Practice Questions - Term I

Date: 09/11/2021
Subject: Mathematics
Topic : Real Numbers
Class: X

1. Prime factorization of 1400 :
x A. $2.3^{2} .5^{3}$
x B. 2^{3}.5.7
(C. $2^{3} .5^{2} .7^{2}$
(D . $2^{3} .5^{2} .7$
Prime factorisation of 1400 :

$$
1400=2^{3} \cdot 5^{2} \cdot 7
$$

Practice Questions - Term I

2.

The sum of prime factors of 4620 is:
\times A. 30
B. 28
\times
C. 32
x D. 34
$4620=2^{2} \times 3 \times 5 \times 7 \times 11$
Hence, the prime factors are 2, 3, 5, 7 and 11 .
Sum of prime factors $=2+3+5+7+11=28$
3. If $a=2^{3} \times 3^{2} \times 5$ and $b=2^{4} \times 3 \times 7^{2}$, then which of the following is true?
x $\quad \mathrm{HCF}=2^{3} \times 3^{2} \times 5 \times 7$
× A. \quad LCM $=2^{7} \times 3^{3} \times 5 \times 7^{2}$
× B. $\begin{aligned} & \mathrm{HCF}=2 \times 3 \times 5 \times 7 \\ & \mathrm{LCM}=2^{2} \times 3^{2} \times 5 \times 7^{2}\end{aligned}$
x
x C $\mathrm{HCF}=2^{3} \times 3^{2}$
x
C. $\mathrm{LCM}=2^{4} \times 3^{2} \times 5 \times 7^{2}$
(v)
D. $\begin{aligned} & \mathrm{HCF}=2^{3} \times 3 \\ & \mathrm{LCM}=2^{4} \times 3^{2} \times 5 \times 7^{2}\end{aligned}$

HCF is the product of common prime factors with their lowest power.
LCM is the product of prime factors with their highest power.
Given : $a=2^{3} \times 3^{2} \times 5$ and $b=2^{4} \times 3 \times 7^{2}$
\Rightarrow HCF of a and $b=2^{3} \times 3$ (Taking the product of lowest powers of common factors)

LCM of a and $b=2^{4} \times 3^{2} \times 5 \times 7^{2}$ (Taking the product of prime factors with their highest power)

Practice Questions - Term I

4.

The decimal expansions of $\frac{13}{6250}$ is
x A. 0.00416
x B. 0.00512C. 0.00208
\times
D. 0.0208
$\frac{13}{6250}=\frac{13}{2^{1} .5^{5}}$
To get the denominator in powers of 10 , multiply both numerator and denominator by 2^{4}
$\Rightarrow \frac{13}{6250}=\frac{13 \times 2^{4}}{5^{5} \times 2^{5}}$
$\frac{13}{6250}=13 \times \frac{2^{4}}{10^{5}}=\frac{208}{10^{5}}=0.00208$
5. For $\sqrt{3} x^{2}$ to be irrational, x should be
x A. always irrational.
x B. always rational.C. irrational or rational.
x D. cannot be determined.
Let's assume $\mathrm{x}=2-\sqrt{3}$
$\Rightarrow \sqrt{3} x^{2}=\sqrt{3}(2-\sqrt{3})^{2}$ which is irrational.
Again, assume $x=2$
$\Rightarrow \sqrt{3} x^{2}=\sqrt{3}(2)^{2}$ which is also irrational.

Practice Questions - Term I

6.

The decimal expansion of $\frac{141}{120}$ will terminate after how many places?A. 3

X B. 5
x C. 7
x D. Will not terminate
Given rational number $\frac{141}{120}$
Here, $120=2^{3} \times 3 \times 5$
$141=3 \times 47$
$\Rightarrow \frac{141}{120}=\frac{3 \times 47}{2^{3} \times 3 \times 5}$
$=\frac{47}{2^{3} \times 5}$
Multiply and divide by 5^{2}.
$=\frac{47 \times 5^{2}}{2^{3} \times 5 \times 5^{2}}$
$=\frac{47 \times 25}{(2 \times 5)^{3}}$
$=\frac{1175}{1000}$
$=1.175$
Therefore, $\frac{141}{120}$ will terminate after three decimal places.

