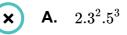
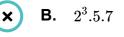


Date: 09/11/2021 Subject: Mathematics Topic : Real Numbers

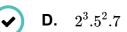
Class: X

1. Prime factorization of 1400:





x C. $2^3.5^2.7^2$

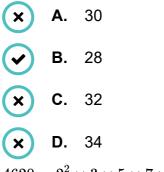


Prime factorisation of 1400:

2	1400
2	700
2	350
5	175
5	35
	7

$$1400 = 2^3.5^2.7$$

2. The sum of prime factors of 4620 is:



 $4620 = 2^2 \times 3 \times 5 \times 7 \times 11$ Hence, the prime factors are 2, 3, 5, 7 and 11. Sum of prime factors = 2 + 3 + 5 + 7 + 11 = 28

^{3.} If $a = 2^3 \times 3^2 \times 5$ and $b = 2^4 \times 3 \times 7^2$, then which of the following is true?

x A. $\begin{array}{l} HCF = 2^{3} \times 3^{2} \times 5 \times 7 \\ LCM = 2^{7} \times 3^{3} \times 5 \times 7^{2} \end{array}$ **x** B. $\begin{array}{l} HCF = 2 \times 3 \times 5 \times 7 \\ LCM = 2^{2} \times 3^{2} \times 5 \times 7^{2} \end{array}$ **x** C. $\begin{array}{l} HCF = 2^{3} \times 3^{2} \\ LCM = 2^{4} \times 3^{2} \times 5 \times 7^{2} \end{array}$ **b.** $\begin{array}{l} HCF = 2^{3} \times 3 \\ LCM = 2^{4} \times 3^{2} \times 5 \times 7^{2} \end{array}$

HCF is the product of common prime factors with their lowest power.

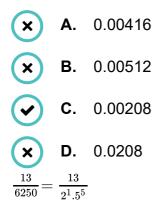
LCM is the product of prime factors with their highest power.

Given : $a=2^3 imes 3^2 imes 5$ and $b=2^4 imes 3 imes 7^2$

 \Rightarrow HCF of *a* and *b* = $2^3 \times 3$ (Taking the product of lowest powers of common factors)

LCM of *a* and *b* = $2^4 \times 3^2 \times 5 \times 7^2$ (Taking the product of prime factors with their highest power)

4. The decimal expansions of $\frac{13}{6250}$ is



To get the denominator in powers of 10, multiply both numerator and denominator by 2^4

$$\Rightarrow \frac{13}{6250} = \frac{13 \times 2^4}{5^5 \times 2^5}$$
$$\frac{13}{6250} = 13 \times \frac{2^4}{10^5} = \frac{208}{10^5} = 0.00208$$

^{5.} For $\sqrt{3}x^2$ to be irrational, x should be

- × A. always irrational.
- **x B.** always rational.
 - **C.** irrational or rational.

x D. cannot be determined.

Let's assume x = $2 - \sqrt{3}$ $\Rightarrow \sqrt{3}x^2 = \sqrt{3}(2 - \sqrt{3})^2$ which is irrational. Again, assume x = 2 $\Rightarrow \sqrt{3}x^2 = \sqrt{3}(2)^2$ which is also irrational.

- 6. The decimal expansion of $\frac{141}{120}$ will terminate after how many places?
 - 3 Α. Β. 5 C. 7 Will not terminate × D. Given rational number $\frac{141}{120}$ Here, $120 = 2^3 imes 3 imes 5$ 141 = 3 imes 47 $\Rightarrow \frac{141}{120} = \frac{3 \times 47}{2^3 \times 3 \times 5}$ $= \frac{47}{2^3 \times 5}$ Multiply and divide by 5^2 $=\frac{47\times5^2}{2^3\times5\times5^2}$

$$=\frac{47\times25}{(2\times5)^3}$$

- $=\frac{1175}{1000}$
- = 1.175
- Therefore, $\frac{141}{120}$ will terminate after three decimal places.

Α. 195 and 143 В. 190 and 140 C. X 185 and 163 D. X 185 and 143 Let the required numbers be 15x and 11x. Now, $15x = 3 \times 5 \times x$...(i) $11x = 11 \times x$...(ii) From (i) and (ii), we can say that x is the only common factor for both 15x and 11x. \therefore x is the H.C.F. of 15x and 11x. It is given that the H.C.F of the numbers is 13. $\therefore x = 13$

 \therefore The numbers are 15×13 and 11×13 i.e. 195 and 143.

- 8. We have 38 cakes. Each box can hold 5 cakes only. How many boxes we need to pack and how many cakes are unpacked?
 - A. 7,3
 B. 7,4
 C. 6,8
 D. 8,2

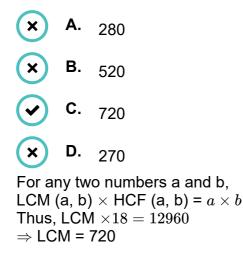
Let number of cakes be a and capacity of box be b.

