B BYJU'S Classes

Application of Derivatives
Introduction to Application of Derivatives

Road Map

Approximation

Application of Derivatives

Application of Derivatives

Derivative is defined as the rate of change of one quantity with respect to another. Here, it is used to calculate

Derivative as Rate of Change

If y is a function of x, then small change in x has a small change in y.
Rate of change of ' y^{\prime} w.r.t' $x^{\prime}=\frac{\Delta y}{\Delta x}$,
where $\Delta x \rightarrow$ change in ' x 'and $\Delta y \rightarrow$ change in ' y '.

As $\Delta x \rightarrow 0$, rate of change becomes instantaneous.

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{d y}{d x}
$$

Illustration
If the radius of a circle is increasing at a uniform rate of $2 \mathrm{~cm} / \mathrm{s}$, find the rate of increase of area of circle, at the instant when the radius is 20 cm .

Solution:

Let us consider A to be the area of circle having radius r.
Given, $\frac{d r}{d t}=2 \mathrm{~cm} / \mathrm{s}$ and for $r=20 \mathrm{~cm}$; $\frac{d A}{d t}=$?
As A is the area of circle $\Rightarrow A=\pi r^{2}$
Differentiating w.r.t time ' t ', we get,

$$
\frac{d A}{d t}=2 \pi r \frac{d r}{d t}=2 \pi \times 20 \times 2 \Rightarrow \frac{d A}{d t}=80 \pi \mathrm{~cm}^{2} / \mathrm{s}
$$

Illustration

A $2 m$ ladder leans against a vertical wall. If the top of the ladder begins to slide down the wall at the rate of $25 \mathrm{~cm} / \mathrm{s}$., then the rate (in cm / s) at which the bottom of the ladder slides away from the wall on the horizontal ground when the top of the ladder is 1 m above the ground is:
a. $25 / \sqrt{3}$
b. $25 \sqrt{3}$
c. 25
d. $25 / 3$

Solution:

Let the ladder touch the wall y meter above the ground and the distance between ladder and wall be x meter on the ground.

$$
\frac{d y}{d t}=-25 \mathrm{~cm} / \mathrm{s}=-0.25 \mathrm{~m} / \mathrm{s}
$$

[Distance is decreasing with time]

$$
\text { When } y=1 m, \frac{d x}{d t}=?
$$

In triangle $A B C$, At any instant , $x^{2}+y^{2}=4$, when $y=1, x=\sqrt{3}$.
Differentiating w.r.t time ' t ', we get,
$2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0$,
Substituting $\frac{\mathrm{dy}}{\mathrm{dt}}=-0.25, y=1, x=\sqrt{3}$, we get,
$\frac{d x}{d t}=\frac{0.25}{\sqrt{3}} \mathrm{~m} / \mathrm{s}=\frac{25}{\sqrt{3}} \mathrm{~cm} / \mathrm{s}$
Rate at which bottom of ladder slides is $\frac{25}{\sqrt{3}} \mathrm{~cm} / \mathrm{s}$.
Hence, option (a) is the correct answer.

Illustration
On the curve $x^{3}=12 y$, abscissa changes at a faster rate than the ordinate, then x belongs to

$$
\text { a. }(2, \infty) \quad \text { b. }(-2,2) \quad \text { c. }(-2,2)-\{0\} \quad \text { d. }(0, \infty)
$$

Solution:

$x^{3}=12 y$
$3 x^{2} \frac{d x}{d t}=12 \frac{d y}{d t} \Rightarrow \frac{d y}{d t}=\frac{3 x^{2}}{12} \frac{d x}{d t} \quad$ [Differentiating w.r.t ' t^{\prime}]
$\left|\frac{d x}{d t}\right|>\left|\frac{d y}{d t}\right| \Rightarrow \frac{\left|\frac{d y}{d t}\right|}{\left|\frac{d x}{d t}\right|}<1$
$\Rightarrow\left|\frac{3 x^{2}}{12}\right|<1 \Rightarrow \frac{x^{2}}{4}<1 \Rightarrow(x-2)(x+2)<0$. Hence, $x \in(-2,2)$
Hence, option (b) is the correct answer. A water tank has the shape of an inverted right circular cone , whose semi vertical angle is $\tan ^{-1}\left(\frac{1}{2}\right)$. Water is poured into it at a constant rate of 5 $\mathrm{m}^{3} / \mathrm{min}$. Then the rate (in $\mathrm{m} / \mathrm{min}$), at which the level of water is rising at the instant when the depth of water in tank is 10 m is:

$$
\begin{array}{|llll}
\text { a. } \frac{1}{5 \pi} & \text { b. } & \frac{1}{15 \pi} & \text { c. } \\
\frac{2}{\pi} & \text { d. } & \frac{1}{10 \pi}
\end{array}
$$

Solution:
Let volume of water inside the inverted right circular cone be V.

$$
\begin{gathered}
\theta=\tan ^{-1}\left(\frac{1}{2}\right), \frac{d V}{d t}=5 \mathrm{~m}^{3} / \mathrm{min} \\
\text { When } h=10 \mathrm{~m}, \frac{d h}{d t}=?
\end{gathered}
$$

We know, $V=\frac{1}{3} \pi r^{2} h$
$\tan \theta=\frac{r}{h} \Rightarrow \frac{1}{2}=\frac{r}{h} \Rightarrow r=\frac{h}{2}$
$\therefore V=\frac{1}{3} \pi \frac{h^{3}}{4}$
Differentiating w.r.t. ' t ', we get,
$\frac{d V}{d t}=\frac{\pi h^{2}}{4} \frac{d h}{d t}$
$\Rightarrow 5=\frac{100 \pi}{4} \frac{d h}{d t} \Rightarrow \frac{d h}{d t}=\frac{1}{5 \pi} \mathrm{~m} / \mathrm{min}$
Hence, option (a) is the correct answer.

If the surface area of a cube is increasing at a rate of $3.6 \mathrm{~cm}^{2} / \mathrm{sec}$, retaining its shape, then the rate of change of its volume (in $\mathrm{cm}^{3} / \mathrm{sec}$), when the length of a side of the cube is 10 cm , is :

a. 18	b. 20	c. 10

Solution:

Let the surface area of the cube is S and Volume be V.
Given, $\frac{d S}{d t}=3.6 \mathrm{~cm}^{2} / \mathrm{sec}$

When $a=10 \mathrm{~cm}$, then $\frac{d V}{d t}=$?

$$
S=6 a^{2}
$$

Differentiating both the sides w.r.t time ' t ', we get, $\frac{d S}{d t}=12 a \times \frac{d a}{d t}$
$3.6=12 \times 10 \times \frac{d a}{d t} \Rightarrow \frac{d a}{d t}=0.03 \mathrm{~cm} / \mathrm{sec}$
$V=a^{3}$
Differentiating both the sides w.r.t time ' t ', we get,
$\frac{d V}{d t}=3 a^{2} \frac{d a}{d t}$
$\frac{d V}{d t}=3 \times(10)^{2} \times 0.03 \Rightarrow \frac{d V}{d t}=9 \mathrm{~cm}^{3} / \mathrm{sec}$

10
Hence, option (d) is the correct answer.

A spherical iron ball of 10 cm radius is coated with a layer of ice of uniform thickness that melts at a rate of $50 \mathrm{~cm}^{3} / \mathrm{min}$. When the thickness of ice is 5 cm , then the rate (in $\mathrm{cm} / \mathrm{min}$.) at which the thickness of ice decreases, is:

$$
\begin{array}{lllll}
\text { a. } & \frac{1}{18 \pi} & \quad \text { b. } & \frac{5}{6 \pi} & \vdots \text { c. } \\
\frac{1}{36 \pi} & \vdots \text { d. } & \frac{1}{54 \pi}
\end{array}
$$

Let volume and uniform thickness of ice be V and r, respectively.
Given, melting rate $\frac{d V}{d t}=50 \mathrm{~cm}^{3} / \mathrm{min}$

The radius of the spherical ball is 10 cm .
Now, volume of ice $V=\frac{4}{3} \pi(10+r)^{3}-\frac{4}{3} \pi(10)^{3}$
Differentiating w.r.t time ' t ', we get,

$$
\begin{aligned}
& \frac{d V}{d t}=4 \pi(10+r)^{2} \frac{d r}{d t} \\
& 50=4 \pi(15)^{2} \frac{d r}{d t} \\
& \frac{d r}{d t}=\frac{50}{4 \pi(15)(15)} \\
& \frac{d r}{d t}=\frac{1}{18 \pi} \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

Hence, option (a) is the correct answer.

Illustration

The rate of increase of length of the shadow of a man $2 m$ height, due to a lamp at 10 m height, when he is moving away from it at the rate of $2 \frac{\mathrm{~m}}{\mathrm{sec}}$ is \qquad .

Solution:

Let " x " be the distance between pole and the man, " y " be the length of the shadow and θ is the angle made by shadow as shown in figure.

$$
\frac{d x}{d t}=2 \frac{m}{s e c} \text { (given) }
$$

$\frac{10}{x+y}=\frac{2}{y} \quad$ [Clearly, both triangles $A B C$ and $P Q C$ are similar with $A A A$ rule \Rightarrow Corresponding sides of these triangle will be proportional]
$\Rightarrow 8 y=2 x$
$\Rightarrow 8 \frac{d y}{d t}=2 \frac{d x}{d t}$
$\Rightarrow \frac{d y}{d t}=\frac{1}{4}(2)$
$\Rightarrow \frac{d y}{d t}=\frac{1}{2} \frac{m}{s e c}$

Approximation

Consider a curve $y=f(x)$ with two points A, B as shown in the figure.

As $h \rightarrow 0, \frac{d y}{d x}=f^{\prime}(x)$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Approximate change in value of ${ }^{\prime} f^{\prime}$

$$
f\left(x_{0}+h\right) \approx f\left(x_{0}\right)+h \cdot f^{\prime}\left(x_{0}\right)
$$

Illustration
Use differential to find approximate value of $\sqrt{25.2}$.
a. 5.02 b. 5.01 c. $5.03 \quad$ d. 5.04

Solution:

Let $f(x)=\sqrt{x}, x_{0}=25, h=0.2$

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

$$
f(25.2)=f(25+0.2) \approx f(25)+0.2 \cdot f^{\prime}(25) \quad f\left(x_{0}+h\right) \approx f\left(x_{0}\right)+h \cdot f^{\prime}\left(x_{0}\right)
$$

$$
\Rightarrow \sqrt{25.2} \approx 5+0.2\left(\frac{1}{10}\right)
$$

$$
\sqrt{25.2} \approx 5.02
$$

Hence, option (a) is the correct answer.

The approximate value of $\tan 44^{\circ}$ is (take $\pi=22 / 7$) .

$$
\begin{array}{lllllll}
\text { a. } & 0.782 \quad \text { b. } & 0.965 & \ddots \text { c. } & 0.873 & \underline{\text { d. }} & 0.999
\end{array}
$$

Solution:

Let $f(x)=\tan x, x_{0}=45^{\circ}, h=-1^{\circ}$
$f^{\prime}(x)=\sec ^{2} x$
$f\left(x_{0}+h\right) \approx f\left(x_{0}\right)+h . f^{\prime}\left(x_{0}\right)$
$\Rightarrow \tan 44^{\circ} \approx \tan 45^{\circ}+\left(-1^{\circ}\right) \cdot \sec ^{2} 45^{\circ}$

$$
\approx 1+\left(\frac{-1}{180} \times \frac{22}{7}\right) \cdot 2
$$

$$
\begin{aligned}
& 180^{\circ}=\pi \text { radians } \\
& \Rightarrow h=\frac{-1 \times \pi}{180} \text { radians }
\end{aligned}
$$

$\tan 44^{\circ} \approx 0.965$
Hence, option (b) is the correct answer.

Summary Sheet

- Derivative is defined as the rate of change of one quantity with respect to another.
- If y is a function of x, then small change in x has a small change in y. Rate of change of ' y^{\prime} w.r.t' $x^{\prime}=\frac{\Delta y}{\Delta x}$.
- Approximate change in value of ' f ' is $f\left(x_{0}+h\right) \approx f\left(x_{0}\right)+h . f^{\prime}\left(x_{0}\right)$.

B BYJU'S Classes

Application of Derivatives
Tangents and Normal using Derivative

Road Map

Tangent and Normal

Let $y=f(x)$ be a curve and there is a point $P\left(x_{1}, y_{1}\right)$ on it.

Slope of Tangent at point P
$=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=m=\tan \theta=f^{\prime}(x)$
\therefore Equation of Tangent T :
(By point-slope form)

$$
\left(y-y_{1}\right)=m\left(x-x_{1}\right)
$$

Tangent and Normal

Let $y=f(x)$ be a curve and there is a point $P\left(x_{1}, y_{1}\right)$ on it.
Slope of Normal at point P

$$
=-\frac{1}{\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}}=-\left(\frac{d x}{d y}\right)_{\left(x_{1}, y_{1}\right)}=-\frac{1}{m}
$$

\therefore Equation of Normal N :
(By point-slope form)

$$
\left(y-y_{1}\right)=-\frac{1}{m}\left(x-x_{1}\right)
$$

. Tangent and Normal

Note:

The point $P\left(x_{1}, y_{1}\right)$ will satisfy the equation of the curve, the equation of the tangent and the equation of the normal.

Tangent and Normal

Note:

If the tangent at any point P on the curve is parallel to the X - axis, then $\frac{d y}{d x}=0$ at point P.

Here, tangent T to the curve is parallel to the X - axis.
Hence, Slope $=\frac{d y}{d x}=\tan 0^{0}=0$

Tangent and Normal

Note:

If the tangent at any point P on the curve is parallel to the Y - axis, then $\frac{d y}{d x} \rightarrow \infty$ or $\frac{d x}{d y}=0$ at point P.

Here, tangent T to the curve is perpendicular to the X - axis. Hence, Slope $=\frac{d y}{d x}=\tan 90^{\circ} \rightarrow \infty$

Tangent and Normal

Note: If the tangent at any point P on the curve makes equal and positive intercepts on the coordinate axes, then $\frac{d y}{d x}=-1$ at the point P.
Proof: Let the tangent to a curve make equal intercepts a on positive coordinate axes.

Equation of tangent is:

$$
\frac{x}{a}+\frac{y}{a}=1 \Rightarrow x+y=a
$$

Now, Slope of the tangent $(m)=-\frac{\text { Coefficient of } x}{\text { Coefficient of } y}$

$=-1$
$\Rightarrow \frac{d y}{d x}=-1 \quad\left(\because\right.$ Slope $\left.=\frac{d y}{d x}\right)$

Tangent and Normal

Note:

If the tangent at any point P on the curve is equally inclined to both the axes, then $\frac{d y}{d x}= \pm 1$ at the point P.

For the tangent , intercepting the negative X-axis and negative Y-axis, $\frac{d y}{d x}=-1$.

And for the tangent , intercepting the positive X-axis and negative Y-axis, $\frac{d y}{d x}=1$

Find slope of tangent $\&$ normal to the curve $y=x^{3}-3 x$, at the point $(2,2)$.

Solution:

Given curve, $y=x^{3}-3 x$
Differentiating w.r.t x at point (2,2), we get,
$\left(\frac{d y}{d x}\right)_{(2,2)}=\left(3 x^{2}-3\right)_{(2,2)}=9$
We know that, slope of tangent at point $\left(x_{1}, y_{1}\right)=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}$
\Rightarrow Slope of tangent at point $(2,2)=\left(\frac{d y}{d x}\right)_{(2,2)}=9$
And slope of normal at point $(2,2)=-\frac{1}{\left(\frac{d y}{d x}\right)_{(2,2)}}=-\frac{1}{9}$

Find equation of tangent and normal to the curve $y=\frac{x^{3}-x}{1+x^{2}}$ at the point $x=1$.