Practice Questions - Term I

7. Two numbers are in the ratio of $15: 11$. If their H.C.F is 13 , the numbers will be:
A. 195 and 143
x
B. 190 and 140
x
C. 185 and 163
\times
D. 185 and 143

Let the required numbers be $15 x$ and 11x.
Now, $15 \mathrm{x}=3 \times 5 \times \mathrm{x}$
$11 \mathrm{x}=11 \times \mathrm{x}$
From (i) and (ii), we can say that x is the only common factor for both $15 x$ and 11x.
$\therefore \mathrm{x}$ is the H.C.F. of 15 x and 11 x .
It is given that the H.C.F of the numbers is 13 .
$\therefore x=13$
\therefore The numbers are 15×13 and 11×13 i.e. 195 and 143 .
8. We have 38 cakes. Each box can hold 5 cakes only. How many boxes we need to pack and how many cakes are unpacked?A. 7,3
\times
B. 7,4
x
C. 6,8
\times
D. 8,2

Let number of cakes be a and capacity of box be b.
$\therefore \mathrm{a}=38, \mathrm{~b}=5$
By Euclid's division lemma
$a=b q+r, 0 \leq r<|b|$
$38=5 \times(7)+3,0 \leq 3<|5|$
Therefore, Quotient $\mathrm{q}=7$ and remainder $\mathrm{r}=3$
We see that 7 boxes are required to pack 38 cakes with 3 cakes left over.

Practice Questions - Term I

9. The HCF of two numbers is 18 and their product is 12960 . Find their LCM.
x A. 280
x
B. 520
C. 720
\times
D. 270

For any two numbers a and b,
$\operatorname{LCM}(\mathrm{a}, \mathrm{b}) \times \operatorname{HCF}(\mathrm{a}, \mathrm{b})=a \times b$
Thus, LCM $\times 18=12960$
\Rightarrow LCM $=720$
10. If $\frac{12}{q}$ is a terminating decimal number, then which of the following is a possible value of q ?
x A. 7
X B. 9
(v)
C. 15
x D. 21
$\frac{12}{7} \rightarrow$ denominator $=7$
$\frac{12}{9}=\frac{4}{3} \rightarrow$ denominator $=3$
$\frac{12}{15}=\frac{4}{5} \rightarrow$ denominator $=5$ (of the form $2^{m} \times 5^{n}$)
$\frac{12}{21}=\frac{4}{7} \rightarrow$ denominator $=7$
Thus, among the given options, the only possible value of q that satisfies the given condition is 15 .

Practice Questions - Term I

11. If $\sqrt{3}$ is an irrational number, then which of the following is an irrational number?
x A. $\sqrt{3}-\sqrt{3}$
x B. $\sqrt{3}(2 \sqrt{3}-\sqrt{3})$
x C. $(\sqrt{3}-1)(\sqrt{3}+1)$
(D) $\sqrt{3}(\sqrt{3}-1)$
$\sqrt{3}-\sqrt{3}=0 \rightarrow$ rational number
$\sqrt{3}(2 \sqrt{3}-\sqrt{3})=6-3=3 \rightarrow$ rational number
$(\sqrt{3}+1)(\sqrt{3}+1)=3-1=2 \rightarrow$ rational number
$\sqrt{3}(\sqrt{3}-1)=3-\sqrt{3} \rightarrow$ irrational number
(Sum/difference of a rational number and an irrational number is irrational.)
12. The largest 4-digit number exactly divisible by 88 is \qquad .A. 9944
x
B. 9988
\times
C. 9966
\times D. 8888

The largest 4-digit number is 9999. By Euclid's division lemma $9999=88 \times 113+55$
\Rightarrow We need to reduce 55 from 9999 so that the resulting number is divisible by 88 .
i.e., $9999-55=9944$ is divisible by 88 .
$\therefore 9944$ is the largest 4-digit number divisible by 88 .

Practice Questions - Term I

13. If the HCF of 65 and 117 is expressible in the form $65 m-117$, then the value of m is:
x A. 4

B. 2
x C. 1

- D. 3

By Euclid's division algorithm,
$b=a q+r, 0 \leq r<a[\because$ dividend $=$ divisor \times quotient + remainder $]$
$\Rightarrow 117=65 \times 1+52$
$\Rightarrow 65=52 \times 1+13$
$\Rightarrow 52=13 \times 4+0$
$\therefore H C F(65,117)=13 \ldots(i)$
Also, given that, $\operatorname{HCF}(65,117)=65 m-117 \ldots(i i)$
From equations (i) and (ii),
$65 m-117=13$
$\Rightarrow 65 m=130$
$\Rightarrow m=2$