∴ a = 38, b = 5

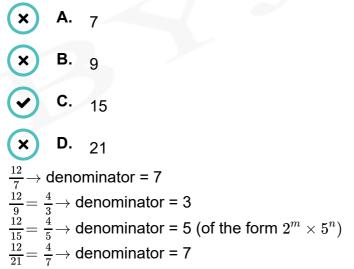
By Euclid's division lemma $a = bq + r, \ 0 \le r < |b|$ $38 = 5 \times (7) + 3, \ 0 \le 3 < |5|$ Therefore, Quotient q = 7and remainder r = 3

We see that 7 boxes are required to pack 38 cakes with 3 cakes left over.

9. The HCF of two numbers is 18 and their product is 12960. Find their LCM.



10. If $\frac{12}{q}$ is a terminating decimal number, then which of the following is a possible value of q?



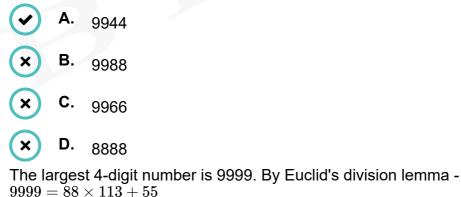
Thus, among the given options, the only possible value of q that satisfies the given condition is 15.

11. If $\sqrt{3}$ is an irrational number, then which of the following is an irrational number?

X A.
$$\sqrt{3} - \sqrt{3}$$

X B. $\sqrt{3}(2\sqrt{3} - \sqrt{3})$
X C. $(\sqrt{3} - 1)(\sqrt{3} + 1)$
D $\sqrt{3}(\sqrt{3} - 1)$
 $\sqrt{3} - \sqrt{3} = 0 \rightarrow$ rational number
 $\sqrt{3}(2\sqrt{3} - \sqrt{3}) = 6 - 3 = 3 \rightarrow$ rational number
 $(\sqrt{3} + 1)(\sqrt{3} + 1) = 3 - 1 = 2 \rightarrow$ rational number
 $\sqrt{3}(\sqrt{3} - 1) = 3 - \sqrt{3} \rightarrow$ irrational number
(Sum/difference of a rational number and an irrational number is irrational.)

12. The largest 4-digit number exactly divisible by 88 is ____.



 \Rightarrow We need to reduce 55 from 9999 so that the resulting number is divisible by 88.

i.e., 9999 - 55 = 9944 is divisible by 88.

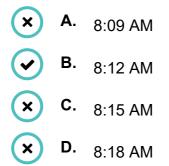
 \therefore 9944 is the largest 4-digit number divisible by 88.

13. If the HCF of 65 and 117 is expressible in the form 65m - 117, then the value of *m* is:

× Α. 4 Β. 2 C. X 1 **D**. 3 X By Euclid's division algorithm, $b = aq + r, \ 0 \le r < a \ [\because dividend = divisor imes \ quotient + remainder]$ $\Rightarrow 117 = 65 imes 1 + 52$ $\Rightarrow 65 = 52 \times 1 + 13$ $\Rightarrow 52 = 13 imes 4 + 0$ $\therefore HCF(65, 117) = 13...(i)$ Also, given that, HCF(65, 117) = 65m - 117...(ii)From equations (i) and (ii), 65m - 117 = 13 $\Rightarrow 65m = 130$

 $\Rightarrow m=2$

14. The traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds respectively. If they all change simultaneously at 8 AM then at what time will they again change simultaneously.



Time period after which these lights will change = LCM of 48, 72, 108

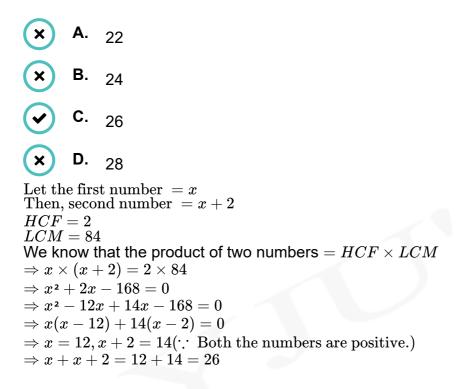
 $48 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$ $72 = 2 \times 2 \times 2 \times 3 \times 3$ $108 = 2 \times 2 \times 3 \times 3 \times 3$