Solution:

Given curve, $y=\frac{x^{3}-x}{1+x^{2}}$
At $x=1 ; y=\frac{1^{3}-1}{1+1}=0$
$y\left(1+x^{2}\right)=x^{3}-x$
Differentiating w.r.t x, we get,

$$
\begin{aligned}
& \frac{d y}{d x}\left(1+x^{2}\right)+y(2 x)=3 x^{2}-1 \\
& \Rightarrow \frac{d y}{d x}=\frac{3 x^{2}-1-2 x y}{1+x^{2}}
\end{aligned}
$$

$\therefore\left(\frac{d y}{d x}\right)_{(1,0)}=\frac{2}{2}$
$\Rightarrow\left(\frac{d y}{d x}\right)_{(1,0)}=1$
\therefore Slope of the tangent is 1 and slope of normal is -1 .
Now, by using point slope form, we get,
Equation of tangent : $y=x-1$
Equation of normal : $y=-(x-1)$

Which of the following points lie on the tangent to the curve
$x^{4} e^{y}+2 \sqrt{y+1}=3$, at the point $(1,0)$?
a. $(2,2) \quad$ b. $(-2,6) \quad$ c. $(-2,4) \quad$ d. $(2,6)$

Solution:
Given curve, $x^{4} e^{y}+2 \sqrt{y+1}=3$
Differentiating w.r.t x, we get,

$$
\begin{aligned}
& 4 x^{3} e^{y}+x^{4} e^{y} y^{\prime}+\frac{1}{\sqrt{y+1}} \cdot y^{\prime}=0 \\
& \Rightarrow y^{\prime}=\frac{-4 x^{3} e^{y}}{\left(x^{4} e^{y}+\frac{1}{\sqrt{y+1}}\right)}
\end{aligned}
$$

On substituting point $(1,0)$, we get $y^{\prime}=\frac{-4 \times 1^{3} \times e^{0}}{\left(1^{4} e^{0}+\frac{1}{\sqrt{0+1}}\right)}=-2$
\Rightarrow Slope of the tangent to the given curve at the point $(1,0)$ is -2
\therefore Equation of tangent by point slope form is: $(y-0)=-2(x-1)$

$$
\Rightarrow 2 x+y=2
$$

Among the given points only $(-2,6)$ satisfies the above equation.
So, option (b) is the correct answer.

If the tangent to the curve $y=x+\sin y$, at a point (a, b) is parallel to the line joining points $\left(0, \frac{3}{2}\right)$ and $\left(\frac{1}{2}, 2\right)$, then :
$\underline{a_{.}} b=a \quad \mid$ b. $_{.} b=\frac{\pi}{2}+a \quad\left|\underline{c .}_{.}\right| b-a|=1 \quad| d_{.}|a+b|=1$
Solution:
Given curve, $y=x+\sin y$
Slope of line joining points $\left(0, \frac{3}{2}\right)$ and $\left(\frac{1}{2}, 2\right)=\frac{2-\frac{3}{2}}{\frac{1}{2}-0}=1 \ldots$
On differentiating the curve $y=x+\sin y$, we get,

$$
\frac{d y}{d x}=1+\cos y \cdot \frac{d y}{d x}
$$

$$
\begin{equation*}
\Rightarrow\left(\frac{d y}{d x}\right)_{(a, b)}=1+\cos b \cdot\left(\frac{d y}{d x}\right)_{(a, b)} \tag{ii}
\end{equation*}
$$

From (i) and (ii)
$1=1+\cos b$ (1)
$\Rightarrow \cos b=0 \Rightarrow b= \pm \frac{\pi}{2} \Rightarrow \sin b= \pm 1$
Also , $b=a+\sin b$
$\Rightarrow|b-a|=1$
So, option (c) is the correct answer.

The length of the perpendicular from the origin on the normal to the curve, $x^{2}+2 x y-3 y^{2}=0$, at the point $(2,2)$ is :
a. 2
b. $\sqrt{2}$
C. $2 \sqrt{2}$
d. $4 \sqrt{2}$

Solution:

Given curve, $x^{2}+2 x y-3 y^{2}=0$ Differentiating w.r.t x, we get,

$$
\begin{aligned}
& 2 x+2 y+2 x y^{\prime}-6 y y^{\prime}=0, \\
& \Rightarrow y^{\prime}(2,2)=1
\end{aligned}
$$

$$
\Rightarrow \text { Slope of normal at }(2,2)=-1
$$

Equation of normal : $y-2=-(x-2)$

$$
\Rightarrow x+y-4=0
$$

We know,
Length of the perpendicular from origin on $a x+b y+c=0$ is $\left|\frac{c}{\sqrt{a^{2}+b^{2}}}\right|$.
\therefore Length of the perpendicular from origin on $x+y-4=0$ is $\left|\frac{-4}{\sqrt{1^{2}+1^{2}}}\right|=2 \sqrt{2}$
So, option (c) is the correct answer.

Sum of intercepts of the tangent at any point to the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$, on the coordinate axes is :
a. a
b. $2 \sqrt{a}$
C. \sqrt{a}
d. $2 a$

$$
\begin{aligned}
\text { Solution: } & \quad \text { Given curve, } \sqrt{x}+\sqrt{y}=\sqrt{a}
\end{aligned} \begin{aligned}
& \Rightarrow \frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \frac{d y}{d x}=0 \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=-\frac{\sqrt{y_{1}}}{\sqrt{x_{1}}}
\end{aligned}
$$

Hence, Slope of the tangent
at the point $P\left(x_{1}, y_{1}\right)$ is $-\frac{\sqrt{y_{1}}}{\sqrt{x_{1}}}$
\therefore Equation of tangent :

$$
y-y_{1}=-\frac{\sqrt{y_{1}}}{\sqrt{x_{1}}}\left(x-x_{1}\right) \ldots(i)
$$

On substituting $y=0$ in the equation (i), we get,
$x=x_{1}+\sqrt{x_{1}} \sqrt{y_{1}}$
$\therefore X$-intercept, $X_{\text {int. }}=x_{1}+\sqrt{x_{1}} \sqrt{y_{1}}=\sqrt{x_{1}}\left(\sqrt{x_{1}}+\sqrt{y_{1}}\right)=\sqrt{x_{1}} \sqrt{a}$ On substituting $x=0$ in the equation (i), we get, $y=y_{1}+\sqrt{x_{1}} \sqrt{y_{1}}$
$\therefore Y$-intercept, $Y_{\text {int. }}=y_{1}+\sqrt{x_{1}} \sqrt{y_{1}}=\sqrt{y_{1}}\left(\sqrt{y_{1}}+\sqrt{x_{1}}\right)=\sqrt{y_{1}} \sqrt{a}$ $X_{\text {int. }}+Y_{\text {int. }}=\sqrt{a}\left(\sqrt{x_{1}}+\sqrt{y_{1}}\right)=\sqrt{a} \times \sqrt{a}=a$
So, option (a) is the correct answer.

Illustration
Find the equation of tangent and normal to the curve $x=\frac{2 a t^{2}}{1+t^{2}}$,
$y=\frac{2 a t^{3}}{1+t^{2}}$ at the point for which $t=\frac{1}{2}$.

Solution:

$$
x=\frac{2 a t^{2}}{1+t^{2}}
$$

Differentiating w.r.t. t, we get,

$$
\begin{aligned}
& \frac{d x}{d t}=2 a\left[\frac{\left(1+t^{2}\right) 2 t-t^{2}(2 t)}{\left(1+t^{2}\right)^{2}}\right] \\
&=\frac{4 a t}{\left(1+t^{2}\right)^{2}} \\
&\left.\frac{d x}{d t}\right|_{t=\frac{1}{2}}=\frac{32 a}{25}
\end{aligned}
$$

$$
y=\frac{2 a t^{3}}{1+t^{2}}
$$

Differentiating w.r.t. t, we get,

$$
\begin{aligned}
& \frac{d y}{d t}=2 a\left[\frac{\left(1+t^{2}\right)\left(3 t^{2}\right)-t^{3}(2 t)}{\left(1+t^{2}\right)^{2}}\right] \\
&=\frac{2 a t^{2}\left(3+t^{2}\right)}{\left(1+t^{2}\right)^{2}} \\
&\left.\frac{d y}{d t}\right|_{t=\frac{1}{2}}=\frac{26 a}{25}
\end{aligned}
$$

At $t=\frac{1}{2}, \frac{d y}{d x}=\frac{\frac{26 a}{25}}{\frac{32 a}{25}}=\frac{13}{16}$

$$
x_{1}=\frac{2 a\left(\frac{1}{2}\right)^{2}}{1+\left(\frac{1}{2}\right)^{2}}=\frac{2 a}{5} \text { and } y_{1}=\frac{2 a\left(\frac{1}{2}\right)^{3}}{1+\left(\frac{1}{2}\right)^{2}}=\frac{a}{5}
$$

\therefore Equation of tangent: $y-\frac{a}{5}=\frac{13}{16}\left(x-\frac{2 a}{5}\right)$
And equation of normal: $y-\frac{a}{5}=-\frac{16}{13}\left(x-\frac{2 a}{5}\right)$

Summary Sheet

- Equation of tangent at the point $P\left(x_{1}, y_{1}\right)$ to the curve $y=f(x)$ is given by

$$
\left(y-y_{1}\right)=m\left(x-x_{1}\right)
$$

Where m is slope of the tangent.
Equation of normal at the point $P\left(x_{1}, y_{1}\right)$ to the curve $y=f(x)$ is given by

$$
\left(y-y_{1}\right)=-\frac{1}{m}\left(x-x_{1}\right)
$$

- If the tangent at any point P on the curve is parallel to the X - axis, then $\frac{d y}{d x}=0$ at the point P.
- If the tangent at any point P on the curve is parallel to the Y - axis, then $\frac{d y}{d x} \rightarrow \infty$ or $\frac{d x}{d y}=0$ at the point P.
- If the tangent at any point P on the curve makes equal and positive intercepts on the coordinate axes, then $\frac{d y}{d x}=-1$ at the point P.

B BYJU'S Classes

Application of Derivatives
Length of Tangents and Normals using Derivative

Road Map

Illustrations based on Tangents and Normals

Tangent and Normal

Tangent and Normal

Let's say Line T is tangent to a curve $y=f(x)$

On solving tangent line with curve, we will get an equation which has repeated roots.

Note:

When the curve is a $2^{\text {nd }}$ degree polynomial, then the resulting equation (obtained by solving the tangent line with curve) will have two equal roots i.e., the discriminant will be zero.

Illustration
If tangent at point $(2,8)$ on the curve $y=x^{3}$ meets the curve again at Q. Then the co-ordinates of point Q is \qquad .
a. $(-4,-64)$
b. $(0,0)$
c. $(1,1)$
d. $(4,64)$

Solution:

Given curve, $y=x^{3}$
By differentiating w.r.t to x, we get,
$y^{\prime}=3 x^{2}$
$y_{(2,8)}^{\prime}=12$
Equation of tangent : $(y-8)=12(x-2)$

Equation of tangent : $12 x-y=16 \cdots(i)$
Solving with the curve we get,

$$
12 x-16=x^{3}
$$

$$
\Rightarrow x^{3}-12 x+16=0 \leftharpoonup 2
$$

We get repeated roots at $P(2,8)$ as it is tangent point.
By theory of equation, $x_{1}+x_{2}+x_{3}=-\frac{b}{a} \Rightarrow x_{1}+2+2=0 \Rightarrow x_{1}=-4$
Subsituting in (i), gives $y_{1}=-64 \Rightarrow Q:(-4,-64)$
Hence, option (a) is the correct answer.

Illustration

If line joining points $(0,3) \&(5,-2)$ is a tangent to the curve $y=\frac{c}{x+1}$. Then the value of c is :
$\underline{\text { a. }-2} \quad \bigsqcup$ b. $5 \quad$ c. $-4 \quad$ d. 4

Solution:

Equation of line joining points $(0,3),(5,-2)$ is given by

Since the curve has repeated roots, $D=0$
$\Rightarrow 4-4(c-3)=0 \Rightarrow c=4 \quad$ Hence, option (d) is the correct answer.

Equation of Tangent and Normal From External Point

Tangent is drawn from the point $Q(a, b)$
to the curve $y=f(x)$.
Let $P\left(x_{1}, y_{1}\right)$ be the point of contact.
Then, slope of tangent at point $P=m_{P Q}=m_{T}$

$$
\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=\frac{y_{1}-b}{x_{1}-a}
$$

Slope of tangent $\left(m_{T}\right)$
Equation of tangent will be: $\left(y-y_{1}\right)=m_{T}\left(x-x_{1}\right)$

Equation of Tangent and Normal From External Point

Slope of normal m_{N} is given by,
$\frac{-1}{\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}}=\left(\frac{y_{1}-d}{x_{1}-c}\right)$

Equation of normal will be: $\left(y-y_{1}\right)=m_{N}\left(x-x_{1}\right)$

Illustration

The equation of tangent drawn to the curve $x y=4$ from point $(0,1)$ is :

$$
\begin{array}{ll}
\text { a. } y-\frac{1}{2}=-\frac{1}{16}(x+8) & \text { b. } y-\frac{1}{2}=-\frac{1}{16}(x-8) \\
\text { c. } y+\frac{1}{2}=-\frac{1}{16}(x-8) & \text { d. } y-8=-\frac{1}{16}\left(x-\frac{1}{2}\right)
\end{array}
$$

Solution:

Let $P\left(t, \frac{4}{t}\right)$ be a point on curve $x y=4$ Differentiating $x y=4$, we get ,

$$
\begin{aligned}
x \frac{d y}{d x}+y=0 & \Rightarrow \frac{d y}{d x}=-\frac{y}{x} \\
& \Rightarrow\left(\frac{d y}{d x}\right)_{\left(t, \frac{4}{t}\right)}^{=}-\frac{4}{t^{2}}
\end{aligned}
$$

Slope of $P Q=\frac{\frac{4}{t}-1}{t}$
$\Rightarrow-\frac{4}{t^{2}}=\frac{\frac{4}{t}-1}{t}$
$\Rightarrow t=8 \Rightarrow m_{T}=-\frac{1}{16}$
Point $P\left(t, \frac{4}{t}\right)$ will be $\left(8, \frac{1}{2}\right)$.
So, equation of tangent is : $y-\frac{1}{2}=-\frac{1}{16}(x-8)$

Hence, option (b) is the correct answer.

Let the normal at a point P on the curve $y^{2}-3 x^{2}+y+10=0$ intersect the Y - axis at $\left(0, \frac{3}{2}\right)$. If m is the slope of the tangent at P to the curve, then $|m|$ is equal to \qquad .

Solution:
Let $P \equiv\left(x_{1}, y_{1}\right)$
$y^{2}-3 x^{2}+y+10=0 \ldots$
Differentiating w.r.t. x, we get,
$2 y y^{\prime}-6 x+y^{\prime}=0$
$\Rightarrow y^{\prime}{ }_{\left(x_{1}, y_{1}\right)}=\frac{6 x_{1}}{1+2 y_{1}}$
So, $\frac{\frac{3}{2}-y_{1}}{-x_{1}}=-\frac{1+2 y_{1}}{6 x_{1}}$

$\Rightarrow 9-6 y_{1}=1+2 y_{1} \Rightarrow y_{1}=1$
By Substituting the value of $y_{1}=1$ in equation (1),

$$
1^{2}-3 x_{1}^{2}+1+10=0
$$

$$
\Rightarrow 3 x_{1}^{2}=12 \Rightarrow x_{1}= \pm 2
$$

$$
y_{\left(x_{1}, y_{1}\right)}^{\prime}=\frac{6 x_{1}}{1+2 y_{1}}, y_{1}=1, x_{1}= \pm 2
$$

$$
\text { So , } y^{\prime}{ }_{\left(x_{1}, y_{1}\right)}= \pm 4=m
$$

$$
|m|=4
$$

Find equation(s) of tangent to the curve $y=(x+1)^{3}$, drawn from the origin.

$$
\left\lfloor\text { a.y }=x \quad\left\lfloor\text { b. } y=0 \quad \quad \text { c. } y=3 x \quad \quad \text { d. } y=\frac{27}{4} x\right.\right.
$$

Solution:

$$
y=(x+1)^{3}
$$

Differentiating w.r.t x, we get,

$$
\begin{aligned}
& y_{\left(x_{1}, y_{1}\right)}^{\prime}=3\left(x_{1}+1\right)^{2} \ldots(i) \\
& y_{\left(x_{1}, y_{1}\right)}^{\prime}=m_{P Q}
\end{aligned}
$$

$$
\Rightarrow 3\left(x_{1}+1\right)^{2}=\frac{y_{1}}{x_{1}}
$$

$$
\Rightarrow 3\left(x_{1}+1\right)^{2}=\frac{\left(x_{1}+1\right)^{3}}{x_{1}} \quad\left\{\operatorname{As} y=(x+1)^{3}\right\}
$$

$$
\Rightarrow x_{1}=-1, \frac{1}{2}
$$

$$
x_{1}=-1
$$

$$
x_{1}=\frac{1}{2}
$$

$$
y_{1}=0
$$

$$
y_{1}=\frac{27}{8}
$$

$$
y_{(-1,0)}^{\prime}=0
$$

Equation of tangent: $y=0$

Equation of tangent : $y=\frac{27}{4} x$ Hence, option (b) and (d) are the correct answers.

Length of Tangent, Normal,Sub-Tangent \& Sub-Normal

Let the curve be $y=f(x)$ and at a point P on the curve, tangent and normal are drawn.

$$
\&\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=m=\tan \theta
$$

Length of Tangent

Length of tangent is the length of segment PT of the tangent between point of contact and X-axis.

$$
\begin{aligned}
& \text { In } \triangle P S T, \sin \theta=\frac{P S}{P T} \\
& \Rightarrow P T=\left|y_{1}\right| \operatorname{cosec} \theta
\end{aligned}
$$

$\Rightarrow P=\left|y_{1}\right| \sqrt{1+\frac{1}{\tan ^{2} \theta}}$

$$
L_{T}=\left|y_{1}\right| \sqrt{1+\frac{1}{m^{2}}}
$$

Length of Sub-Tangent

$y=f(x)$
Length of sub-tangent is the projection of segment $P T$ along X-axis (ST).

