Practice Questions - Term I

Date: 11/11/2021
Subject: Mathematics
Topic : Polynomials

1. Identify the cubic polynomials among the following.
2. $2 x^{3}+3 x^{2}+2 x+1$
3. $x^{3}+2 x+3$
4. $\sqrt{3} x+5$
5. $y+\sqrt{2}$
x A. 1,2 and 3
x B. 3 and 4
\times
C. 2 and 3
D. 1 and 2

For a cubic polynomial, the degree of the variable in the polynomial should be 3 .

1. $2 x^{3}+3 x^{2}+2 x+1$ - Degree of x is 3 . So, cubic polynomial
2. $x^{3}+2 x+3$ - Degree of x is 3 . So, cubic polynomial.
3. $\sqrt{3} x+5$ - Degree of x is 1 - Linear polynomial.
4. $y+\sqrt{2}-$ Degree of y is 1 - Linear polynomial.

Practice Questions - Term I

2. The graph of a polynomial $P(x)$ is as shown. The number of zeroes is/are

x A. 2
x B. 1
C. 0
x D. 3
Zero of a polynomial is that value of x for which the value of the polynomial becomes zero. The maximum number of zeroes of a polynomial is equal to the degree of the polynomial. The zeroes may be real (equal or unequal) or unreal.
In this question, the graph is not intersecting the x-axis. So, the polynomial has no zeros.

Practice Questions - Term I

3. Which of the following graph represents the quadratic polynomial $-x^{2}+5 x-6 ?$
x A.

x B.

(v)
C.

x D. Cannot be represented on a graph.
One way of solving this question is to find the zeroes of given polynomial by conventional factorization. But we will solve it in a smart way. We just find the sum of zeroes from polynomial and compare it from the graphs, which satisfies the sum of zeroes.

From polynomial,
Sum of zeroes $=\frac{-b}{a}=\frac{-5}{-1}=5$
From the graphs given, we look for graph whose sum of zeroes is 5 . Thus graph having 2,3 as zeroes is the required graph.

Practice Questions - Term I

4.

The zeros of the polynomial $x^{2}-\sqrt{2} x-12$ are \qquad
x A. $\sqrt{2},-\sqrt{2}$B. $3 \sqrt{2},-2 \sqrt{2}$
\times
C. $3-\sqrt{2}, 2 \sqrt{2}$
x
D. $3 \sqrt{2}, 2 \sqrt{2}$

Given, $x^{2}-\sqrt{2} x-12$
Let's factorise using formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$$
\begin{aligned}
& a=1 ; \quad b=-\sqrt{2} ; \quad c=-12 \\
& x=\frac{-(-\sqrt{2}) \pm \sqrt{(-\sqrt{2})^{2}-4 \times 1 \times(-12)}}{2 \times 1} \\
&=\frac{\sqrt{2} \pm \sqrt{2+48}}{2}=\frac{\sqrt{2} \pm \sqrt{50}}{2} \\
&=\frac{\sqrt{2} \pm \sqrt{2 \times 5 \times 5}}{2}=\frac{\sqrt{2} \pm 5 \sqrt{2}}{2} \\
& x=\frac{\sqrt{2}+5 \sqrt{2}}{2} ; \frac{\sqrt{2}-5 \sqrt{2}}{2} \\
&=\frac{6 \sqrt{2}}{2} ; \frac{-4 \sqrt{2}}{2} \\
& x=3 \sqrt{2} ;-2 \sqrt{2} \\
& \text { Zeroes are } 3 \sqrt{2} \&-2 \sqrt{2}
\end{aligned}
$$

Practice Questions - Term I

5. If a and b are the zeroes of a polynomial
$p x^{2}-5 x+q$, then find the values of p
and q , if $\mathrm{a}+\mathrm{b}=\mathrm{ab}=10$.
x A. 5 and $\frac{1}{2}$
x B. 5 and 2
(v)
C. $\frac{1}{2}$ and 5
\times
D. 10 and 1

We know that, for a quadratic equation $a x^{2}+b x+c=0$,
Sum of roots $=\alpha+\beta$
and product of roots $=\alpha \beta$
where α and β are the roots of the equation.

