

ATHEMATICS

M

Polynomials

---- 2. Special Types of Polynomials

--- 3. Geometrical Meaning of Zeroes of a Polynomial

-- 4. Relationship between Zeroes and Coefficients of a Polynomial

-- 5. Division Algorithm for Polynomials

Polynomials

Polynomials

"Poly" means many

"nomials" means terms

So, polynomials means many terms

Definition of a Polynomial

An algebraic expression in which the variable(s) is/are raised to non-negative integral exponents is called a polynomial.

Standard Form of a Polynomial in x of Degree n

An algebraic expression of the form

 $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$,

where $a_0, a_1, a_2, \dots, a_n$ are real numbers and $a_n \neq 0$,

is the standard form of a polynomial in x of degree n.

Terms Related to Polynomials

The Degree of a Polynomial p(x) is the highest exponent to which x is raised.

The Value of a Polynomial p(x) at x = k is obtained by replacing x = k in the polynomial expression.

A real number 'a' is a Zero of a Polynomial p(x) if p(a)=0.

Special Types of Polynomials

Based on Based on Number of Terms Degree $1 \text{term} \rightarrow \text{Monomial}$ Degree = $1 \rightarrow \text{Linear}$ Ex: x_{1} – 5y $E_{x:2y-3}$ $2 \text{ terms} \rightarrow \text{Binomial}$ Degree = $2 \rightarrow Quadratic$ $E_x: 2x - 5, 6y + 8$ $E_{x}: 4x^{2} + 5x - 2$ $3 \text{ terms} \rightarrow \text{Trinomial}$ Degree = $3 \rightarrow \text{Cubic}$ Ex: $x^2 - 3x + 2$ $E_{x:8x^{3}-5}$

Geometrical Meaning of Zeroes of a Polynomial

A zero of a polynomial p(x) represents the x-coordinate of the point where the graph of p(x) intersects the x-axis.

B

Relationship between Zeroes and Coefficients of a Polynomial

Q	uadratic Polynomial	
	General form: $p(x) = ax^2 + bx + c$	
	Sum of zeroes $= \alpha + \beta = \frac{-b}{a}$	
	Product of zeroes $= \alpha \beta = \frac{c}{a}$	

Cubic Polynomial General form: $p(x) = ax^3 + bx^2 + cx + d$ Sum of zeroes $= \alpha + \beta + \gamma = \frac{-b}{a}$ Sum of product of zeroes taken two at a time $= \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$ Product of zeroes $= \alpha\beta\gamma = \frac{-d}{a}$

Division Algorithm for Polynomials