In $\triangle P S T, \tan \theta=\frac{P S}{S T}$
$\Rightarrow S T=\frac{\left|y_{1}\right|}{\tan \theta}$

$$
L_{S T}=\left|\frac{y_{1}}{m}\right|
$$

Length of Normal

$$
y=f(x)
$$

Length of sub-normal is the projection of segment $P N$ along X-axis ($S N$).

In $\triangle P S N, \tan \theta=\frac{S N}{P S} \Rightarrow S N=\left|y_{1}\right| \tan \theta$

$$
L_{S N}=\left|y_{1} \cdot m\right|
$$

Illustration

Find length of sub-tangent to curve $y=x^{3}-3 x^{2}+x$ at $x=-1$
Solution:

$$
y=x^{3}-3 x^{2}+x
$$

Differentiating w.r.t. x, we get,

$$
\begin{aligned}
& \Rightarrow y^{\prime}=3 x^{2}-6 x+1 \\
& \left.\Rightarrow y^{\prime}\right|_{x=-1}=m=3(-1)^{2}+6+1=10 \\
& x_{1}=-1, y_{1}=-5
\end{aligned}
$$

$$
L_{S T}=\left|\frac{y_{1}}{m}\right|=\frac{1}{2}
$$

For the curve $y=b e^{\frac{x}{a}}$, length of sub-normal at the point $\left(x_{1}, y_{1}\right)$ is :
a. $\left|a y_{1}\right|$
b. $\left|\frac{y_{1}}{a}\right|$
c. $\frac{\left(y_{1}\right)^{2}}{|a|}$
d. $\left|\frac{b}{a}\left(y_{1}\right)^{3}\right|$

Solution:
$y=b e^{\frac{x}{a}}$
Differentiating w.r.t. x, we get,
$\left.\Rightarrow y^{\prime}\right|_{x=x_{1}}=m=\frac{b}{a} e^{\frac{x_{1}}{a}}=\frac{y_{1}}{a}$
$L_{S N}=\left|y_{1} \cdot m\right|$

$$
=\frac{\left(y_{1}\right)^{2}}{|a|}
$$

Hence, option (c) is the correct answer.

Summary Sheet

- Length of Tangent $=L_{T}=\left|y_{1}\right| \sqrt{1+\frac{1}{m^{2}}}$
- Length of Sub-tangent $=L_{S T}=\left|\frac{y_{1}}{m}\right|$
- Length of Normal $=L_{N}=\left|y_{1}\right| \sqrt{1+m^{2}}$
- Length of Sub-normal $=L_{S N}=\left|y_{1} \cdot m\right|$

B BYJU'S Classes

Application of Derivatives

Angle between two curves

Orthogonal Curves

Angle Between Two Curves

Let $y=f(x)$ and $y=g(x)$ be two curves, then angle between them is defined as angle between their tangents at their point of intersection.

At point $P\left(x_{1}, y_{1}\right)$,
Slope of tangent for $f(x): m_{1}=\frac{d}{d x}(f(x))$ Slope of tangent for $g(x): m_{2}=\frac{d}{d x}(g(x))$ $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
(For acute angle)

Curves $y=\sin x \& y=\cos x$, intersect at infinite points. Find angle between them at one such point of intersection.

Solution:

Let one such point be $P\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$
Let the slope of the tangent at point P to the curve $y=\sin x$ be m_{1}.

$$
\begin{aligned}
& \frac{d y}{d x}=\cos x \\
& \text { At } x=\frac{\pi}{4} \Rightarrow m_{1}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Let the slope of tangent at point P to the curve $y=\cos x$ be m_{2}.

$$
\frac{d y}{d x}=-\sin x
$$

$$
\text { At } x=\frac{\pi}{4} \Rightarrow m_{2}=-\frac{1}{\sqrt{2}}
$$

Now, angle between both the curves
is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}}{1-\frac{1}{2}}\right| \Rightarrow \tan \theta=2 \sqrt{2} \quad \Rightarrow \theta=\tan ^{-1}(2 \sqrt{2})$

If θ denotes the acute angle between the curves, $y=10-x^{2}$ and $y=2+x^{2}$ at a point of their intersection, then $|\tan \theta|$ is equal to:
a. $\frac{8}{17}$
b. $\frac{8}{15}$
C. $\frac{4}{9}$
d. $\frac{7}{17}$

Solution:

Let point of intersection of both the curves to be (x, y)
Now, for point of intersection, we have,
$10-x^{2}=2+x^{2}$
$\Rightarrow x= \pm 2$
Let $P:(2,6), Q:(-2,6)$

At point $P(2,6)$
Slope of tangent for $y=2+x^{2}$ is $\frac{d y}{d x}=2 x \Rightarrow m_{1}=+4$

At point $P(2,6)$
Slope of tangent for $y=10-x^{2}$ is $\frac{d y}{d x}=-2 x \Rightarrow m_{2}=-4$

Given, the acute angle between two given curves is $\theta: \tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\Rightarrow \tan \theta=\left|\frac{4-(-4)}{1-16}\right| \quad \Rightarrow \tan \theta=\left|\frac{8}{15}\right|$

$$
|\tan \theta|=\frac{8}{15}
$$

From symmetry, the angle between the curves at $\mathrm{Q}(-2,6)$ is also the same.

Hence, option (b) is the correct answer

Orthogonal Curves

Two curves are said to be orthogonal to each other, if angle between them is 90° at their point of intersection.

For a circle centered at the origin $(0,0)$, all the lines passing through the origin will act as normal.

At the points of intersection of the curves $y=f(x) \& y=g(x)$, we observe that angle between the tangents is not 90°. Hence these are not orthogonal curves. For orthogonality, the angle between the curves is 90° at every point of intersection.

If the curves $y^{2}=6 x \& 9 x^{2}+b y^{2}=16$ intersect each other at right angles, then the value of b is :
a. 4
b. $\frac{9}{2}$
C. 6
d. $\frac{7}{2}$

Solution:

Let point of intersection of both the curves to be: $P\left(x_{1}, y_{1}\right)$
$y_{1}^{2}=6 x_{1} \cdots(i) \quad 9 x_{1}^{2}+b y_{1}^{2}=16 \cdots(i i)$
Now, slope of tangent to the curve $y^{2}=6 x$ is $\frac{d y}{d x}=\frac{3}{y} \Rightarrow m_{1}=\frac{3}{y_{1}}$
Slope of tangent to the curve $9 x^{2}+b y^{2}=16$ is $\frac{d y}{d x}=-\frac{9 x}{b y} \Rightarrow m_{2}=-\frac{9 x_{1}}{b y_{1}}$

Since, curves are orthogonal $\Rightarrow \frac{3}{y_{1}} \cdot-\frac{9 x_{1}}{b y_{1}}=-1$

$$
27 x_{1}=b y_{1}^{2} \ldots(i i i)
$$

After substituting $y_{1}^{2}=6 x_{1}$ in equation ($i i i$), we get

$$
\begin{gathered}
27 x_{1}=6 b x_{1} \\
b=\frac{27}{6}=\frac{9}{2}
\end{gathered}
$$

Hence, option (b) is the correct answer

Shortest Distance Between Two Curves

Shortest distance between two continuous, differentiable \& non - intersecting curves occurs along the common normal.

Steps to find shortest distance:

1. Find the slopes $\left(m_{P}, m_{Q}\right)$ of normals at points $P \& Q$.
2. Apply the condition $m_{P}=m_{Q}=m_{P Q}$ to get points P and Q
3. Find the shortest distance $P Q$ using
 distance formula

The shortest distance between curves $y^{2}=8 x$ and $y^{2}=4(x-3)$ is
a. $\sqrt{2}$
b. $2 \sqrt{2}$
c. $3 \sqrt{2}$
d. $4 \sqrt{2}$

Solution:
Any point on the curve $(y-\beta)^{2}=4 a(x-\alpha)$ in the parametric form will be $\left(a t^{2}+\alpha, 2 a t+\beta\right)$
\therefore Parametric coordinates on curve P and Q will be $\left(t_{2}{ }^{2}+3,2 t_{2}\right)$ and $\left(2 t_{1}{ }^{2}, 4 t_{1}\right)$ respectively

Here, we get slope $m_{P Q}$ using two point form

$m_{P Q}=\frac{2 t_{2}-4 t_{1}}{t_{2}^{2}+3-2 t_{1}^{2}}$
Let Slope of normal at point Q to be m_{Q} on curve $y^{2}=8 x$
$\Rightarrow m_{Q}=-\frac{1}{\left(\frac{d y}{d x}\right)_{Q}}=-\frac{-2 \times 4 t_{1}}{8}=-t_{1}$

Slope of normal at P to be m_{P} on curve $y^{2}=4(x-3)$ $\Rightarrow m_{P}=-\frac{1}{\left(\frac{d y}{d x}\right)_{P}}=-\frac{-2 \times 2 t_{2}}{4}=-t_{2}$
$\Rightarrow-t_{1}=\frac{-2 t_{1}}{3-t_{1}{ }^{2}}$
$\Rightarrow 3 t_{1}-t_{1}^{3}=2 t_{1} \Rightarrow t_{1}^{3}-t_{1}=0 \Rightarrow t_{1}\left(t_{1}-1\right)\left(t_{1}+1\right)=0 \Rightarrow t_{1}=0,1,-1$
For $t_{1}=0 ; P \equiv(3,0), Q \equiv(0,0) \Rightarrow P Q=3$
For $t_{1}=1 ; P \equiv(4,2), Q \equiv(2,4) \Rightarrow P Q=2 \sqrt{2}$
For $t_{1}=-1 ; P \equiv(4,-2), Q \equiv(2,-4) \Rightarrow P Q=2 \sqrt{2}$
Shortest distance $=2 \sqrt{2}$
Hence, option (b) is the correct answer

Using condition, $m_{P}=m_{Q}=m_{P Q}$ We get, $-t_{1}=-t_{2}=\frac{2 t_{2}-4 t_{1}}{t_{2}{ }^{2}+3-2 t_{1}{ }^{2}}$

Shortest Distance Between Two Curves if one Curve is a Line

Steps to find shortest distance:

$$
m_{P}=m_{L}=-\frac{a}{b}
$$

1. Find the slope of tangent $\left(m_{P}\right)$ at point P
2. Apply the condition $m_{p}=m_{L}=-\frac{a}{b}$ to get the point P
3. Find shortest distance which is distance of point P from the line.

$$
\text { S. D. }=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|
$$

The shortest distance between the line $y=x$ and the curve $y^{2}=x-2$ is :
a. $\frac{7}{4 \sqrt{2}}$
b. 2
c. $\frac{7}{8}$
d. $\frac{11}{4 \sqrt{2}}$

Solution:

Given, the line $y=x$ and the curve $y^{2}=x-2$
Let us consider the point $P\left(x_{1}, y_{1}\right)$ lies on the curve $y^{2}=x-2$
$\Rightarrow y_{1}^{2}=x_{1}-2 \cdots(i)$
Slope at point $P=\left(\frac{d y}{d x}\right)_{P}=\frac{1}{2 y_{1}}$

Slope of tangent at point $P=$ Slope of line $y-x=1$

$$
\frac{1}{2 y_{1}}=1 \Rightarrow y_{1}=\frac{1}{2} \Rightarrow x_{1}=\frac{9}{4} \text { So , point } P:\left(\frac{9}{4}, \frac{1}{2}\right)
$$

Now, shortest distance between point P and line $y=x$, using following formula

$$
\text { S.D. }=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|
$$

We get, S.D. $=\left|\frac{\frac{9}{4}-\frac{1}{2}}{\sqrt{1^{2}+1^{2}}}\right|$

$$
\text { Shortest distance }=\frac{7}{4 \sqrt{2}}
$$

Hence, option (a) is the correct answer

Shortest Distance Between Two Curves if one Curve is a Circle
Let us consider a normal at point P on the curve $y=f(x)$, the normal will pass through the center C of the circle.

Steps to find shortest distance:

1. Find point P using $m_{p}=m_{C P}$; where $m_{p}=$ slope of normal at P
2. Find Shortest distance $=|P C-r|$

Illustration

Find shortest distance between the curves $y^{2}=x^{3}$ and $x^{2}+\left(y-\frac{5}{3}\right)^{2}=\frac{1}{4}$
a. 1
b. $\frac{1}{2}$
C. $\frac{\sqrt{13}}{3}$
d. $\frac{\sqrt{13}}{3}-\frac{1}{2}$

Solution:

For the curve $y^{2}=x^{3}$, let us consider parametric coordinates of point P be $\left(t^{2}, t^{3}\right)$

$$
x^{2}+\left(y-\frac{5}{3}\right)^{2}=\frac{1}{4} \uparrow
$$

Slope of normal at point $P=-\frac{1}{\left(\frac{d y}{d x}\right)_{P}}$

$$
=-\frac{1}{\frac{3 x^{2}}{2 y}}=-\frac{1}{\frac{3 t^{4}}{2 t^{3}}}=-\frac{2}{3 t}
$$

Equation of normal $P C$ is : $y-t^{3}=-\frac{2}{3 t}\left(x-t^{2}\right)$
Normal passes through $\left(0, \frac{5}{3}\right) \Rightarrow \frac{5}{3}-t^{3}=\frac{2 t}{3}$

$$
y^{2}=x^{3}
$$

$$
3 t^{3}+2 t-5=0 \Rightarrow(t-1)\left(3 t^{2}+3 t+5\right)=0
$$

$$
\Rightarrow(t-1)=0,\left(3 t^{2}+3 t+5\right)=0
$$

$3 t^{2}+3 t+5$ has no real roots as the discriminant is less than zero
For $t=1, P \equiv(1,1)$
$\Rightarrow P C=\sqrt{(1-0)^{2}+\left(1-\frac{5}{3}\right)^{2}}=\frac{\sqrt{13}}{3}$
Shortest distance between point P and circle $=\left|P C-\frac{1}{2}\right|$

$$
=\frac{\sqrt{13}}{3}-\frac{1}{2}
$$

Hence, option (d) is the correct answer

Illustration

The shortest distance between the curves $y=\ln x$ and $y=e^{x}$ is :
a. $\sqrt{2}$
b. $2 \sqrt{2}$
c. $3 \sqrt{2}$
d. $4 \sqrt{2}$

Solution:

Clearly, The curves $e^{x} \& \ln x$ are inverse of each other.

So, they are symmetric about $y=x$ line.
Thus, the common normal to these curves is perpendicular to the line $y=x$.

Let any point on the curve $y=\ln x$ be $P\left(x_{1}, \ln x_{1}\right)$.
Slope of normal at $P=-\frac{1}{\left(\frac{d y}{d x}\right)_{P}}=-\frac{1}{\frac{1}{x_{1}}}=-x_{1}$
$\Rightarrow-x_{1}=-1$ [slope of normal to line $\left.y=x\right]$
$\Rightarrow x_{1}=1 ; y_{1}=0$
Distance of the point $(1,0)$ from the line
$y=x$ is $=\frac{|1-0|}{\sqrt{1^{2}+1^{2}}}=\frac{1}{\sqrt{2}}$
Shortest distance between the curve is
$=2 \times \frac{1}{\sqrt{2}}=\sqrt{2}$
Hence, option (a) is the correct answer

Summary Sheet

Two curves are said to be orthogonal to each other, if angle between them is 90° at their point of intersection.
\square Shortest distance between two continuous, differentiable \& non intersecting curves occurs along the common normal.

For orthogonality, the angle between the curves is 90° at every point of intersection.

B BYJU'S Classes

Application of Derivatives
Common Tangent and Mean Value Theorem

Road Map

Common Tangents

Let $y=f(x) \& y=g(x)$ have a common tangent T as shown below:

Here, tangent to the curve $y=f(x)$ at point $P\left(x_{1}, y_{1}\right)$, tangent to the curve $y=g(x)$ at point $\mathrm{Q}\left(x_{2}, y_{2}\right)$ is the same line.

$$
\frac{d f}{d x}\left(x_{1}, y_{1}\right)=\frac{d g}{d x}\left(x_{2}, y_{2}\right)=m_{P Q}
$$

For some given curves, condition for existence of tangents /normal can also be applied to get the common tangent/normal.

