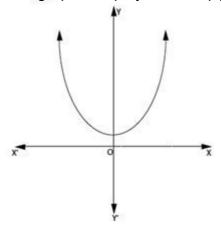


Date: 11/11/2021

Subject: Mathematics

Topic : Polynomials Class: X

1. Identify the cubic polynomials among the following.

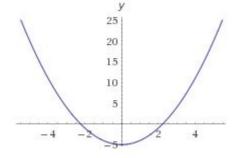

1.
$$2x^3 + 3x^2 + 2x + 1$$

2.
$$x^3 + 2x + 3$$

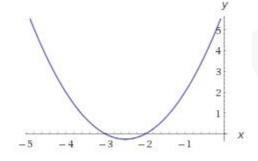
3.
$$\sqrt{3}x + 5$$

4.
$$y + \sqrt{2}$$

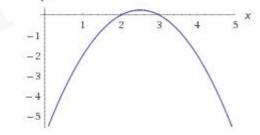
- **A.** 1,2 and 3
- **B.** 3 and 4
- **C.** 2 and 3
- **D.** 1 and 2
- 2. The graph of a polynomial P(x) is as shown. The number of zeroes is/are



- **A**. ₂
- **B**. 1
- C. C
- **D**. 3



3. Which of the following graph represents the quadratic polynomial $-x^2+5x-6$?


Δ

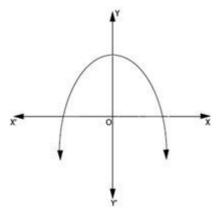
В.

C

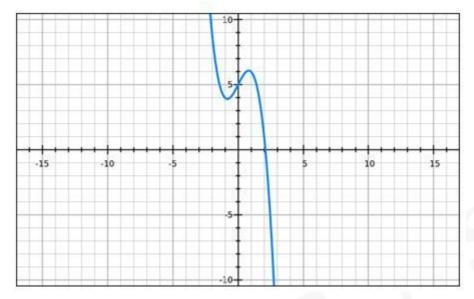
- **D.** Cannot be represented on a graph.
- 4. The zeros of the polynomial $x^2 \sqrt{2}x 12$ are _____

A.
$$\sqrt{2}, -\sqrt{2}$$

B.
$$3\sqrt{2}, -2\sqrt{2}$$

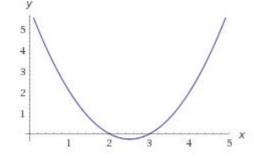

c.
$$3 - \sqrt{2}, 2\sqrt{2}$$

D.
$$3\sqrt{2}, 2\sqrt{2}$$

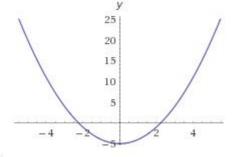

- 5. If a and b are the zeroes of a polynomial $px^2 5x + q$, then find the values of p and q, if a + b = ab = 10.
 - **A.** $5 \text{ and } \frac{1}{2}$
 - **B.** 5 and 2
 - **C.** $\frac{1}{2}$ and 5
 - **D.** 10 and 1
- 6. What is the maximum number of times the graph of the polynomial $y=px^3+qx^2+rx+s$ intersects the x axis?
 - Α.
 - **B**. 2
 - C. 4
 - **D**. 3
- 7. According to the graph below, the product of the zeroes of the polynomial will be

- A. positive
- B. negative
- C. zero
- D. cannot be determined

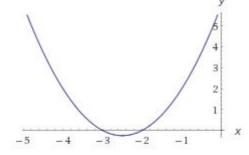
8. The graph of y = p(x) is given. The number of zeroes of y = p(x) is____.

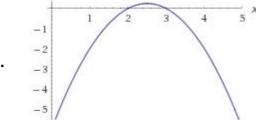


- **A**. ₀
- B. 1
- **C**. 2
- **D**. 3

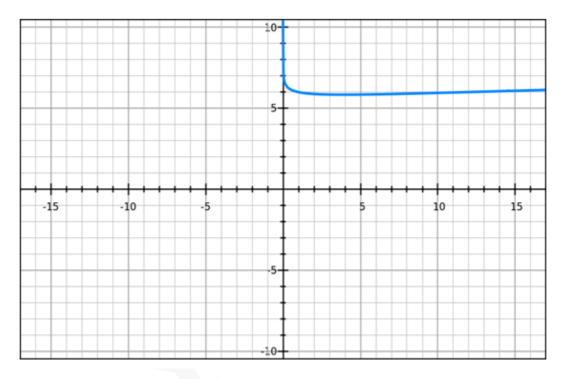


9. Which of the following graph represents the quadratic polynomial $-x^2+5x-6$?


Α.


В.

C.



D.