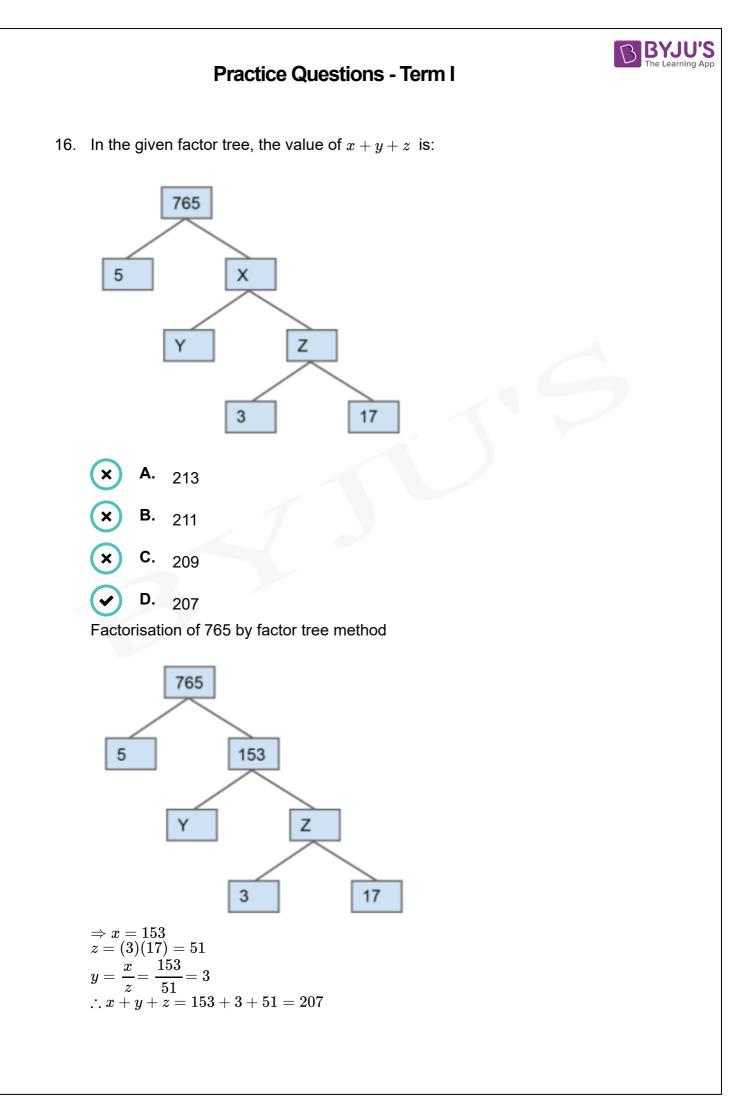
LCM (48, 72, 108) = 2 × 2 × 2 × 2 × 3 × 3 × 3 = 432

After 432 sec = 432÷(60×60) =432÷3600 =0.12 hrs

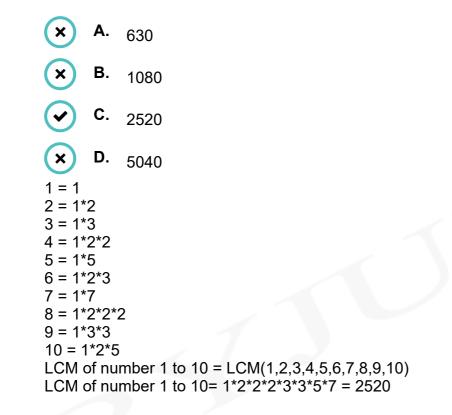
Hence, next simultaneous change will take place at = 8.00 + 0.12 = 8.12 AM

15. If the HCF and LCM of two consecutive (positive) even numbers is 2 and 84, the sum of the numbers is:

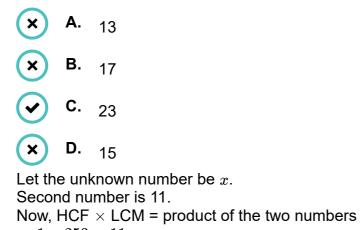




17. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is:



18. HCF of two numbers is 1 and LCM is 253. If one of the two numbers is 11, find the other.



 $\Rightarrow 1 imes 253 = 11 imes x$ $\Rightarrow x = 23$

 \therefore The unknown number is 23.

19. Which of the following numbers is not irrational?

x A.
$$5 + \sqrt{2}$$

x B. $5 - \sqrt{2}$
x C. $5 + \sqrt{3}$
v D. $5 + \sqrt{9}$

We know that, $\sqrt{2}$, $\sqrt{3}$ are irrational numbers. So, if we add any number to $\sqrt{2}$, or $\sqrt{3}$, the resulting number will also be irrartional.

Also, $\sqrt{9} = 3$ is not an irrational number. Hence, $5 + \sqrt{9} = 5 + 3 = 8$ is not irrational.

20. S1 : $\frac{1323}{1400}$ is a non terminating decimal.

S2 : A number $\frac{p}{q}$ where p and q are co-primes is terminating if q is of the form $2^n . 3^m$ where n and m are non-negative integers.

- × A. S1 and S2 are true.
- **B.** S1 and S2 are false

C. S1 is false and S2 is true

D. S1 is true and S2 is false

1400 = $2^3 \times 5^2 \times 7$

 \Rightarrow The denominator is not in the form of $2^n 5^m$.

Therefore, the given rational number has non- terminating decimal expansion.

Hence, S1 is true.

A number $\frac{p}{q}$ where p and q are co-primes is terminating if q is of the form $2^m.5^n$.

Hence S2 is false.