The equation of common tangent to the curves $y^{2}=16 x$ and $x y=-4$, is :

$$
\begin{array}{ll}
\text { a. } x-y+4=0 & \text { b. } x+y+4=0 \\
\text { c. } x-2 y+16=0 & \text { d. } 2 x-y+2=0
\end{array}
$$

Solution:

We know, line $y=m x+\frac{a}{m}$ is tangent to the parabola $y^{2}=4 a x$.
\therefore Line $y=m x+\frac{4}{m}$ is tangent to $y^{2}=16 x, m \in \mathbb{R}$
For it to be tangent to curve $x y=-4$, On substituting $y=m x+\frac{4}{m^{2}}$, we get

$$
x\left(m x+\frac{4}{m}\right)=-4 \Rightarrow m x^{2}+\frac{4 x}{m}+4=0
$$

Line touches the curve only if, $D=0$

$$
\Rightarrow b^{2}-4 a c=0
$$

$$
\begin{aligned}
& \Rightarrow\left(\frac{4}{m}\right)^{2}-4 \times m \times 4=0 \\
& \Rightarrow \frac{16}{m^{2}}-16 m=0 \\
& \Rightarrow m^{3}-1=0 \\
& \Rightarrow(m-1)\left(m^{2}+m+1\right)=0
\end{aligned}
$$

$$
\Rightarrow m=1 \text { as } m \in \mathbb{R}
$$

On substituting $m=1$ in $y=m x+\frac{4}{m}$, we get Equation of common tangent: $y=x+4$

Find the equation of a tangent line touching both branches of the function:

$$
f(x)=\left\{\begin{array}{c}
-x^{2}, x<0 \\
x^{2}+8, x \geq 0
\end{array}\right.
$$

Solution:
The given function can be plotted as shown.
Slope of tangent at point $P=\left(\frac{d\left(x^{2}+8\right)}{d x}\right)_{\left(x_{1}, y_{1}\right)}=2 x_{1}$
Slope of tangent at point $\mathrm{Q}=\left(\frac{d\left(-x^{2}\right)}{d x}\right)_{\left(x_{2}, y_{2}\right)}=-2 x_{2}$
Slope of the line joining $P\left(x_{1}, x_{1}{ }^{2}+8\right)$
and $\mathrm{Q}\left(x_{2},-x_{2}{ }^{2}\right)=m_{P Q}=\frac{x_{1}^{2}+8+x_{2}{ }^{2}}{x_{1}-x_{2}}$

$$
\begin{aligned}
& m_{P}=m_{Q}=m_{P Q} \\
& \Rightarrow 2 x_{1}=-2 x_{2}=\frac{x_{1}{ }^{2}+8+x_{2}{ }^{2}}{x_{1}-x_{2}} \\
& \Rightarrow x_{1}=-x_{2} \text { and } 2 x_{1}=\frac{x_{1}{ }^{2}+8+x_{2}{ }^{2}}{x_{1}-x_{2}} \\
& \Rightarrow 2 x_{1}=\frac{2 x_{1}{ }^{2}+8}{2 x_{1}} \\
& \Rightarrow 2 x_{1}^{2}=8 \Rightarrow x_{1}=2 \quad\left(\because x_{1}>0\right)
\end{aligned}
$$

On substituting $x=2$ in the curve $y=x^{2}+8$, we get $y=12 \Rightarrow y_{1}=12$
Now, equation of tangent at the point $(2,12):(y-12)=4(x-2)$
$\Rightarrow y=4 x+4$

Mean Value Theorems

Rolle's Theorem : Let f be a real - valued function defined on the closed interval

(i) $f(x)$ is continuous in the closed interval $[a, b]$.
(ii) $f(x)$ is differentiable in the open interval (a, b).
(iii) $f(a)=f(b)$

Then there exists at least one $c \in(a, b)$, such that

$$
f^{\prime}(c)=0
$$

Geometrically, there will be at least one $c \in(a, b)$, where tangent will be parallel to X-axis.

- Note:

Also, we can say that between any two real consecutive roots of $f(x)=0$ there will be at least one root of $f^{\prime}(x)=0$.

$$
f(a)=f(b)=0
$$

Verify Rolle's theorem for function $f(x)=x^{2}-4 x+3, x \in[0,4]$.
Solution: $f(x)=x^{2}-4 x+3, x \in[0,4]$
We can see that $f(x)$ is a polynomial function.
So, f is continuous and differentiable in $[0,4]$ \& $(0,4)$ respectively.
$f(0)=0-0+3=3$
$f(4)=4^{2}-16+3=3 \Rightarrow f(0)=f(4)$
According to Rolle's Theorem, there exists at least one c in $(0,4)$ such that $f^{\prime}(c)=0$.
$\Rightarrow\left(\frac{d\left(x^{2}-4 x+3\right)}{d x}\right)_{x=c}=0 \Rightarrow 2 c-4=0$
$\Rightarrow c=2 \in[0,4] \quad$ Thus, Rolle s theorem is verified.

For all twice differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$, with $f(0)=f(1)=f^{\prime}(0)=0$.
a. $f^{\prime \prime}(x)=0$, for some $x \in(0,1) \quad$ b. $f^{\prime \prime}(0)=0$
c. $f^{\prime \prime}(x) \neq 0$, at every point $x \in(0,1) \quad$ d. $f^{\prime \prime}(x)=0$, at every point $x \in(0,1)$

Solution: Given, $f(0)=f(1)=0$
Hence, Rolle's theorem can be applied to the function $f(x)$ in the interval $(0,1)$ By Rolle's theorem , $f^{\prime}\left(c_{1}\right)=0$, where $c_{1} \in(0,1)$

Applying Rolle's theorem for $y=f^{\prime}(x)$
continuous \& differentiable ($\because f$ is twice differentiable)
$f^{\prime}(0)=f^{\prime}\left(c_{1}\right)=0$
Hence, Rolle's theorem can be applied to the function $f^{\prime}(x)$ in the interval $(0,1)$.
By Rolle's theorem $f^{\prime \prime}\left(c_{2}\right)=0$, for some $c_{2} \in\left(0, c_{1}\right)$
$\Rightarrow c_{2} \in(0,1)$
$\therefore f^{\prime \prime}(x)=0$, for some $x \in(0,1)$
So, option (a) is the correct answer.

Illustration
If $f(x)=x^{\alpha} \ln x$, and $f(0)=0$. If Rolle's theorem can be applied to f in $[0,1]$, then value of α can be :

$$
\left\lfloor a .-2 \quad\left\lfloor\text { b. }-1 \quad\left\lfloor\text { c. } 0 \quad \left\lfloor\text { d. } \frac{1}{2}\right.\right.\right.\right.
$$

Solution: $f(x)=x^{\alpha} \ln x$
Since, Rolle's theorem can be applied in the given interval.
$\Rightarrow f$ is continuous and differentiable
$\Rightarrow f(0)=\lim _{x \rightarrow 0^{+}} f(x)$
$\Rightarrow \lim _{x \rightarrow 0^{+}} x^{\alpha} \ln x=0$
$\lim _{x \rightarrow 0^{+}} x^{\alpha} \ln x=0$
When $x \rightarrow 0^{+}, \ln x \rightarrow-\infty$. For the limit to exist, $x^{\alpha} \ln x$ must be of $0 \times \infty$ form.
Case 1: $\alpha<0: x^{\alpha} \ln x$ is of $\infty \times \infty$ form, so limit does not exist.
Case 2: $\alpha=0: x^{\alpha} \ln x$ is of $1 \times \infty$ form, so limit does not exist.

Case 3: $\alpha>0: x^{\alpha} \ln x$ is of $0 \times \infty$ form, so limit may exist.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x^{\alpha} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-\alpha}}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-\alpha x^{-\alpha-1}} \\
& \text { (Applying L'Hospital's rule) } \\
&=\lim _{x \rightarrow 0^{+}} \frac{x^{\alpha}}{-\alpha}=0 \Rightarrow \alpha>0
\end{aligned}
$$

So, option (d) is the correct answer.

Illustration
If f be a continuous function on $[0,1]$, differentiable in $(0,1)$ such that $f(1)=0$, then there exists some $c \in(0,1)$, such that :

$$
\begin{array}{ll}
\text { a. } & f^{\prime}(c)-f(c)=0
\end{array}
$$

Solution: Let $g(x)=x f(x)$ (By hit and trial)
Then $g(x)$ is continuous in $[0,1]$ and differentiable in $(0,1)$.
Also, $g(0)=g(1)=0$
So, by Rolle's theorem , $g^{\prime}(c)=0$ for some c in $(0,1)$
$\Rightarrow c f^{\prime}(c)+f(c)=0$

$$
\left(\because g^{\prime}(x)=x f^{\prime}(x)+f(x)\right)
$$

So, option (d) is the correct answer.

If $a+b+c=0$, then the quadratic equation $3 a x^{2}+2 b x+c=0$, has \qquad .
a. At least one root in $(0,1) \quad$ b. One root in $[2,3]$ and the other in $(-2,-1)$
c. Imaginary roots
d. At least one root in $(1,2)$

Solution: Let $f(x)=3 a x^{2}+2 b x+c$ and $g(x)=\int f(x)$,
$g(x)=a x^{3}+b x^{2}+c x+d \rightarrow$ Continuous and Differentiable
$\left.\begin{array}{l}g(0)=d \\ g(1)=a+b+c+d=d\end{array}\right\} g(0)=g(1)$

Hence, conditions for Rolle's theorem is satisfied.
$\therefore g^{\prime}(x)=0$ in $(0,1)$
$\Rightarrow f(x)=0$, at least once in $(0,1)$. Hence the quadratic $3 a x^{2}+2 b x+c=0$ has at least one root in $(0,1)$.

So, option (a) is the correct answer.

Summary Sheet

- Let $y=f(x)$ and $y=g(x)$ have a common tangent, and the common tangent touches the graphs of $f(x)$ and $g(x)$ at points $P\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, \mathrm{y}_{2}\right)$ respectively, then,
- Rolle's Theorem :

$$
\frac{d f}{d x}_{\left(x_{1}, y_{1}\right)}=\frac{d g}{d x}{ }_{\left(x_{2}, y_{2}\right)}=m_{P Q}
$$

Let f be a real - valued function defined on the closed interval $[a, b]$ such that:
(i) $f(x)$ is continuous in the closed interval $[a, b]$,
(ii) $f(x)$ is differentiable in the open interval (a, b) and
(iii) $f(a)=f(b)$.

Then there exists at least one $c \in(a, b)$, such that $f^{\prime}(c)=0$.

B BYJU'S Classes
 Application of Derivatives
 Lagrange's Mean Value Theorem

Road Map

Applications

Cauchy's Mean Value Theorem

Lagrange's Mean Value Theorem

The idea of Lagrange's Mean Value Theorem says that in continuous and differentiable curve slope of the chord joining initial and final points of the curve is equal to the slope of tangent of the curve on at least one points.

Lagrange's Mean Value Theorem (L.M.V.T)

If a function $f(x)$,
(i) Is continuous in the closed interval $[a, b]$
(ii) Is differentiable in the open interval (a, b) then , there exists at least one $c \in(a, b)$, such that:

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Geometrically, there exists at least one $c \in(a, b)$, where tangent is parallel to line joining points $A \& B$.

Lagrange's Mean Value Theorem (L.M.V.T.)

Proof:

Let $A(a, f(a))$ and $B(b, f(b))$ be the points on the taken curve $y=f(x)$
Let $g(x)$ be the secant line to $f(x)$ passing through A, B.
$\therefore g(x)-f(a)=\frac{f(b)-f(a)}{b-a}(x-a)$
$\left\{y-y_{1}=m\left(x-x_{1}\right)\right\}$

$\Rightarrow g(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$
Let $h(x)=f(x)-g(x)$

$$
\begin{aligned}
& \Rightarrow f(x)-h(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a) \\
& \Rightarrow h(x)=f(x)-\left\{\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right\}
\end{aligned}
$$

Now, $h(a)=0, h(b)=0,\{h(x)$ passing through $(a, f(a)$ and $(b, f(b)\}$ $h(x)$ is continuous on $[a, b]$ and differentiable on (a, b).
\therefore Rolle's theorem is applicable
$\Rightarrow h^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}$
\therefore There exists at least one $c \in(a, b)$, such that $h^{\prime}(c)=0$
$\Rightarrow f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0$

$$
\Rightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Hence, L.M.V.T. is proved.

Verify L.M.V.T for the function $f(x)=-x^{2}+4 x+5, x \in[-1,1]$

Solution:

Given, $f(x)=-x^{2}+4 x+5$

$$
f^{\prime}(x)=-2 x+4
$$

Since $f(x)$ is a polynomial function.
$\Rightarrow f(x)$ is continuous and differentiable in $[-1,1] \&(-1,1)$ respectively.

$$
\begin{gathered}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \\
\Rightarrow-2 c+4=\frac{f(1)-f(-1)}{1-(-1)}=\frac{\left.\left(-1^{2}+4(1)+5\right)-\left(-\left(-1^{2}\right)+4(-1)+5\right)\right)}{1-(-1)}=\frac{8-0}{2} \\
\Rightarrow-2 c+4=4 \Rightarrow c=0 \in[-1,1]
\end{gathered}
$$

Thus, L.M.V.T. is verified.

The value of c in the Lagrange's mean value theorem for the function $f(x)=x^{3}-4 x^{2}+8 x+11$, when $x \in[0,1]$ is :

$$
\text { a. } \frac{\sqrt{7}-2}{3} \quad \text { b. } \frac{4-\sqrt{7}}{3} \quad \text { c. } \frac{4-\sqrt{5}}{3} \quad \text { d. } \frac{2}{3}
$$

Solution: $f^{\prime}(x)=3 x^{2}-8 x+8$
Since $f(x)$ is a polynomial function.
$f(x)$ is continuous and differentiable in $[0,1] \&(0,1)$ respectively.
By L.M.V.T $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \Rightarrow \frac{f(1)-f(0)}{1-0}=\frac{(1-4+8+11)-(0+11)}{1-0}$
$\Rightarrow 3 c^{2}-8 c+8=5 \Rightarrow 3 c^{2}-8 c+3=0$
$\Rightarrow c=\frac{8 \pm 2 \sqrt{7}}{6}=\frac{4 \pm \sqrt{7}}{3} \quad c=\frac{4-\sqrt{7}}{3}$

In [0,1] Lagrange's mean value theorem is not applicable to :
a. $f(x)=\left\{\begin{array}{l}\frac{1}{2}-x, x<\frac{1}{2} \\ \left(\frac{1}{2}-x\right)^{2}, x \geq \frac{1}{2}\end{array} \quad\right.$ b. $f(x)=\left\{\begin{array}{l}\frac{\sin x}{x}, x \neq 0 \\ 1, x=0\end{array}\right.$
C. $f(x)=x|x|$

$$
\text { d. } f(x)=|x|
$$

Solution: a. $f\left(\frac{1}{2}^{-}\right)=f\left(\frac{1}{2}\right)=f\left(\frac{1}{2}^{+}\right)=0 \Rightarrow f$ is continuous
$f^{\prime}\left(\frac{1}{2}^{-}\right)=-1$ and $f^{\prime}\left(\frac{1}{2}^{+}\right)=-2\left(\frac{1}{2}-\frac{1}{2}\right)=0$
$\therefore f$ is not differentiable at $\frac{1}{2} \in(0,1)$.
\therefore L.M.V.T is not applicable for thus function in $[0,1]$.
b. $f(x)=\left\{\begin{array}{l}\frac{\sin x}{x}, x \neq 0 \\ 1, x=0\end{array}\right.$
$f(0)=1 \quad \lim _{h \rightarrow 0^{+}} \frac{\sin x}{x}=1 \quad \lim _{h \rightarrow 0^{-}} \frac{\sin x}{x}=1$
L.H. $L=f(0)=$ R.H. $L \Rightarrow f$ is continuous
$f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{\frac{\sin (h)}{(h)}-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{\frac{\sin (h)}{(h)}-1}{h}=\lim _{h \rightarrow 0^{+}} \frac{h-\frac{h^{3}}{3!}+\frac{h^{5}}{5!}+\cdots-h}{h^{2}}=0$
$f^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(-h)-f(0)}{-h} \lim _{h \rightarrow 0^{+}} \frac{\frac{\sin (-h)}{(-h)}-f(0)}{-h}=\lim _{h \rightarrow 0^{+}} \frac{\frac{\sin (h)}{(h)}-1}{-h}=\lim _{h \rightarrow 0^{+}} \frac{h-\frac{h^{3}}{3!}+\frac{h^{5}}{5!}+\cdots-h}{-h^{2}}=0$
$\Rightarrow f$ is differentiable
\Rightarrow L.M.V.T. is applicable

$$
\left.\begin{array}{l}
\text { C. } f(x)=x|x| \\
f(x)=\left\{\begin{array}{l}
x^{2}, x \geq 0 \\
-x^{2}, x<0
\end{array}\right. \\
f(0)=0 \quad \lim _{h \rightarrow 0^{+}} x^{2}=0 \quad \lim _{h \rightarrow 0^{-}}-x^{2}=0
\end{array}\right\} \begin{aligned}
& \text { L.H.L }=f(0)=\text { R.H.L } \Rightarrow f \text { is continuous at } x=0 \\
& f^{\prime}(x)=\left\{\begin{array}{l}
2 x, x \geq 0 \\
-2 x, x<0
\end{array}\right. \\
& f^{\prime}\left(0^{+}\right)=\lim _{h \rightarrow 0^{+}} 2 x=0 \\
& f^{\prime}\left(0^{-}\right)=\lim _{h \rightarrow 0^{+}}-2 x=0 \\
& \Rightarrow f(x) \text { is differentiable at } x=0 \\
& \Rightarrow \text { L.M.V.T. is applicable. }
\end{aligned}
$$

We can see from the graph,
$f(x)=x$ is differentiable $\forall x \in(0,1)$
\Rightarrow L.M.V.T. is applicable.
Hence, option (a) is the correct answer.