Also, $\alpha+\beta=\frac{-b}{a}$ and $\alpha \beta=\frac{c}{a}$
So,
$a+b=\frac{5}{p}$ and $a b=\frac{q}{p}$.
It is given that $\mathrm{a}+\mathrm{b}=\mathrm{ab}=10$
$\Rightarrow 10=\frac{5}{p}$
Hence, $p=\frac{1}{2}$
Also, $a b=\frac{q}{p}$
$\Rightarrow 10=\frac{q}{p}$
$\Rightarrow q=10 p$
$\Rightarrow q=10 \times \frac{1}{2}$
$\Rightarrow q=5$

Practice Questions - Term I

6. What is the maximum number of times the graph of the polynomial $y=p x^{3}+q x^{2}+r x+s$ intersects the x axis?
x A. 1
x B. 2
x C. 4
(v)
D. 3

The graph of a polynomial of degree ' n ' can cut the x-axis at a maximum of ' n ' values.

Since the given polynomial has a degree 3 , it can cut the x axis at most 3 times.
7. According to the graph below, the product of the zeroes of the polynomial will be

x A. positive
B. negative
\times
C. zero
x
D. cannot be determined

One of the zeros of the polynomial lies on the positive x-axis. Thus, the abscissa or the x-coordinate, which is the corresponding zero, is positive. The other zero lies on the negative x-axis. Thus the abscissa or x coordinate which is the corresponding zero, is negative.
Thus, the product of zeroes is going to be positive \times negative $=$ negative

Practice Questions - Term I

8. The graph of $y=p(x)$ is given. The number of zeroes of $y=p(x)$ is \qquad .

- A. 0
B. 1
\times C. 2
x D. 3
In the graph, the polynomial curve intersects the X - axis at 1 point. So number of zeroes is 1

Practice Questions - Term I

9. Which of the following graph represents the quadratic polynomial $-x^{2}+5 x-6$?
x A.

x
B.

$x \quad \mathrm{C}$.

(v)
D.

Practice Questions - Term I

In a quadratic polynomial, if the coefficient of 'a' is negative, then the graph is upside down, i.e., the two hands of the graph point downwards.
10.

The graph of $y=p(x)$ is given. How many zeroes can exist? Assume that the $p(x)$ is always increasing beyond $x=10$.

\checkmark
A. 0

X B. 1
\times C. 2
x D. 3
In the graph, the line intersects the X - axis at no point. So number of zeroes is 0

Practice Questions - Term I

11. If $\mathrm{x}=2$ and $\mathrm{x}=1$ are the zeroes of the quadratic polynomial $a x^{2}-3 x+b$, then find the value of $\mathrm{a}-\mathrm{b}$.
x A. 0
x B. 1
(v) C. - 1

- D. 2

Let $f(x)=a x^{2}-3 x+b$.
Since $x=2$ is a zero of $f(x), f(2)=0$.
$\Rightarrow 4 a-6+b=0$ \qquad (i)

Also, since $x=1$ is a zero $f(x), f(1)=0$,
$\Rightarrow a-3+b=0$
$(i)-(i i) \Rightarrow 3 a=3$
$\Rightarrow a=1$
Thus, (ii) $\Rightarrow b=2$
Hence, $(a-b)=1-2=-1$.
12. If the sum of the zeroes of the polynomial $9 x^{2}-k x+2$ is $\frac{11}{9}$ find the value of k.
x A. -1
\times
B. 1
\times
C. -4
(v)
D. 4

Given polynomial: $9 x^{2}-k x+2$
On dividing the poynomial by 9 , we get $x^{2}-\frac{k}{9}+\frac{2}{9}$.

We know that, the general quadratic equation can be written as
$x^{2}-$ (Sum of zeroes) $x+$ (Product of zeroes)
The sum of the zeroes is given as $\frac{11}{9}$.
$\Rightarrow \frac{k}{9}=\frac{11}{9}$
$\Rightarrow k=11$

Practice Questions - Term I

13. Find a cubic polynomial whose zeroes are 2, -3 and 4 .A. $x^{3}-3 x^{2}-10 x+24$
\times
B. $x^{3}-x^{2}-x+2$
x
C. $x^{3}+x^{2}+x$
x
D. $2 x^{3}+x^{2}+1$

If a, b and c are the zeroes of a cubic polynomial $f(x)$, then $f(x)=x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-(a b c)$
Thus, the required polynomial is:
$x^{3}-(3) x^{2}+(-10) x-(-24)$
$=x^{3}-3 x^{2}-10 x+24$

Practice Questions - Term I

14.

