponding sides of } \\ \text { similar triangles) }\end{gathered}$
$\mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}$

Also, $\triangle \mathrm{ADC} \sim \triangle \mathrm{ABC}$
$\therefore \frac{\mathrm{CD}}{\mathrm{BC}}=\frac{\mathrm{BC}}{\mathrm{AC}}$ (corresponding sides of similar triangles)
$\mathrm{BC}^{2}=\mathrm{CD} \times \mathrm{AC}$
$(1)+(2)$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AD} \times \mathrm{AC}+\mathrm{CD} \times \mathrm{AC}$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}(\mathrm{AD}+\mathrm{CD})$
Since, $A D+C D=A C$
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$

Convense of Pythagonas Theorem

If the square of the length of the longest side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.

Proof:

Construct another triangle, $\triangle \mathrm{EGF}$, such as $\mathrm{AC}=\mathrm{EG}$ and $\mathrm{BC}=\mathrm{FG}$.

In $\triangle E G F$, by Pythagoras Theorem:
$E F^{2}=E G^{2}+\mathrm{FG}^{2}=\mathrm{b}^{2}+\mathrm{a}^{2}$

In $\triangle A B C$, by Pythagoras Theorem:
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}=\mathrm{b}^{2}+\mathrm{a}^{2}$

From (1) and (2)
$E F^{2}=A B^{2}$
$\mathrm{EF}=\mathrm{AB}$
$\Rightarrow \triangle \mathrm{ACB} \cong \triangle \mathrm{EGF}(\mathrm{By} \mathrm{SSS})$

$\Rightarrow \angle \mathrm{C}$ is right angle
$\therefore \triangle \mathrm{ABC}$ is a right triangle.

Impohtant Theohems and Fohmulac

Similarity of Twiangles

Pythagoras Theorem

- In a vight-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides.
ancol

Basic Proporitionality Theonem

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