Let f be a twice differentiable function on $(1,6)$.

$$
\begin{array}{ll}
\text { a. } f(5)+f^{\prime}(5) \geq 28 & \text { b. } f(5)+f^{\prime}(5) \leq 26 \\
\text { c. } f^{\prime}(5)+f^{\prime \prime}(5) \leq 20 & \text { d. } f(5) \leq 10
\end{array}
$$

Solution: Given : $f(2)=8, f^{\prime}(2)=5$,
$f^{\prime}(x) \geq 1$ and $f^{\prime \prime}(x) \geq 4, \forall x \in(1,6)$
Given, $f(x)$ is a twice differentiable function on $(1,6)$.
Hence L.M.V.T is applicable for $x \in(1,6)$.

There exists at least one $c \in(a, b)$, such that

$$
\begin{aligned}
& f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \\
& f^{\prime}(x)=\frac{f(5)-f(2)}{5-2}=\frac{f(5)-8}{5-2} \\
& f^{\prime}(x) \geq 1 \\
& \Rightarrow \frac{f(5)-8}{5-2} \geq 1 \\
& \Rightarrow f(5) \geq 11 \quad \cdots(i) \\
& f^{\prime \prime}(x)=\frac{f^{\prime}(5)-f^{\prime}(2)}{5-2} \geq 4 \\
& \Rightarrow f^{\prime}(5) \geq 17 \cdots(i i)
\end{aligned}
$$

Adding (i) \& (ii)

$$
f(5)+f^{\prime}(5) \geq 28
$$

Hence, option (a) is the correct answer.

Which of the following is true?

a. $\frac{1}{1+a^{2}}<\frac{\tan ^{-1} b-\tan ^{-1} a}{b-a}<\frac{1}{1+b^{2}}$, if $0<a<b \quad$ b. $\frac{1}{1+b^{2}}<\frac{\tan ^{-1} b-\tan ^{-1} a}{b-a}<\frac{1}{1+a^{2}}$, if $0<a<b$
C. $\frac{\tan ^{-1} b-\tan ^{-1} a}{b-a}=\frac{1}{1+b^{2}}$, if $0<a<b$
d. $\frac{\tan ^{-1} b-\tan ^{-1} a}{b-a}=\frac{1}{1+a^{2}}$, if $0<a<b$

Solution:

$$
\begin{aligned}
& \text { Let } f(x)=\tan ^{-1} x, x \in[a, b] \\
& f^{\prime}(x)=\frac{1}{1+x^{2}}
\end{aligned}
$$

$f(x)$ is continuous in $[a, b]$ and differentiable in (a, b).
By L.M.V.T, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}, c \in[a, b]$
$\Rightarrow \frac{1}{1+c^{2}}=\frac{\tan ^{-1} b-\tan ^{-1} a}{b-a}$

$$
a<c<b
$$

$\Rightarrow a^{2}<c^{2}<b^{2}$
$\Rightarrow 1+a^{2}<1+c^{2}<1+b^{2}$
$\Rightarrow \frac{1}{1+b^{2}}<\frac{1}{1+c^{2}}<\frac{1}{1+a^{2}}$
$\Rightarrow \frac{1}{1+b^{2}}<\frac{\tan ^{-1} b-\tan ^{-1} a}{b-a}<\frac{1}{1+a^{2}}$
Hence, option (a) is the correct answer.

Cauchy's Mean Value Theorem

Also known as the extended mean value theorem, is a generalization of the mean value theorem.

It states that if the functions $f(x)$ and $g(x)$ are both continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there exists some $c \in(a, b)$, such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

If f and g are differentiable functions in $(0,1)$ satisfying $f(0)=2=g(1)$, $g(0)=0$ and $f(1)=6$, then for some $c \in(0,1)$:

$$
\begin{array}{ll}
\text { a. } f^{\prime}(c)=g^{\prime}(c) & \text { b. } f^{\prime}(c)=2 g^{\prime}(c) \\
\text { c. } 2 f^{\prime}(c)=g^{\prime}(c) & \text { d. } 2 f^{\prime}(c)=3 g^{\prime}(c)
\end{array}
$$

Solution:

By Cauchy's theorem $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$; for some $c \in(1,2)$

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(1)-f(0)}{g(1)-g(0)} \Rightarrow \frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{6-2}{2-0}=2 \quad \Rightarrow f^{\prime}(c)=2 g^{\prime}(c)
$$

Hence, option (b) is the correct answer.

Illustration
Prove that equation $\cos x=\frac{3 x^{2}}{7}(\sin 2-\sin 1)$ has at least one root in $(1,2)$.
Solution: $\quad(\sin 2-\sin 1) \Rightarrow f(2)-f(1)$
This clearly tells $f(x)=\sin x \Rightarrow f^{\prime}(x)=\cos x$
$g^{\prime}(c)$ should be variable $\Rightarrow g(x)=x^{3} \Rightarrow g^{\prime}(x)=3 x^{2}$
Since the functions $f(x)$ and $g(x)$ are both continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), there exists some $c \in(a, b)$, such that:

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)} ; \text { for some } c \in(1,2)
$$

$\Rightarrow \frac{\cos c}{3 c^{2}}=\frac{f(2)-f(1)}{g(2)-g(1)}=\frac{\sin 2-\sin 1}{2^{3}-1^{3}}$

$$
\Rightarrow \cos c=\frac{3 c^{2}}{7}(\sin 2-\sin 1)
$$

Summary Sheet

- Lagrange's Mean Value Theorem (L.M.V.T)

If $f(x)$ is continuous and differentiable in $[a, b] \&(a, b)$ respectively then , there exists at least one $c \in(a, b)$, such that:

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

- Cauchy's Mean Value Theorem

If the functions $f(x)$ and $g(x)$ are both continuous and differentiable in $[a, b] \&(a, b)$, then there exists some $c \in(a, b)$, such that:

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

B BYJU'S Classes

Application of Derivatives
Monotonicity

Road Map

Applications of Monotonicity

Monotonicity in an Interval

Monotonicity

Monotonocity

A function f is said to be monotonic if it is either increasing or decreasing in it's domain.

Let us take a few examples of increasing functions.

$$
f(x)=e^{x}
$$

$$
f(x)=\tan x, x \in\left(0, \frac{\pi}{2}\right)
$$

$$
f(x)=2 x+3
$$

Monotonocity

Now, let us take a few examples of decreasing functions.
$f(x)=e^{-x}$
$f(x)=\cot ^{-1} x$
$f(x)=-x^{3}$

Monotonocity

A function which is increasing as well as decreasing in its domain is called a non-monotonic function.

For example,

$$
f(x)=\sin x
$$

$$
f(x)=a x^{2}+b x+c, a \neq 0
$$

$$
f(x)=|x|
$$

Monotonicity at a Point

A function f is said to be strictly increasing at a point $x=a$,
If $a-h<a<a+h$, then $f(a-h)<f(a)<f(a+h)$ as $h \rightarrow 0^{+}$i.e., If, Left neighbourhood value $<$ Value at that point < Right neighbourhood value, then f is said to be strictly increasing at $x=a$.

Function is continuous and differentiable at $x=a$

Function is continuous, non differentiable at $x=a$

Function is discontinuous

$$
\text { at } x=a
$$

Monotonicity at a Point (using derivatives)

Let f be a differentiable function at point $x=a$
If $f^{\prime}(a)>0$, then function is increasing at $x=a$.
Example: Check monotonicity of function $f(x)=3 x-2$, at $x=0$.
Solution: As $f(x)$ is a linear polynomial, $f(x)$ is differentiable everywhere

$$
\begin{aligned}
& \text { Given, } f(x)=3 x-2, \\
& f^{\prime}(x)=3 \\
& \because f^{\prime}(x)>0 \\
& \therefore f \text { is increasing at } x=0
\end{aligned}
$$

Monotonicity at a Point

A function f is said to be strictly decreasing at a point $x=a$, If $a-h<a<a+h$, then $f(a-h)>f(a)>f(a+h)$ as $h \rightarrow 0^{+}$i.e., If, Left neighbourhood value $>$ Value at that point $>$ Right neighbourhood value, then f is said to be strictly decreasing at $x=a$.

Function is continuous and differentiable at $x=a$

Function is continuous, non differentiable at $x=a$

Function is discontinuous

$$
\text { at } x=a
$$

Monotonicity at a Point (using derivatives)

Let f be a differentiable function at point $x=a$
If $f^{\prime}(a)<0$, then function is decreasing at $x=a$.
Example: Check monotonicity of function $f(x)=x^{2}-2 x-3$, at $x=-1$.
Solution: As $f(x)$ is a quadratic polynomial, $f(x)$ is differentiable everywhere.

$$
\begin{aligned}
& \text { Given, } f(x)=x^{2}-2 x-3, \\
& f^{\prime}(x)=2 x-2 \\
& f^{\prime}(-1)=-2-2=-4 \\
& \because f^{\prime}(-1)<0 \\
& \therefore f \text { is decreasing at } x=-1
\end{aligned}
$$

Monotonicity at Boundary points

Note: If $x=a$ is a boundary point, appropriate one - sided inequality is applied to check monotonicity.

At the left boundary i.e., $x=a$, if $a<a+h$ then, if $f(a)<f(a+h)$ as $h \rightarrow 0^{+}$, we can say that function is increasing at $x=a$.

At the right boundary i.e. $x=a$, if $a-h<a$ then, if $f(a-h)>f(a)$ as $h \rightarrow 0^{+}$, we can say that function is decreasing at $x=a$.

Illustration

A person goes for trekking and the path taken by him is represented in the form of a graph as shown below. Identify the monotonicity of $f(x)$ at $x=-6,5,13,18,24$

Solution:

$$
\text { Monotonicity of } f(x) \text { at } x=-6 \quad \begin{array}{r}
\because f(-6)>f(-6+h), \\
f(x) \text { decreasing at } x=-6
\end{array}
$$

Monotonicity of $f(x)$ at $x=13$

$$
\because f(13-h)>f(13)<f(13+h),
$$

$f(x)$ is neither increasing nor decreasing at $x=13$

$$
\because f(18-h)<f(18)>f(18+h),
$$

$f(x)$ is neither increasing nor decreasing at $x=18$

Monotonicity of $f(x)$ at $x=24$
$\because f(24-h)>f(24)>f(24+h)$, $f(x)$ is decreasing at $x=24$

Monotonicity at a Point

If $f^{\prime}(a)=0$, then examine the sign of $f^{\prime}(x)$ on the left neighbourhood and the right neighbourhood of a,
$i)$ If $f^{\prime}\left(a^{+}\right)$and $f^{\prime}\left(a^{-}\right)$are both positive, then function is increasing at $x=a$.
Example: Check the monotonicity of $f(x)=x^{3}$ at $x=0$

$$
f^{\prime}(x)=3 x^{2}
$$

Sign scheme for $f^{\prime}(x)$ at $x=0$

Since $f^{\prime}\left(0^{+}\right)$and $f^{\prime}\left(0^{-}\right)$are both positive, hence function is increasing at $x=0$.

Monotonicity at a Point

If $f^{\prime}(a)=0$, then examine the sign of $f^{\prime}(x)$ on the left neighbourhood and the right neighbourhood of a,
ii) If $f^{\prime}\left(a^{+}\right)$and $f^{\prime}\left(a^{-}\right)$are both negative, then function is decreasing at $x=a$.

Example: Check the monotonicity of $f(x)=-x^{3}$ at $x=0$

$$
f^{\prime}(x)=-3 x^{2}
$$

Sign scheme for $f^{\prime}(x)$ at $x=0$

$\because f^{\prime}\left(0^{+}\right)$and $f^{\prime}\left(0^{-}\right)$are both negative, hence function is decreasing at $x=0$.

Monotonicity at a Point

If $f^{\prime}(a)=0$, then examine the sign of $f^{\prime}(x)$ on the left neighbourhood and the right neighbourhood of a,
iii) If $f^{\prime}\left(a^{+}\right)$and $f^{\prime}\left(a^{-}\right)$are of opposite sign, then function is neither increasing nor decreasing at $x=a$.

Example: Check the monotonicity $f(x)=x^{2}$ at $x=0$

$$
f^{\prime}(x)=2 x
$$

Sign scheme of $f^{\prime}(x)$ at $x=0$

$f^{\prime}\left(0^{+}\right)$and $f^{\prime}\left(0^{-}\right)$are of opposite sign, then function is neither increasing nor decreasing at $x=0$.

Monotonicity at a Point

\square If $f^{\prime}(a)=0$, then examine the sign of $f^{\prime}(x)$ on the left neighbourhood and the right neighbourhood of a,
iii) If $f^{\prime}\left(a^{+}\right)$and $f^{\prime}\left(a^{-}\right)$are of opposite sign, then function is neither increasing nor decreasing at $x=a$.

Example: Check the monotonicity of $y=\sin x$ at $x=\frac{\pi}{2}$

$$
y^{\prime}=\cos x
$$

Sign scheme of y^{\prime}

$f^{\prime}\left(\frac{\pi^{+}}{2}\right)$ and $f^{\prime}\left(\frac{\pi^{-}}{2}\right)$ are of opposite sign, hence function is neither increasing nor decreasing at $x=\frac{\pi}{2}$.

Illustration

Check monotonicity of the function : $f(x)=(x-1)^{3}$, at $x=1$
Solution:
i) Given, $f(x)=(x-1)^{3}$

$$
f^{\prime}(x)=3(x-1)^{2}
$$

$$
\text { Now at } x=-1, f^{\prime}(1)=0
$$

$\because f^{\prime}\left(1^{+}\right)$and $f^{\prime}\left(1^{-}\right)$are both positive, Thus, function is increasing at $x=1$.

Illustration
Check the monotonicity of $f(x)=-\ln x+\tan ^{-1} x$, about $x=e$:

Solution:

Given: $f(x)=-\ln x+\tan ^{-1} x$

$$
f^{\prime}(x)=-\frac{1}{x}+\frac{1}{1+x^{2}}
$$

$\because\left(-1-e^{2}+e\right)$ is negative \& $e\left(1+e^{2}\right)$ is positive.

$$
f^{\prime}(e)=-\frac{1}{e}+\frac{1}{1+e^{2}}
$$

Hence, $f^{\prime}(e)<0$

$$
f^{\prime}(e)=\frac{-1-e^{2}+e}{e\left(1+e^{2}\right)}
$$

$\Rightarrow f(x)$ is decreasing at $x=e$.

|llustration

Find the complete set of values of α for which the function :

$$
f(x)=\left\{\begin{array}{l}
x-2 ; x<1 \\
\alpha ; x=1 \\
x^{2}+1 ; x>1
\end{array} \text { is strictly increasing at } x=1\right.
$$

$$
\text { a. } \quad \alpha \in(-\infty, 2]
$$

$$
\text { b. } \quad \alpha \in[-1,2]
$$

$$
\text { C. } \alpha \in[-1, \infty)
$$

$$
\text { d. } \alpha \in(-1,2)
$$

Step 1:

Draw the graphs of $y=x-2$ and $y=x^{2}+1$

Step 2:

For, obtaining $f(x)=\left\{\begin{array}{l}x-2 ; x<1 \\ \alpha ; x=1 \\ x^{2}+1 ; x>1\end{array}\right.$
remove the undesirable portion from the graph.

Hence, the graph for $f(x)=\left\{\begin{array}{l}x-2 ; x<1 \\ \alpha ; x=1 \\ x^{2}+1 ; x>1\end{array}\right.$ is drawn below.

For $f(x)$ to be increasing at $x=1$,

$$
\begin{aligned}
f\left(1^{-}\right) & <f(1)<f\left(1^{+}\right) \\
f\left(1^{-}\right) & <\alpha<f\left(1^{+}\right) \\
-1 & <\alpha<2
\end{aligned}
$$

$$
\alpha \in[-1,2]
$$

Hence, option (b) is the correct answer.

