

Real Numbers

2. Euclid's Division Lemma

3. Euclid's Division Algorithm

4. Fundamental Theorem of Arithmetic

5. Rational Numbers and Their Decimal Expansions

6. Irrational Numbers

 $\frac{4}{7}$ 2 5.23 $\sqrt{5}$ 3+ $\sqrt{2}$

= 1. Algorithm and Lemma :

- An algorithm is a series of well-defined steps which gives a procedure for solving a type of problem.
- A lemma is a proven statement used for proving another statement.

2. Euclid's Division Lemma

If we have two positive integers a and b, then there exist unique integers q and r which satisfy the condition:

$$a = bq + r$$
, $0 \le r < b$

 $Dividend = Divisor \times Quotient + Remainder$

3 Euclid's Division Algorithm

Based on Euclid's division lemma.

To obtain the $\frac{HCF}{ACF}$ of two positive integers, say a and b, with $\frac{a > b}{ACF}$, follow the algorithm below:

Apply the division lemma to find q and r such that

b is the required HCF.

Jamp

Use Euclid's algorithm to find the HCF of 441 and 567.

Solution: By Euclid's algorithm, we have

$$567 = 441 \times 1 + 126$$

$$441 = 126 \times 3 + 63$$

$$126 = 63 \times 2 + 0$$

$$HCF(441,567) = 63.$$

4. Fundamental Theorem of Arithmetic

Every composite number can be expressed as a product of primes, and this factorisation is unique (apart from the order).

Frample

The prime factorisation of the number 8190 is:

$$8190 = 2^1 \times 3^2 \times 5^1 \times 7^1 \times 13^1$$

4.1 Theorem Based on Fundamental Theorem of Arithmetic

If a prime number p divides a^2 , then p divides a, where a is a positive integer.

Example

Let us consider, p = 3, a = 9

3 divides 92

3 divides 9.

4.2 Relation between HCF and LCM

For any two positive integers a and b,

$$HCF(a,b) \times LCM(a,b) = a \times b$$

Note: This relationship only holds good for two numbers.

5. Rational Numbers and Their Decimal Expansions

Rational number, $Q = \frac{p}{q}$

Decimal Expansion

Terminating

$$q = 2^m \times 5^n$$

Non-terminating repeating

$$q \neq 2^m \times 5^n$$

Note: Here m and n are non-negative integers.

ample

Examine whether $\frac{17}{210}$ is a terminating decimal.

Solution: Here, $q = 210 = 2 \times 3 \times 5 \times 7$

Since denominator is not in the form of $2^m \times 5^n$, the rational number has non-terminating repeating decimal expansion.

b. Innational Numbers:

A number 's' is called irrational if it cannot be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

Tample

Prove that, $\sqrt{2}$ is irrational.

Proof: By using method of contradiction

Assume $\sqrt{2}$ is a rational number.

$$\sqrt{2} = \frac{a}{b}$$
 (a and b are co-primes and $b \neq 0$)

$$\implies b\sqrt{2} = a$$

Squaring both the sides

$$(b\sqrt{2})^2 = a^2$$

$$\Rightarrow 2b^2 = a^2 \quad (a \text{ is an even number})$$

Let a =
$$2k$$
 (k is an integer)
 $2b^2 = 4k^2$

$$\Rightarrow b^2 = 2k^2 \quad (b \text{ is an even number})$$

: a and b have 2 as a common factor.

But this contradicts the fact that a and b are co-primes.

This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.

Hence $\sqrt{2}$ is irrational.