Practice Questions - Term I

14. The traffic lights at three different road crossings change after every 48 seconds, 72 seconds and 108 seconds respectively. If they all change simultaneously at 8 AM then at what time will they again change simultaneously.
x A. 8:09 AM

B. $8: 12 \mathrm{AM}$
\times
C. $8: 15 \mathrm{AM}$
\times D. 8:18 AM

Time period after which these lights will change $=$ LCM of $48,72,108$
$48=2 \times 2 \times 2 \times 2 \times 3$
$72=2 \times 2 \times 2 \times 3 \times 3$
$108=2 \times 2 \times 3 \times 3 \times 3$
$\operatorname{LCM}(48,72,108)=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3=432$
After 432 sec
$=432 \div(60 \times 60)$
$=432 \div 3600$
$=0.12 \mathrm{hrs}$
Hence, next simultaneous change will take place at $=8.00+0.12=8.12$ AM

Practice Questions - Term I

15. If the HCF and LCM of two consecutive (positive) even numbers is 2 and 84 , the sum of the numbers is:
\times A. 22
x B. 24C. 26
x D. 28
Let the first number $=x$
Then, second number $=x+2$
$H C F=2$
$L C M=84$
We know that the product of two numbers $=H C F \times L C M$
$\Rightarrow x \times(x+2)=2 \times 84$
$\Rightarrow x^{2}+2 x-168=0$
$\Rightarrow x^{2}-12 x+14 x-168=0$
$\Rightarrow x(x-12)+14(x-2)=0$
$\Rightarrow x=12, x+2=14(\because$ Both the numbers are positive. $)$
$\Rightarrow x+x+2=12+14=26$
16. In the given factor tree, the value of $x+y+z$ is:

x A. 213
x B. 211
x C. 209
(จ) D. 207
Factorisation of 765 by factor tree method

$\Rightarrow x=153$
$\vec{z}=(3)(17)=51$
$y=\frac{x}{z}=\frac{153}{51}=3$
$\therefore x+y+z=153+3+51=207$

Practice Questions - Term I

17. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is:
x A. 630
x B. 1080C. 2520
x D. 5040
$1=1$
$2=1 * 2$
$3=1 * 3$
$4=1 * 2 * 2$
$5=1 * 5$
$6=1 * 2 * 3$
$7=1 * 7$
$8=1 * 2^{*} 2^{*} 2$
$9=1 * 3 * 3$
$10=1 * 2 * 5$
LCM of number 1 to $10=\operatorname{LCM}(1,2,3,4,5,6,7,8,9,10)$
LCM of number 1 to $10=1 * 2^{*} 2^{*} 2^{*} 3^{*} 3^{*} 5^{*} 7=2520$
18. HCF of two numbers is 1 and LCM is 253 . If one of the two numbers is 11 , find the other.
x A. 13
x
B. 17
C. 23
\times
D. 15

Let the unknown number be x.
Second number is 11 .
Now, HCF \times LCM $=$ product of the two numbers
$\Rightarrow 1 \times 253=11 \times x$
$\Rightarrow x=23$
\therefore The unknown number is 23 .

Practice Questions - Term I

19. Which of the following numbers is not irrational?
x A. $5+\sqrt{2}$
\times
B. $5-\sqrt{2}$
x
C. $5+\sqrt{3}$
(v)
D. $5+\sqrt{9}$

We know that, $\sqrt{2}, \sqrt{3}$ are irrational numbers.
So, if we add any number to $\sqrt{2}$, or $\sqrt{3}$, the resulting number will also be irrartional.

Also, $\sqrt{9}=3$ is not an irrational number.
Hence, $5+\sqrt{9}=5+3=8$ is not irrational.
20. $\mathrm{S} 1: \frac{1323}{1400}$ is a non terminating decimal.

S 2 : A number $\frac{p}{q}$ where p and q are co-primes is terminating if q is of the form $2^{n} .3^{m}$ where n and m are non-negative integers.
x A. S1 and S2 are true.
x B. S1 and S2 are false
x C. S1 is false and S2 is true

D. S1 is true and S2 is false
$1400=2^{3} \times 5^{2} \times 7$
\Rightarrow The denominator is not in the form of $2^{n} 5^{m}$.
Therefore, the given rational number has non- terminating decimal expansion.
Hence, S1 is true.
A number $\frac{p}{q}$ where p and q are co-primes is terminating if q is of the form $2^{m} .5^{n}$.
Hence S 2 is false.