Monotonicity in an Interval

Increasing functions :
A function f is said to be increasing/non - decreasing in a set S of its domain if $\forall x_{1}, x_{2} \in S, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$

From the graph, we can see that $x_{1}<x_{2}$

$$
f\left(x_{1}\right)<f\left(x_{2}\right)
$$

From the graph, we can see that $x_{2}<x_{3}$

$$
f\left(x_{2}\right)=f\left(x_{3}\right)
$$

Increasing functions : $x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$

Example:

Strictly increasing functions:

A function f is said to be strictly (monotonically) increasing in a set S of its domain, if $\forall x_{1}, x_{2} \in S, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$

From the graph, we can see that $x_{1}<x_{2}$

$$
f\left(x_{1}\right)<f\left(x_{2}\right)
$$

Strictly increasing: $x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$

Example:

Monotonicity in an Interval

Decreasing function:

A function f is said to be decreasing/non-increasing in a set S of its domain, if $\forall x_{1}, x_{2} \in S$,
$x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)$
From the graph, we can see that $x_{1}<x_{3}$ $f\left(x_{1}\right)>f\left(x_{3}\right)$

From the graph, we can see that $x_{1}<x_{2}$

$$
f\left(x_{1}\right)=f\left(x_{2}\right)
$$

Decreasing functions: $x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)$

Example:

Monotonicity in an Interval

Strictly decreasing functions :

A function f is said to be strictly (monotonically) decreasing in a set S of its domain, if $\forall x_{1}, x_{2} \in S, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$

Strictly decreasing functions : $x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$

Example:

$$
y=-x^{3}
$$

$$
y=e^{-x}
$$

Illustration

Let f be any function on $[a, b]$ and twice differentiable on (a, b). If for all $x \in(a, b), f^{\prime}(x)>0, f^{\prime \prime}(x)<0$, then for any $c \in(a, b), \frac{f(c)-f(a)}{f(b)-f(c)}$ is greater than :
a. $\frac{c-a}{b-c} \quad$ b. $\frac{b-c}{c-a} \quad$ c. $\frac{b+c}{b-a} \quad\left\lfloor\frac{d .}{} 1\right.$

Solution:

Step 1:

Applying L.M.V.T in the interval (a, c), we obtain,

$$
f^{\prime}(\alpha)=\frac{f(c)-f(a)}{c-a}, a<\alpha<c \cdots(i)
$$

Step 2:

Now, applying L.M.V.T in the interval (c, b), we obtain
$f^{\prime}(\beta)=\frac{f(b)-f(c)}{b-c}, c<\beta<b \cdots(i i)$
Also $f^{\prime \prime}(x)<0 \Rightarrow f^{\prime}(x)$ is decreasing
Hence, $f^{\prime}(\alpha)>f^{\prime}(\beta)$
$\Rightarrow \frac{f(c)-f(a)}{c-a}>\frac{f(b)-f(c)}{b-c} \quad$, Using (i) \& (ii)
$\Rightarrow \frac{f(c)-f(a)}{f(b)-f(c)}>\frac{c-a}{b-c}$

Hence, option (a) is the correct answer.

Summary Sheet

- A function f is said to be monotonic if it is either increasing of decreasing in its entire domain.
- A function which is increasing as well as decreasing in its domain is called non-monotonic.
- A function f is said to be strictly increasing at a point $x=a$, if $a-h<a<a+h$, and $f(a-h)<f(a)<f(a+h)$, as $h \rightarrow 0^{+}$.
- If $f^{\prime}(a)>0$, then function is increasing at $x=a$.
- A function f is said to be strictly decreasing at a point $x=a$, if $a-h<a<a+h$, and $f(a-h)>f(a)>f(a+h)$, as $h \rightarrow 0^{+}$.
- If $f^{\prime}(a)<0$, then function is decreasing at $x=a$.
- If $x=a$ is a boundary point, appropriate one - sided inequality is applied to check monotonicity.

Summary Sheet

- If $f^{\prime}\left(a^{+}\right)$and $f^{\prime}\left(a^{-}\right)$are both positive, then function is increasing at $x=a$.
- If $f^{\prime}\left(a^{+}\right)$and $f^{\prime}\left(a^{-}\right)$are both negative, then function is decreasing at $x=a$.
- If $f^{\prime}\left(a^{+}\right)$and $f^{\prime}\left(a^{-}\right)$are of opposite signs, then function is neither increasing nor decreasing at $x=a$.
- A function f is said to be increasing/non - decreasing in a set S of its domain if $\forall x_{1}, x_{2} \in S$, $x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$
- A function f is said to be strictly (monotonically) increasing in a set S of its domain , if $\forall x_{1}, x_{2} \in S, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$
- A function f is said to be decreasing/non - increasing in a set S of its domain if $\forall x_{1}, x_{2} \in S$, $x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)$
- A function f is said to be strictly (monotonically) decreasing in a set S of its domain , if $\forall x_{1}, x_{2} \in S, x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$

B BYJU'S Classes

Application of Derivatives
Monotonicity of Differentiable Functions

Road Map

If f is continuous and differentiable function in its entire domain, then

- $f^{\prime}(x)>0, \forall x \in D_{f}$
$\Rightarrow f$ is strictly (monotonically) increasing.
- $f^{\prime}(x)<0, \forall x \in D_{f}$
$\Rightarrow f$ is strictly (monotonically) decreasing.

Monotonicity for Differentiable Functions

If f is continuous and differentiable function in its entire domain, then

$$
f^{\prime}(x) \geq 0
$$

f is increasing
(If equality occurs in an interval)

$$
f^{\prime}(x)=0, \forall x \in \mathbb{R}
$$

f is strictly increasing
(If equality occurs at discrete point(s))

$$
\begin{aligned}
& f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 x^{2} \\
& f^{\prime}(x)=0 \Rightarrow 3 x^{2}=0 \\
& \Rightarrow x=0 \\
& f^{\prime}(x)=0 \text {, for only } x=0 \\
& f(x) \text { is strictly increasing }
\end{aligned}
$$

Monotonicity for Differentiable Functions

If f is continuous and differentiable function in its entire domain, then

$$
f^{\prime}(x) \leq 0
$$

f is decreasing
(If equality occurs in an interval)

f is strictly decreasing

(If equality occurs at discrete point(s))

$$
\begin{aligned}
& f(x)=-x^{3} \Rightarrow f^{\prime}(x)=-3 x^{2} \\
& f^{\prime}(x)=0 \Rightarrow-3 x^{2}=0 \\
& \Rightarrow x=0 \\
& f^{\prime}(x)=0 \text {, for only } x=0 \\
& f(x) \text { is strictly decreasing }
\end{aligned}
$$

If function $f(x)=x e^{x(1-x)}$, then $f(x)$ is :
a. increasing on $\left[-\frac{1}{2}, 1\right]$
C. increasing on \mathbb{R}
b. decreasing on \mathbb{R}

Solution:

$$
f(x)=x e^{x(1-x)}
$$

$$
f^{\prime}(x)=x(1-2 x) e^{x(1-x)}+e^{x(1-x)}
$$

For $f(x)$ to be increasing , $f^{\prime}(x) \geq 0$
$\Rightarrow(x(1-2 x)+1) e^{x(1-x)} \geq 0$
d. decreasing on $\left[-\frac{1}{2}, 1\right]$
$f^{\prime}(x)=x(1-2 x) e^{x(1-x)}+e^{x(1-x)}$

$$
\begin{aligned}
& \Rightarrow(x(1-2 x)+1) e^{x(1-x)} \geq 0 \\
& \text { For } f(x) \text { to be decreasing , } f^{\prime}(x) \leq 0 \\
& \Rightarrow\left(x-2 x^{2}+1\right) e^{x(1-x)} \geq 0 \\
& \left\{\text { As } e^{x(1-x)}>0 \forall x \in \mathbb{R}\right\} \\
& \Rightarrow 2 x^{2}-x-1 \leq 0 \\
& \Rightarrow(2 x+1)(x-1) \leq 0 \\
& \xrightarrow{+} \underset{\substack{1 \\
-\frac{1}{2}}}{1}-1+ \\
& \Rightarrow x \in\left[-\frac{1}{2}, 1\right] \\
& \Rightarrow(x(1-2 x)+1) e^{x(1-x)} \leq 0 \\
& \Rightarrow\left(x-2 x^{2}+1\right) e^{x(1-x)} \leq 0 \\
& \Rightarrow 2 x^{2}-x-1 \geq 0 \quad\left\{\text { As } e^{x(1-x)}>0 \forall x \in \mathbb{R}\right\} \\
& \Rightarrow(2 x+1)(x-1) \geq 0 \\
& \xrightarrow{+} \quad 1 \quad-\quad+\quad+ \\
& \Rightarrow x \in\left(-\infty,-\frac{1}{2}\right] \cup[1, \infty)
\end{aligned}
$$

We can see that $-\frac{1}{2} \& 1$ are included in both the increasing and decreasing intervals Hence, option (a) is the correct answer.

Let $f(x)=x \cos ^{-1}(-\sin |x|), x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then which of the following is true ?
a. $f^{\prime}(0)=-\frac{\pi}{2}$
b. f is not differentiable at $x=0$
c. f^{\prime} is decreasing in $\left(-\frac{\pi}{2}, 0\right)$ and increasing in $\left(0, \frac{\pi}{2}\right)$
d. f^{\prime} is increasing in $\left(-\frac{\pi}{2}, 0\right)$ and decreasing in $\left(0, \frac{\pi}{2}\right)$

Solution:

$$
f^{\prime}(0)=\frac{\pi}{2}
$$

$$
\begin{aligned}
& f(x)=x \cos ^{-1}(-\sin |x|), x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]=\left\{\begin{array}{l}
x\left(\frac{\pi}{2}-\sin ^{-1}(\sin x)\right),-\frac{\pi}{2} \leq x \leq 0
\end{array}\right. \\
& x\left(\frac{\pi}{2}-\sin ^{-1}(-\sin x)\right), 0<x \leq \frac{\pi}{2} \\
& \Rightarrow f(x)=\left\{\begin{array}{l}
x\left(\frac{\pi}{2}-x\right),-\frac{\pi}{2} \leq x \leq 0 \\
x\left(\frac{\pi}{2}+x\right), 0<x \leq \frac{\pi}{2}
\end{array}\right. \\
& \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2} \\
& \sin ^{-1}(\sin x)=x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
\end{aligned}
$$

$\Rightarrow f^{\prime \prime}(x)=\left\{\begin{array}{rr}-2, & -\frac{\pi}{2} \leq x \leq 0 \\ 2, & 0<x \leq \frac{\pi}{2}\end{array}\right.$
$f^{\prime \prime}(x)<0$ in $\left(-\frac{\pi}{2}, 0\right) \Rightarrow f^{\prime}(x)$ is decreasing in $\left(-\frac{\pi}{2}, 0\right)$
$f^{\prime \prime}(x)>0$ in $\left(0, \frac{\pi}{2}\right) \Rightarrow f^{\prime}(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$
$\therefore f^{\prime}(x)$ is decreasing in $\left(-\frac{\pi}{2}, 0\right)$ and increasing in $\left(0, \frac{\pi}{2}\right)$

Hence, option (c) is the correct answer.

Find the set of values of a and b, for which the function $f(x)=\sin ^{2} x+\sin 2 x+a x+b$, is monotonically increasing ?

Solution:

$$
\begin{aligned}
& f(x)=\sin ^{2} x+\sin 2 x+a x+b \\
& f^{\prime}(x)=2 \sin x \cdot \cos x+2 \cos 2 x+a
\end{aligned}
$$

$$
f^{\prime}(x)=\sin 2 x+2 \cos 2 x+a
$$

We learnt that $f(x)$ is monotonically increasing for $f^{\prime}(x) \geq 0$, if equality occurs at discrete point(s)

$$
\Rightarrow \sin 2 x+2 \cos 2 x+a \geq 0
$$

We know,
$-\sqrt{A^{2}+B^{2}} \leq A \cos x+B \sin x \leq \sqrt{A^{2}+B^{2}}$
$-\sqrt{1^{2}+2^{2}} \leq \sin 2 x+2 \cos 2 x \leq \sqrt{1^{2}+2^{2}}$
$a-\sqrt{5} \leq \sin 2 x+2 \cos 2 x+a \leq a+\sqrt{5}$
$\because \sin 2 x+2 \cos 2 x+a \geq 0$
$\Rightarrow a-\sqrt{5} \geq 0$
$\therefore a \geq \sqrt{5}, b \in \mathbb{R}$

Composite Function Monotonicity

Case 1: When both the functions are monotonically increasing.

$f(x)$	$g(x)$	$f(g(x))$	$g(f(x))$	$f(f(x))$	$g(g(x))$
M.I.	M.I.	M.I.	M.I.	M.I.	M.I.

For $f(g(x))$
If $x_{1}<x_{2} \Rightarrow g\left(x_{1}\right)<g\left(x_{2}\right)$ as $g(x)$ is monotonically increasing function
$\Rightarrow f\left(g\left(x_{1}\right)\right)<f\left(g\left(x_{2}\right)\right)$ as $f(x)$ is monotonically increasing function
$\Rightarrow f(g(x))$ is monotonically increasing function
Similarly, $f(f(x))$ and $g(g(x))$ are also monotonically increasing function
Example: $f(x)=x+2, g(x)=\ln x$
As $f(x)$ and $g(x)$ are monotonically increasing function
$\Rightarrow f(g(x))=\ln x+2$ is monotonically increasing function

Composite Function Monotonicity

Case 2: When both the functions are monotonically decreasing function

$f(x)$	$g(x)$	$f(g(x))$	$g(f(x))$	$f(f(x))$	$g(g(x))$
M.D.	M.D.	M.I.	M.I.	M.I.	M.I.

If $x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$ as $f(x)$ is monotonically decreasing function
$\Rightarrow g\left(f\left(x_{1}\right)\right)<g\left(f\left(x_{2}\right)\right)$ as $g(x)$ is monotonically decreasing function
$\Rightarrow g(f(x))$ is monotonically increasing function
Similarly, $f(g(x)), f(f(x))$ and $g(g(x))$ are also monotonically increasing function
Example: $f(x)=-x, g(x)=e^{-x}$
As $f(x)$ and $g(x)$ are monotonically decreasing function
$\Rightarrow g(f(x))=e^{-(-x)}=e^{x}$ is monotonically increasing function

Composite Function Monotonicity

Case 3: When one is monotonically increasing and other is monotonically decreasing function

$f(x)$	$g(x)$	$f(g(x))$	$g(f(x))$	$f(f(x))$	$g(g(x))$
M.I.	M.D.	M.D.	M.D.	M.I.	M.I.

If $x_{1}<x_{2} \Rightarrow g\left(x_{1}\right)>g\left(x_{2}\right)$ as $g(x)$ is monotonically decreasing function
$\Rightarrow f\left(g\left(x_{1}\right)\right)>f\left(g\left(x_{2}\right)\right)$ as $f(x)$ is monotonically increasing function
$\Rightarrow f(g(x))$ is monotonically decreasing function
Similarly $g(f(x))$ is also monotonically decreasing function
Example: $f(x)=\ln x, g(x)=-x$
As $f(x)$ and $g(x)$ are monotonically increasing and decreasing function respectively
$\Rightarrow g(f(x))=-\ln x$ is monotonically decreasing function

Composite Function Monotonicity

Case 3: When one is monotonically increasing and other is monotonically decreasing function

$f(x)$	$g(x)$	$f(g(x))$	$g(f(x))$	$f(f(x))$	$g(g(x))$
M.I.	M.D.	M.D.	M.D.	M.I.	M.I.

If $x_{1}<x_{2} \Rightarrow g\left(x_{1}\right)>g\left(x_{2}\right)$ as $g(x)$ is monotonically decreasing function
$\Rightarrow g\left(g\left(x_{1}\right)\right)<g\left(g\left(x_{2}\right)\right)$ as $g(x)$ is monotonically decreasing function
$\Rightarrow g(g(x))$ is monotonically increasing function
\Rightarrow Similarly $f(f(x))$ is also monotonically increasing function

Let $f(x)=e^{x}-x$ and $g(x)=x^{2}-x$. Then the set of all $x \in \mathbb{R}$, where the function $h(x)=(f o g)(x)$ is increasing is :

$$
\text { a. }[0, \infty)
$$

$$
\text { C. }\left[-\frac{1}{2}, 0\right] \cup[1, \infty)
$$

$$
\begin{aligned}
& \text { b. }\left[-1,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, \infty\right) \\
& \text { d. }\left[0, \frac{1}{2}\right] \cup[1, \infty)
\end{aligned}
$$

Solution:

$$
f(x)=e^{x}-x \text { and } g(x)=x^{2}-x
$$

$$
f^{\prime}(x)=e^{x}-1 \quad g^{\prime}(x)=2 x-1
$$

$$
\begin{aligned}
& h(x)=(f \circ g)(x)=f(g(x)) \Rightarrow h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& \Rightarrow h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x) \geq 0 \quad\{\text { As } h(x)=(f \circ g)(x) \text { is increasing function }\} \\
& \Rightarrow\left(e^{x^{2}-x}-1\right) \cdot(2 x-1) \geq 0 \\
& x^{2}-x=0
\end{aligned}
$$

$\therefore x \in\left[0, \frac{1}{2}\right] \cup[1, \infty)$
Hence, option (d) is the correct answer.