Find the quadratic polynomial whose sum of its zeroes (roots) is $-\frac{8}{5}$ and the product of the zeroes (roots) is $\frac{7}{5}$.
x A. $14 x^{2}+7 x+5$

B. $5 x^{2}+8 x+7$
\times
C. $2 x^{2}-8 x+7$
\times
D. $5 x^{2}-8 x+7$

Given that,

Sum of zeroes $=\frac{-8}{5}$
Product of zeroes $=\frac{7}{5}$
Required quadratic polynomial is,
$f(x)=\left[\left(x^{2}-(\right.\right.$ sum of roots $) x+($ product of roots $\left.)\right]$

Substituting the given values we get,
$f(x)=\left[x^{2}-\frac{(-8)}{5} x+\frac{7}{5}\right]$
$f(x)=\left[x^{2}+\frac{8}{5} x+\frac{7}{5}\right]$
multiplying by 5 we get
$f(x)=5 x^{2}+8 x+7$
\therefore Required polynomial is $5 x^{2}+8 x+7$.

Practice Questions - Term I

15.

If α, β and γ are the zeros of the polynomial $2 x^{3}-6 x^{2}-4 x+30$, then the value of $(\alpha \beta+\beta \gamma+\gamma \alpha)$ is
x
A. 2
(v)
B. -2
x C. 1

- D. 3

Practice Questions - Term I

16.

Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the equation of the bridge is prepersented by the following graph $y=p(x)$, then name the type of the polynomial it traces.

Practice Questions - Term I

x A. Linear
(v) B. Quadratic
x C. Cubic
x D. Bi-quadratic

Practice Questions - Term I

The graph here, cuts the x-axis at two different points.
Hence, the number of zeroes for the given graph is 2 .
We know that, the degree of the polynomial indicates the maximum number of zeroes it can have.

Here, the maximum number of zeroes is 2 .
Thus, $y=p(x)$ has to be a quadratic equation.

Practice Questions - Term I

17.

Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the hills are represented by the cubic polynomial $t(x)=p x^{3}+q x^{2}+r x+s$, then which of the following is always true?

Practice Questions - Term I

x A. $s \neq 0$
x B. $r \neq 0$
(x) C. $q \neq 0$
(v) D. $p \neq 0$

Given: Hills are represented by the cubic polynomial $t(x)=p x^{3}+q x^{2}+r x+s$.

If $s=0$, then $t(x)=p x^{3}+q x^{2}+r x$
$r=0$, then $t(x)=p x^{3}+q x^{2}+s$
$q=0$, then $t(x)=p x^{3}+r x+s$
All these are cubic polynomials since the highest degree is 3 .
But when $p=0$, then $t(x)=q x^{2}+r x+s$ which is a quadratic equation.
Hence, p cannot be equal to 0 .

Practice Questions - Term I

18.

Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the path traced by the hills is represented by the graph $y=p(x)$ below,

Practice Questions - Term I

find the number of zeroes.

x A. 0
(B. 1
x C. 2
(D. 3

In the given figure, the graph of a polynomial $p(x)$ cuts the x-axis at three distinct points. i.e the value of polynomial is equal to zero at these three points.
\therefore The number of zeroes of $p(x)=3$

Practice Questions - Term I

19.

Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

Find a quadratic polynomial for the bridge if 6 is the sum and 8 is the product of its zeroes.

Practice Questions - Term I

x A. $x^{2}+6 x+8$
(v)
B. $x^{2}-6 x+8$
x C. $x^{2}+6 x-8$
x D. $x^{2}-6 x-8$
To find: A quadratic polynomial whose sum is 6 and the product is 8 .
We know that, the general quadratic equation can be written as
$x^{2}-$ (Sum of zeroes) $x+$ (Product of zeroes)
Given: Sum of zeroes $=6$
Product of zeroes $=8$
Hence, the required polynomial $=x^{2}-6 x+8$

Practice Questions - Term I

20.

Polynomials are everywhere. It is found in the slope of a hill, the curve of a bridge or the continuity of a mountain range.

Based on the given information, answer the following question.

If the hills are prepresented by the cubic polynomial $t(x)=2 x^{3}+8 x^{2}+9 x+16$, then the product of the zeroes is:

Practice Questions - Term I

$\times \quad$ A. $\quad-4$

X B. $\frac{9}{2}$C. -8
x D. 8
To find: The product of the zeroes of the polynomial $t(x)=2 x^{3}+8 x^{2}+9 x+16$

We know that, a general cubic polynomial can be written in the form of $x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma$ where α, β, γ are the zeroes of the polynomial.

On comparing the given polynomial to its general form,
$t(x)=x^{3}+4 x^{2}+\frac{9}{2} x+8$
Here, the negative of the constant term will be the product of the zeroes.
Hence, the required answer is -8 .

