## Practice Questions - Term I

Date: 11/11/2021
Subject: Mathematics
Topic : Polynomials

1. Identify the cubic polynomials among the following.
2. $2 x^{3}+3 x^{2}+2 x+1$
3. $x^{3}+2 x+3$
4. $\sqrt{3} x+5$
5. $y+\sqrt{2}$
A. 1,2 and 3
B. 3 and 4
C. 2 and 3
D. 1 and 2
6. The graph of a polynomial $P(x)$ is as shown. The number of zeroes is/are

A. 2
B. 1
C. 0
D. 3

## Practice Questions - Term I

3. Which of the following graph represents the quadratic polynomial $-x^{2}+5 x-6 ?$
A.

B.

C.

D. Cannot be represented on a graph.
4. The zeros of the polynomial $x^{2}-\sqrt{2} x-12$ are $\qquad$
A. $\sqrt{2},-\sqrt{2}$
B. $3 \sqrt{2},-2 \sqrt{2}$
C. $3-\sqrt{2}, 2 \sqrt{2}$
D. $3 \sqrt{2}, 2 \sqrt{2}$

## Practice Questions - Term I

5. If a and b are the zeroes of a polynomial
$p x^{2}-5 x+q$, then find the values of p
and q , if $\mathrm{a}+\mathrm{b}=\mathrm{ab}=10$.
A. 5 and $\frac{1}{2}$
B. 5 and 2
C. $\frac{1}{2}$ and 5
D. 10 and 1
6. What is the maximum number of times the graph of the polynomial $y=p x^{3}+q x^{2}+r x+s$ intersects the x axis?
A. 1
B. 2
C. 4
D. 3
7. According to the graph below, the product of the zeroes of the polynomial will be

A. positive
B. negative
C. zero
D.
cannot be determined

## Practice Questions - Term I

8. The graph of $y=p(x)$ is given. The number of zeroes of $y=p(x)$ is $\qquad$ .

A. 0
B. 1
C. 2
D. 3

## Practice Questions - Term I

9. 

Which of the following graph represents the quadratic polynomial $-x^{2}+5 x-6$ ?
A.

B.

C.

D.


## Practice Questions - Term I

10. 

The graph of $y=p(x)$ is given. How many zeroes can exist? Assume that the $p(x)$ is always increasing beyond $x=10$.

A. 0
B. 1
C. 2
D. 3
11. If $x=2$ and $x=1$ are the zeroes of the quadratic polynomial $a x^{2}-3 x+b$, then find the value of $\mathrm{a}-\mathrm{b}$.
A. 0
B. 1
C. -1
D. 2

## Practice Questions - Term I

12. 

If the sum of the zeroes of the polynomial $9 x^{2}-k x+2$ is $\frac{11}{9}$ find the value of $k$.
A. -1
B. 1
C. -4
D. 4
13. Find a cubic polynomial whose zeroes are $2,-3$ and 4 .
A. $x^{3}-3 x^{2}-10 x+24$
B. $x^{3}-x^{2}-x+2$
C. $x^{3}+x^{2}+x$
D. $2 x^{3}+x^{2}+1$
14.

Find the quadratic polynomial whose sum of its zeroes (roots) is $-\frac{8}{5}$ and the product of the zeroes (roots) is $\frac{7}{5}$.
A. $14 x^{2}+7 x+5$
B. $5 x^{2}+8 x+7$
C. $2 x^{2}-8 x+7$
D. $5 x^{2}-8 x+7$

## Practice Questions - Term I

15. 

If $\alpha, \beta$ and $\gamma$ are the zeros of the polynomial $2 x^{3}-6 x^{2}-4 x+30$, then the value of $(\alpha \beta+\beta \gamma+\gamma \alpha)$ is
A. 2
B. -2
C. 1
D. 3

## Practice Questions - Term I

16. 



Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the equation of the bridge is prepersented by the following graph $y=p(x)$, then name the type of the polynomial it traces.

A. Linear
B. Quadratic
C. Cubic
D. Bi-quadratic

## Practice Questions - Term I

17. 



Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the hills are represented by the cubic polynomial $t(x)=p x^{3}+q x^{2}+r x+s$ , then which of the following is always true?

## Practice Questions - Term I

A. $s \neq 0$
B. $r \neq 0$
C. $q \neq 0$
D. $p \neq 0$

## Practice Questions - Term I

18. 



Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the path traced by the hills is represented by the graph $y=p(x)$ below,

## Practice Questions - Term I

find the number of zeroes.

A. 0
B. 1
C. 2
D. 3

## Practice Questions - Term I

19. 



Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

Find a quadratic polynomial for the bridge if 6 is the sum and 8 is the product of its zeroes.

## Practice Questions - Term I

A. $x^{2}+6 x+8$
B. $x^{2}-6 x+8$
C. $x^{2}+6 x-8$
D. $x^{2}-6 x-8$

## Practice Questions - Term I

20. 



Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the hills are prepresented by the cubic polynomial $t(x)=2 x^{3}+8 x^{2}+9 x+16$, then the product of the zeroes is:

## Practice Questions - Term I

A. -4
B. $\frac{9}{2}$
C. -8
D. 8