Summary Sheet

If f is continuous and differentiable function in its entire domain, then

- $f^{\prime}(x)>0, \forall x \in D_{f} \Rightarrow f$ is strictly (monotonically) increasing
- $f^{\prime}(x)<0, \forall x \in D_{f} \Rightarrow f$ is strictly (monotonically) decreasing

Composite Function Monotonicity:

$f(x)$	$g(x)$	$f(g(x))$	$g(f(x))$	$f(f(x))$	$g(g(x))$
M.I.	M.I.	M.I.	M.I.	M.I.	M.I.
M.D.	M.D.	M.I.	M.I.	M.I.	M.I.
M.I.	M.D.	M.D.	M.D.	M.I.	M.I.

B BYJU'S Classes

Application of Derivatives

Inflection Point of a Curve

Road Map

Monotonicity and Curvature of a curve and its Inverse
σ

Concavity／Convexity of a curve

Illustration
If $\operatorname{fogoh}(x)$ is an increasing function, then which of the following is not possible?
a. $f(x), g(x)$ and $h(x)$ are increasing.
b. $f(x), g(x)$ are decreasing and $h(x)$ is increasing.
c. $f(x), g(x)$ and $h(x)$ are decreasing.
d. $f(x), g(x)$ are increasing and $h(x)$ is decreasing.

Solution:

fogoh (x) is an increasing function

$$
\text { Let } p(x)=f o g o h(x)
$$

Option a : $f(x), g(x)$ and $h(x)$ are increasing.
Since, $f(x), g(x)$ and $h(x)$ are increasing, we have, $f^{\prime}(x) \geq 0, g^{\prime}(x) \geq 0$ and $h^{\prime}(x) \geq 0$
$\Rightarrow p^{\prime}(x)=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x) \geq 0$
$\Rightarrow p(x)$ i.e, $f o g o h(x)$ is an increasing function which is in accordance with question.
Option $b: f(x), g(x)$ are decreasing and $h(x)$ is increasing.
Since, $f(x), g(x)$ are decreasing and $h(x)$ is increasing, we have, $f^{\prime}(x) \leq 0$, $g^{\prime}(x) \leq 0$ and $h^{\prime}(x) \geq 0$
$\Rightarrow p^{\prime}(x)=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x) \geq 0$
$\Rightarrow p(x)$ i.e, $f \circ g o h(x)$ is an increasing function which is in accordance with question.

- Option $c: f(x), g(x)$ and $h(x)$ are decreasing.

Since, $f(x), g(x)$ and $h(x)$ are decreasing, we have, $f^{\prime}(x) \leq 0, g^{\prime}(x) \leq 0$ and $h^{\prime}(x) \leq 0$
$\Rightarrow p^{\prime}(x)=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x) \leq 0$
$\Rightarrow p(x)$ i.e, $f o g o h(x)$ is a decreasing function.
Option d : $f(x), g(x)$ are increasing and $h(x)$ is decreasing.
Since, $f(x), g(x)$ are increasing and $h(x)$ is decreasing, we have, $f^{\prime}(x) \geq 0$, $g^{\prime}(x) \geq 0$ and $h^{\prime}(x) \leq 0$
$\Rightarrow p^{\prime}(x)=f^{\prime}(g(h(x))) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x) \leq 0$
$\Rightarrow p(x)$ i.e, $f o g o h(x)$ is a decreasing function.
So, options $(c),(d)$ are the correct answers.

Let $f:[0,2] \rightarrow \mathbb{R}$ be a twice differentiable function such that $f^{\prime \prime}(x)>0, \forall x \in(0,2)$. If $\phi(x)=f(x)+f(2-x)$, then ϕ is:
a. Increasing in $(0,2) \quad$ b. Increasing in $(0,1)$ and decreasing in $(1,2)$
c. Decreasing in (0,2) d. Decreasing in (0,1) and increasing in (1,2)

Solution: $f^{\prime \prime}(x)>0, \forall x \in(0,2) \Rightarrow f^{\prime}(x)$ is increasing function.

$$
\phi(x)=f(x)+f(2-x)
$$

Case 1: $\phi(x)$ is increasing function

$$
\begin{aligned}
& \phi^{\prime}(x)=f^{\prime}(x)-f^{\prime}(2-x) \\
& \Rightarrow f^{\prime}(x)>f^{\prime}(2-x)
\end{aligned}
$$

As $f^{\prime}(x)$ is a strictly increasing function, we get,
$\Rightarrow x>2-x$
$\Rightarrow x>1$

Case 2: $\phi(x)$ is decreasing function
$\phi^{\prime}(x)=f^{\prime}(x)-f^{\prime}(2-x)$
$\Rightarrow f^{\prime}(x)<f^{\prime}(2-x)$
As $f^{\prime}(x)$ is a strictly increasing function, we get,
$\Rightarrow x<2-x$
$\Rightarrow x<1$

But, $x \in(0,2)$
$\therefore \phi(x)$ is increasing in (1,2) and decreasing in (0,1)
So, option (d) is the correct answer.

. Concavity / Convexity of a Curve

(a) Concave Upward

A function $f(x)$ is said to be concave upwards (convex) in interval (a, b), if tangent drawn at every point $\left(x_{0}, f\left(x_{0}\right)\right)$, for $x_{0} \in(a, b)$ lie below the curve, Or, if we join any two points on the curve, then line segment lies above the curve.

From the given figure, we can see that the curve is concave upwards. Also, the line segments $P S$ and $Q R$ lie above the curve and the tangents drawn at points R and S lie below the curve.

Example:

Also, for all concave upward curves, we can say that the slope of the tangent keeps on increasing as we increase the value of x i.e., $f^{\prime}(x)$ is increasing.
Note:
If $f(x)$ is concave upwards in $x \in(a, b)$ then, $f^{\prime \prime}(x)>0, \forall x \in(a, b)$.

Concavity / Convexity of a Curve

(b) Concave Downward

A function $f(x)$ is said to be concave downwards (concave) in interval (a, b), if tangent drawn at every point $\left(x_{0}, f\left(x_{0}\right)\right)$, for $x_{0} \in(a, b)$ lie above the curve, Or, if we join any two points on the curve, then the line segment lies below the curve.

From the given figure, we can see that the curve is concave downwards. Also, the line segments $P S$ and $Q R$ lie below the curve and the tangents drawn at points P and Q lie above the curve.

$$
f(x)=-x^{2}
$$

$$
f(x)=\ln x
$$

$$
f(x)=\sin x ; x \in(0, \pi)
$$

Also, for all concave downwards curves, we can say that the slope of the tangent keeps on decreasing as we increase the value of x i.e., $f^{\prime}(x)$ is decreasing. Note:
If $f(x)$ is concave downwards in $x \in(a, b)$ then, $f^{\prime \prime}(x)<0, \forall x \in(a, b)$.

Relation between $\frac{d^{2} y}{d x^{2}}$ and $\frac{d^{2} x}{d y^{2}}$

$$
\begin{aligned}
& \frac{d^{2} x}{d y^{2}}= \frac{d}{d y}\left(\frac{d x}{d y}\right) \\
& \Rightarrow \frac{d^{2} x}{d y^{2}}=\frac{\frac{d\left(\frac{d x}{d y}\right)}{d x}}{\frac{d y}{d x}} \\
&=\frac{\frac{d\left(\frac{1}{\frac{d y}{d x}}\right)}{d x}}{\frac{d y}{d x}} \\
&=-\frac{d^{2} x}{d y^{2}}=-\frac{\frac{d^{2} y}{d x^{2}}}{\left(\frac{d y}{d x}\right)^{3}} \\
&=\frac{d^{2} y}{d x^{2}} \cdot\left(\frac{d y}{d x}\right)^{-2} \\
& \frac{d y}{d x}
\end{aligned}
$$

- Monotonicity and Curvature of a Function and its Inverse

Let a function $f(x)$ be differentiable and invertible.
We can see that $f(x)$ is Monotonically Increasing (M.I) and concave upwards. On plotting the graph of $f^{-1}(x)$, we can see that $f^{-1}(x)$ is Monotonically Increasing but concave downwards.

Note:

The above facts can also be seen with the help of calculus.
If $f(x)$ is M.I and concave upwards then, $f^{-1}(x)$ will be M.I and concave downwards
For $y=f(x): \frac{d y}{d x}>0, \frac{d^{2} y}{d x^{2}}>0$
For $y=f^{-1}(x): \frac{d x}{d y}>0, \frac{d^{2} x}{d y^{2}}<0$
: Monotonicity and Curvature of a Function and its Inverse

$f(x)$	e^{x}	M.I.	Concave upward
$f^{-1}(x)$	$\ln x$	M.I.	Concave downward

Point of Inflection

If a function $f(x)$ is continuous at $x=c$, and tangent exists at this point, such that $f^{\prime \prime}(x)$ has opposite sign on either side of ' $c{ }^{\prime}$, then the point $(c, f(c))$ is known as point of inflection.

$$
\begin{aligned}
& f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 x^{2} \\
& f^{\prime \prime}(x)=6 x \\
& \text { For } x>0, \\
& f^{\prime \prime}(x)=6 x>0 \\
& \text { For } x<0, \\
& f^{\prime \prime}(x)=6 x<0
\end{aligned}
$$

Since, $f^{\prime \prime}\left(0^{-}\right)$and $f^{\prime \prime}\left(0^{+}\right)$have opposite signs, $x=0$ is the point of inflection.

Point of Inflection

Geometrically, curvature of graph changes about the inflection point .
At $x=0, \pi, 2 \pi, 3 \pi$, the curvature of graph is changing as the graph is concave upwards on one side and concave downwards on the other side. So, $x=n \pi, n \in \mathbb{Z}$ are the points of inflection.

Point of Inflection

Mathematically, inflection point may occur at point where $f^{\prime \prime}(x)=0$ (but $\left.f^{\prime \prime \prime}(x) \neq 0\right)$ or not defined (but tangent should exist for $f(x)$) and sign of $f^{\prime \prime}(x)$ should change about that point.

$$
\begin{aligned}
& f(x)=x^{3} \\
& f^{\prime \prime}(x)=6 x=0 \Rightarrow x=0 \\
& \text { And } f^{\prime \prime \prime}(x)=6 \neq 0 \\
& \text { For } x>0 \text {, } \\
& f^{\prime \prime}(x)=6 x>0
\end{aligned}
$$

$$
\text { For } x<0 \text {, }
$$

$$
f^{\prime \prime}(x)=6 x<0
$$

Since, $f^{\prime \prime}\left(0^{-}\right)$and $f^{\prime \prime}\left(0^{+}\right)$have opposite signs, $x=0$ is the point of inflection.

: Point of Inflection

Example:

$$
\begin{aligned}
& \text { i) } f(x)=x^{4} \\
& f^{\prime}(x)=4 x^{3} \\
& f^{\prime \prime}(x)=12 x^{2}=0 \Rightarrow x=0
\end{aligned}
$$

So, $x=0$ can be the point of inflection.
But, $f^{\prime \prime}\left(0^{+}\right)$and $f^{\prime \prime}\left(0^{-}\right)$are both positive. So, the curve will not change its curve at $x=0$
$\therefore f(x)=x^{4}$ does not have any inflection point.

Point of Inflection

Example:

ii) $f(x)=x^{\frac{1}{3}}$
$f^{\prime}(x)=\frac{1}{3} \cdot x^{-\frac{2}{3}}$, Vertical tangent exists at $x=0$
$f^{\prime \prime}(x)=-\frac{2}{9} \cdot x^{-\frac{5}{3}}$ is not defined at $x=0$
So, $x=0$ can be the point of inflection.
Also, $f^{\prime \prime}\left(0^{+}\right)<0$ and $f^{\prime \prime}\left(0^{-}\right)>0$. So, the curve will change its curvature at $x=0$
$\therefore x=0$ is an inflection point for $f(x)=x^{\frac{1}{3}}$

Find intervals of concavity of the function $f(x)=x^{4}-6 x^{3}-108 x^{2}+57 x+2$. Also find the inflection point. Solution:

$$
\begin{aligned}
& f(x)=x^{4}-6 x^{3}-108 x^{2}+57 x+2 \\
& f^{\prime}(x)=4 x^{3}-18 x^{2}-216 x+57
\end{aligned}
$$

$$
f^{\prime \prime}(x)=12\left(x^{2}-3 x-18\right)=12(x+3)(x-6)
$$

$$
f^{\prime \prime}(x)=0 \Rightarrow x=-3,6
$$

For $f(x)$ to be Concave upwards $f^{\prime \prime}(x)>0 \Rightarrow x \in(-\infty,-3) \cup(6, \infty)$
For $f(x)$ to be Concave downwards $f^{\prime \prime}(x)<0 \Rightarrow x \in(-3,6)$
At $x=-3,6$ sign of $f^{\prime \prime}(x)$ changes.
$\therefore x=-3,6$ are the inflection points of $f(x)$

What conditions must the coefficients a, b, c satisfy for the curve $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$, to have points of inflection ?
a. $b^{2}=8 a c \quad$ b. $3 b^{2}>8 a c \quad$ c. $3 b^{2}=8 a c \quad$ d. $3 b^{2} \geq 8 a c$

Solution:
At inflection point , $f^{\prime \prime}(x)=0$, and its sign should change.
$f^{\prime}(x)=4 a x^{3}+3 b x^{2}+2 c x+d$,
$f^{\prime \prime}(x)=12 a x^{2}+6 b x+2 c$
$f^{\prime \prime}(x)$ is a quadratic expression and a quadratic expression changes its sign only when its discriminant is greater than zero.
$\Rightarrow 36 b^{2}-96 a c>0$
$\therefore 3 b^{2}>8 a c$
So, option (b) is the correct answer.

Summary Sheet

- A function $f(x)$ is said to be concave upwards (convex) in interval (a, b), if tangent drawn at every point $\left(x_{0}, f\left(x_{0}\right)\right)$, for $x_{0} \in(a, b)$ lie below the curve, Or, if we join any two points on the curve, then line segment lies above the curve.
- A function $f(x)$ is said to be concave downwards (concave) in interval (a, b), if tangent drawn at every point $\left(x_{0}, f\left(x_{0}\right)\right)$, for $x_{0} \in(a, b)$ lie above the curve, Or, if we join any two points on the curve, then the line segment lies below the curve.
- If $f(x)$ is M.I and concave upwards then, $f^{-1}(x)$ will be M.I and concave downwards.
- If a function $f(x)$ is continuous at $x=c$, and tangent exists at this point, such that $f^{\prime \prime}(x)$ has opposite sign on either side of ${ }^{\prime} c^{\prime}$, then the point $(c, f(c))$ is known as point of inflection. Geometrically, curvature of graph changes about the inflection point .