10. The graph of y = p(x) is given. How many zeroes can exist? Assume that the p(x) is always increasing beyond x = 10.

- **A.** 0
- **B**. 1
- **C**. 2
- **D**. 3

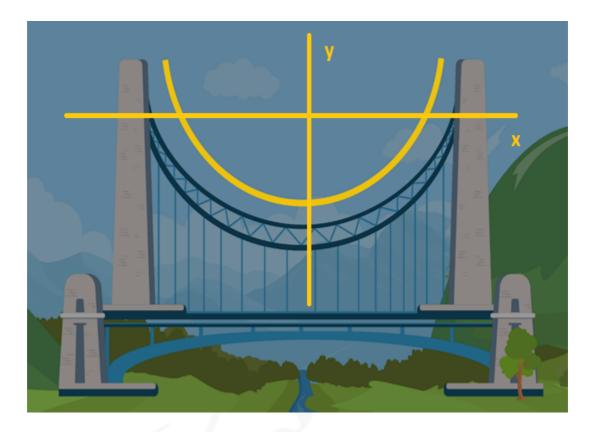
11. If x = 2 and x = 1 are the zeroes of the quadratic polynomial $ax^2 - 3x + b$, then find the value of a - b.

- **A**. 0
- **B**. ₁
- **c**. ₋₁
- **D**. 2

- 12. If the sum of the zeroes of the polynomial $9x^2 kx + 2$ is $\frac{11}{9}$ find the value of k.
 - **A**. -1
 - **B.** 1
 - **C**. -4
 - **D**. 4
- 13. Find a cubic polynomial whose zeroes are 2, 3 and 4.
 - **A.** $x^3 3x^2 10x + 24$
 - **B.** $x^3 x^2 x + 2$
 - **C.** $x^3 + x^2 + x$
 - **D.** $2x^3 + x^2 + 1$
- 14. Find the quadratic polynomial whose sum of its zeroes (roots) is $-\frac{8}{5}$ and the product of the zeroes (roots) is $\frac{7}{5}$.
 - **A.** $14x^2 + 7x + 5$
 - **B.** $5x^2 + 8x + 7$
 - **C.** $2x^2 8x + 7$
 - **D.** $5x^2 8x + 7$

- 15. If α,β and γ are the zeros of the polynomial $2x^3-6x^2-4x+30$, then the value of $(\alpha\beta+\beta\gamma+\gamma\alpha)$ is
 - **A**. 2
 - **B.** -2
 - **C**. 1
 - **D**. 3

Practice Questions - Term I


16.

Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the equation of the bridge is prepersented by the following graph y=p(x), then name the type of the polynomial it traces.

- A. Linear
- B. Quadratic
- c. Cubic
- **D.** Bi-quadratic

17.

Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

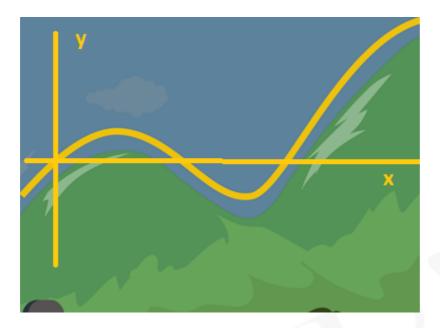
Based on the given information, answer the following question.

If the hills are represented by the cubic polynomial $t(x)=px^3+qx^2+rx+s$, then which of the following is always true?

- **A.** $s \neq 0$
- B. $r \neq 0$
- $\mathbf{C.}\quad q\neq 0$
- **D.** p
 eq 0

Practice Questions - Term I

18.


Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the path traced by the hills is represented by the graph y = p(x) below,

find the number of zeroes.

- **A**. 0
- **B**. 1
- C. 6
- D. 4

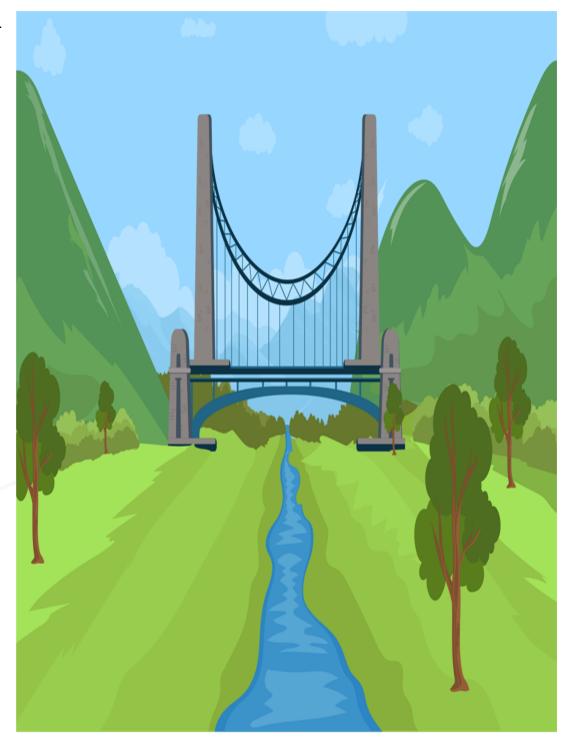
Practice Questions - Term I

19.

Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

Find a quadratic polynomial for the bridge if 6 is the sum and 8 is the product of its zeroes.


A.
$$x^2 + 6x + 8$$

B.
$$x^2 - 6x + 8$$

C.
$$x^2 + 6x - 8$$

D.
$$x^2 - 6x - 8$$

20.

Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the hills are prepresented by the cubic polynomial $t(x)=2x^3+8x^2+9x+16,$ then the product of the zeroes is:

- **A**. _4
- **B.** $\frac{9}{2}$
- C. _8
- D. 8