B BYJU'S Classes

Application of Derivatives

Application of Monotonicity

Road Map

Maxima and Minima

Inequality using Curvature

Inequality using Monotonicity

Inequality using Monotonicity

Comparison of two functions $f(x)$ and $g(x)$ can be done by analysing the monotonic behaviour of new function $h(x)=f(x)-g(x)$.
Example:
Let $f(x)=\log (1+x), g(x)=x$ where $x \in(0, \infty)$
To find which function is having more value in given interval of x, follow these steps:
Step 1: Assume a function $h(x)=\log (1+x)-x$
Step 2: Find derivative of $h(x)$
Step 3: If $h^{\prime}(x)>0$ then $h(x)>h(0)$ where $x \in(0, \infty)(h(x)$ is strictly increasing)

$$
\text { If } h^{\prime}(x)<0 \text { then } h(x)<h(0) \text { where } x \in(0, \infty)(h(x) \text { is strictly decreasing) }
$$

i) $\sin x<x<\tan x, x \in\left(0, \frac{\pi}{2}\right) \quad$ ii) $\frac{x}{1+x}<\ln (1+x)<x, x \in(0, \infty)$

Solution: i) $\sin x<x<\tan x, x \in\left(0, \frac{\pi}{2}\right)$
Let $f(x)=\sin x-x$
$f^{\prime}(x)=\cos x-1<0 \quad\left(\because\right.$ For $\left.x \in\left(0, \frac{\pi}{2}\right), \cos x \in(0,1)\right)$
$\Rightarrow f(x)$ is decreasing in $\left(0, \frac{\pi}{2}\right)$
$x>0 \Rightarrow f(x)<f(0) \quad$ (For $x \in\left(0, \frac{\pi}{2}\right), f(x)$ is decreasing)
Also, $f(0)=0$
$\Rightarrow \sin x-x<0 \quad \Rightarrow \sin x<x \cdots(i)$

Now, let's prove $x<\tan x, x \in\left(0, \frac{\pi}{2}\right)$
Let $g(x)=x-\tan x$
$\Rightarrow g^{\prime}(x)=1-\sec ^{2} x<0 \quad\left(\because \sec ^{2} x \in[1, \infty)\right)$
$\Rightarrow g(x)$ is decreasing in $\left(0, \frac{\pi}{2}\right)$
$x>0 \Rightarrow g(x)<g(0) \quad$ (For $x \in\left(0, \frac{\pi}{2}\right), g(x)$ is decreasing)
Also, $g(0)=0$
$\Rightarrow x-\tan x<0 \quad \Rightarrow x<\tan x \cdots$ (ii)
From (i) and (ii), $\quad \therefore \sin x<x<\tan x$

$$
\begin{aligned}
& \text { ii) } \frac{x}{1+x}<\ln (1+x)<x, x \in(0, \infty) \\
& \text { Let } f(x)=\frac{x}{1+x}-\ln (1+x)
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{(1+x)^{2}}-\frac{1}{1+x} \Rightarrow f^{\prime}(x)=\frac{1-(1+x)}{(1+x)^{2}} \\
& \Rightarrow f^{\prime}(x)=-\frac{x}{(1+x)^{2}}<0 \quad(\because x \in(0, \infty))
\end{aligned}
$$

$\therefore f(x)$ is decreasing

$$
x>0 \Rightarrow f(x)<f(0) \text { (For } x \in(0, \infty), f(x) \text { is decreasing) }
$$

$$
\text { Also, } f(0)=0
$$

$$
\Rightarrow \frac{x}{1+x}-\ln (1+x)<0
$$

$$
\Rightarrow \frac{x}{1+x}<\ln (1+x) \cdots(i)
$$

Now, Let $g(x)=\ln (1+x)-x$
$g^{\prime}(x)=\frac{1}{1+x}-1$
$g^{\prime}(x)=\frac{-x}{1+x}<0 \quad(\because x \in(0, \infty))$
$\therefore g(x)$ is decreasing.
$x>0 \Rightarrow g(x)<g(0)$ (For $x \in(0, \infty), g(x)$ is decreasing)
Also, $g(0)=0$
$\Rightarrow \ln (1+x)-x<0 \quad \Rightarrow \ln (1+x)<x \cdots$ (ii)

$$
\Rightarrow \frac{x}{1+x}<\ln (1+x) \cdots(i)
$$

and

$$
\ln (1+x)<x \cdots(i i)
$$

From equation (i) and (ii)

$$
\frac{x}{1+x}<\ln (1+x)<x
$$

Illustration

Prove that $\sin x \tan x>x^{2}, x \in\left(0, \frac{\pi}{2}\right)$, hence evaluate $\lim _{x \rightarrow 0}\left[\frac{\sin x \tan x}{x^{2}}\right]$, [.] denotes G.I.F.
Solution: Let $f(x)=\sin x \cdot \tan x-x^{2}, f(0)=0$
$\Rightarrow f^{\prime}(x)=\cos x \cdot \tan x+\sin x \cdot \sec ^{2} x-2 x$
$\Rightarrow f^{\prime}(x)=\cos x \cdot \tan x+\tan x \cdot \sec x-2 x$
$\Rightarrow f^{\prime}(x)=\underbrace{\tan x}_{>x} \cdot(\underbrace{(\cos x+\sec x)}_{>2}-2 x$
Also, $\tan x>x$ and $\cos x+\frac{1}{\cos x}>2$ (A.M \geq G.M) For $x \in\left(0, \frac{\pi}{2}\right)$
$\therefore f^{\prime}(x)>0 \Rightarrow f(x)$ is increasing. So, $x>0 \Rightarrow f(x)>f(0)$
$\Rightarrow f(x)$ is increasing and $f(x)>f(0)$
$\Rightarrow \sin x \cdot \tan x-x^{2}>0$
$\Rightarrow \sin x \cdot \tan x>x^{2}$
$\Rightarrow \frac{\sin x \tan x}{x^{2}}>1$
Value of $\frac{\sin x \tan x}{x^{2}}$ is slightly greater than 1 in rightneighbourhood of 0 .

$$
\lim _{x \rightarrow 0}\left[\frac{\sin x \tan x}{x^{2}}\right]=1 \quad\left(\because\left[1^{+}\right]=1\right)
$$

Illustration

Which is greater?
(i) e^{π} or π^{e}
(ii) $\tan ^{-1} e+\frac{1}{\sqrt{1+e^{2}}}$ or $\tan ^{-1} \frac{1}{e}+\frac{e}{\sqrt{1+e^{2}}}$

Solution: Let us assume that $e^{\pi}>\pi^{e}$

$$
e^{\pi}>\pi^{e} \Rightarrow\left(e^{\pi}\right)^{\frac{1}{\pi e}}>\left(\pi^{e}\right)^{\frac{1}{\pi e}} \Rightarrow e^{\frac{1}{e}}>\pi^{\frac{1}{\pi}}
$$

From above expression clearly
$\Rightarrow f(x)=x^{\frac{1}{x}}$
$\Rightarrow \ln f(x)=\frac{1}{x} \cdot \ln x$
$\Rightarrow \frac{1}{f(x)} \cdot f^{\prime}(x)=\frac{1}{x^{2}}+\ln x \cdot\left(-\frac{1}{x^{2}}\right)$ (Differentiating on both sides)
$\Rightarrow f^{\prime}(x)=f(x)\left[\frac{1-\ln x}{x^{2}}\right] \Rightarrow f^{\prime}(x)=x^{\frac{1}{x}} \cdot\left(\frac{1-\ln x}{x^{2}}\right)$
$\Rightarrow f^{\prime}(x)=x^{1 / x} \cdot\left(\frac{1-\ln x}{x^{2}}\right)$
For $0<x<e, \ln x<1$ so $1-\ln x>0$
$\Rightarrow f^{\prime}(x)>0 \Rightarrow f(x)$ is increasing
For $x>e, \ln x>1$ so $1-\ln x<0$
$\Rightarrow f^{\prime}(x)<0 \Rightarrow f(x)$ is decreasing
Thus , $f(e)>f(\pi)$

$$
e^{\frac{1}{e}}>\pi^{\frac{1}{\pi}}
$$

$$
\Rightarrow e^{\pi}>\pi^{e}
$$

(ii) $\tan ^{-1} e+\frac{1}{\sqrt{1+e^{2}}}$ or $\tan ^{-1} \frac{1}{e}+\frac{e}{\sqrt{1+e^{2}}}$

$$
\text { Let } f(x)=\tan ^{-1} x+\frac{1}{\sqrt{1+x^{2}}}
$$

$\Rightarrow f^{\prime}(x)=\frac{1}{1+x^{2}}-\frac{x}{\left(1+x^{2}\right)^{\frac{3}{2}}}=\frac{\sqrt{1+x^{2}}-x}{\left(1+x^{2}\right)^{\frac{3}{2}}}$

$$
\left(\because \sqrt{1+x^{2}}>\sqrt{x^{2}}, \sqrt{1+x^{2}}-\sqrt{x^{2}}>0\right)
$$

$f^{\prime}(x)>0 \Rightarrow f(x)$ is increasing.
$\because e>\frac{1}{e} \Rightarrow f(e)>f\left(\frac{1}{e}\right)$

$$
\therefore \tan ^{-1} e+\frac{1}{\sqrt{1+e^{2}}}>\tan ^{-1} \frac{1}{e}+\frac{e}{\sqrt{1+e^{2}}}
$$

Illustration
If $x_{1} \neq x_{2}$, then which is greater $e^{\frac{2 x_{1}+x_{2}}{3}}$ or $\frac{2 e^{x_{1}+e^{x_{2}}}}{3}$?
Solution: Consider the function $f(x)=e^{x}$

Illustration

If $0<x_{1}, x_{2}, x_{3}<\pi$, then which is greater $\sin \left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)$ or $\frac{\sin x_{1}+\sin x_{2}+\sin x_{3}}{3}$. Hence prove that : if A, B, C are angles of triangle then maximum value of $\sin A+\sin B+\sin C$ is $\frac{3 \sqrt{3}}{2}$

Solution:

$$
y=\sin x
$$

Consider $\triangle A B C$,
Centroid $G \equiv\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{\sin x_{1}+\sin x_{2}+\sin x_{3}}{3}\right)$
Now, corresponding point of G on the curve is F which can be written as

$$
F \equiv\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \sin \left(\frac{x_{1}+x_{2}+x_{3}}{3}\right)\right)
$$

Since, F lies above G so, we can say that

$$
\sin \left(\frac{x_{1}+x_{2}+x_{3}}{3}\right) \geq \frac{\sin x_{1}+\sin x_{2}+\sin x_{3}}{3}
$$

$\sin \left(\frac{x_{1}+x_{2}+x_{3}}{3}\right) \geq \frac{\sin x_{1}+\sin x_{2}+\sin x_{3}}{3}$

$$
\text { If } A+B+C=\pi
$$

$$
\begin{aligned}
& \sin \left(\frac{A+B+C}{3}\right) \geq \frac{\sin A+\sin B+\sin C}{3} \\
& \Rightarrow \sin \frac{\pi}{3} \geq \frac{\sin A+\sin B+\sin C}{3}
\end{aligned}
$$

$$
\Rightarrow \sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{2}
$$

\therefore Maximum value of $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}=\frac{3 \sqrt{3}}{2}$
Note:

If $f(x)$ is concave downwards and $f^{\prime}(x)>0$, then for $x_{1} \neq x_{2}$, which of the following is greater : $f^{-1}\left(\frac{x_{1}+x_{2}}{2}\right)$ or $\frac{f^{-1}\left(x_{1}\right)+f^{-1}\left(x_{2}\right)}{2}$?

Solution:

$f(x)$ is Monotonically Increasing and concave downwards then $f^{-1}(x)$ will be Monotonically Increasing and concave upwards.

Let $A\left(x_{1}, f^{-1}\left(x_{1}\right)\right)$ and $B\left(x_{2}, f^{-1}\left(x_{2}\right)\right)$ be $B\left(x_{2}, f^{-1}\left(x_{2}\right)\right) \quad$ the two points on $y=f^{-1}(x)$

N is the mid point of $A B$

$$
\begin{aligned}
& N \equiv\left(\frac{x_{1}+x_{2}}{2}, \frac{f^{-1}\left(x_{1}\right)+f^{-1}\left(x_{2}\right)}{2}\right) \\
& M \equiv\left(\frac{x_{1}+x_{2}}{2}, f^{-1}\left(\frac{x_{1}+x_{2}}{2}\right)\right)
\end{aligned}
$$

Since, M lies below N so, we can say that

$$
f^{-1}\left(\frac{x_{1}+x_{2}}{2}\right)<\frac{f^{-1}\left(x_{1}\right)+f^{-1}\left(x_{2}\right)}{2}
$$

Illustration

For $0<x<\frac{\pi}{2}$, prove that $\cos (\sin x)>\sin (\cos x)$.

Solution:

Let $f(x)=x-\sin x \Rightarrow f^{\prime}(x)=1-\cos x>0 \quad\left(\therefore\right.$ For $\left.\left(0, \frac{\pi}{2}\right), \cos x \in(0,1)\right)$
Hence $f(x)$ is an increasing function in $x \in\left(0, \frac{\pi}{2}\right)$
For $x>0, f(x)>f(0)$ or $x-\sin x>0$
$\Rightarrow x>\sin x \ldots$ (i)
Again, $0<x<\frac{\pi}{2}$, We have, $0<\cos x<1$
Now we replace x by $\cos x$ in equation (i)
$\cos x>\sin (\cos x) \ldots(i i)$
$\cos x>\sin (\cos x) \ldots(i i)$
Now in $\left(0, \frac{\pi}{2}\right), \cos x$ is monotonically decreasing.
So, if we apply cos on both sides in equation (i), the inequality will change.
$\Rightarrow \cos x<\cos (\sin x) \ldots(i i i)$
From equations (ii) and (iii), we get
$\sin (\cos x)<\cos x<\cos (\sin x)$
Hence, $\sin (\cos x)<\cos (\sin x)$

Summary Sheet

- Comparison of two functions $f(x)$ and $g(x)$ can be done by analysing the monotonic behaviour of new function $h(x)=f(x)-g(x)$.
- If $h^{\prime}(x)>0$ for $x \in(a, b)$ then $h(x)$ is strictly increasing in $x \in(a, b)$ and $h(x)>h(a)$ for $\forall x \in(a, b)$
- If $h^{\prime}(x)<0$ for $x \in(a, b)$ then $h(x)$ is strictly decreasing in $x \in(a, b)$ and $h(x)<h(a)$ for $\forall x \in(a, b)$
- $f(x)$ is Monotonically Increasing and concave downwards then $f^{-1}(x)$ will be Monotonically Increasing and concave upwards and vice versa.

B BYJU'S Classes

Application of Derivatives
Maxima and Minima

Road Map

Maxima \& Minima (Extrema)

Local or relative extrema:

A function $f(x)$ is said to have a maxima or

$\square c-h<c<c+h, f(x)$ is increasing in $(0, c)$ and decreasing from $c \Rightarrow f(c-h)<f(c)>f(c+h)$, where $h \rightarrow 0^{+}$: then $x=c$ is a point of local maxima.

Maxima \& Minima (Extrema)

Local or relative extrema:

$\square c-h<c<c+h, f(x)$ is decreasing in $(0, c)$ and increasing from c $\Rightarrow f(c-h)>f(c)<f(c+h)$, where $h \rightarrow 0^{+}$: then $x=c$ is a point of local minima.

One - sided extrema:

If $c-h<c \Rightarrow f(c-h)<f(c), h \rightarrow 0^{+}$then $x=c$ is a point of local maxima.
\square If $c-h<c \Rightarrow f(c-h)>f(c), h \rightarrow 0^{+}$then $x=c$ is a point of local minima.

Global or absolute extrema:

A function $f(x)$ is said to have a global extrema in an interval I, if there exists at least one c such that

$f(c)$ is either greatest or least in the entire interval.
$\square f(c) \geq f(x), \forall x \in[a, b] \Rightarrow x=c$ is a point of global maxima.
$\square f(c) \leq f(x), \forall x \in[a, b] \Rightarrow x=c$ is a point of global minima.

For $x=p$:
p is left boundary point so we only need to check the right neighborhood.
Here, for $p<p+h \Rightarrow f(p)<f(p+h)$, where $h \rightarrow 0^{+}$ So, $x=p$ is a point of local minima.

For $x=q$:
Here, for $q-h<q<q+h \Rightarrow f(q-h)<f(q)>f(q+h)$, where $h \rightarrow 0^{+}$
So, $x=q$ is a point of local maxima.

For $x=r$:

Here, for $r-h<r<r+h$
$\Rightarrow f(r-h)>f(r)<f(r+h)$ where $h \rightarrow 0^{+}$.
Also, $f(r) \leq f(x), \forall x \in[p, s]$
So, $x=r$ is a point of local minima and global minima.
For $x=s$:
Here, for $s-h<s$

$\Rightarrow f(s-h)<f(s)$ where $h \rightarrow 0^{+}$.
Also, $f(s) \geq f(x), \forall x \in[p, s]$
So, $x=s$ is a point of local maxima and global maxima.
Note: For continuous and non constant function, the points of maxima and minima lies alternately.

Maxima \& Minima (Extrema)

Example: Find points of extrema of given graph

For $x=a$:
We only check right neighborhood
Here, for $a<a+h \Rightarrow f(a)>f(a+h)$ where $h \rightarrow 0^{+}$
So, $x=a$ is a point of local maxima.
For $x=b$: from $x \in[a, g]$

Here, for $b-h<b<b+h \Rightarrow f(b-h)<f(b)>f(b+h)$ where $h \rightarrow 0^{+}$. So, $x=b$ is a point of local maxima.
For $x=c$:
Here, for $c-h<c<c+h \Rightarrow f(c-h)<f(c)>f(c+h)$ where $h \rightarrow 0^{+}$ Also, $f(c) \geq f(x), \forall x \in[a, g]$
So, $x=c$ is a point of local maxima and global maxima.

Maxima \& Minima (Extrema)

For $x=d$:
Here, for $d-h<d<d+h$
$\Rightarrow f(d-h)>f(d)<f(d+h)$ where $h \rightarrow 0^{+}$
Also, $f(d) \leq f(x), \forall x \in[a, g]$
So, $x=d$ is a point of local minima and global minima.
For $x=e$:
Here, for $e-h<e<e+h$

$\Rightarrow f(e-h)<f(e)>f(e+h)$ where $h \rightarrow 0^{+}$
So, $x=e$ is a point of local maxima.
For $x=g$:
Here, for $g-h<g \Rightarrow f(g)<f(g-h)$ where $h \rightarrow 0^{+}$
So, $x=f$ is a point of local minima.

Maxima \& Minima (Extrema)

Global or absolute extrema:

\square Normally, global maxima / minima occurs at points of local maxima or minima , but there can be exception.

Example: Let us consider the given function $f(x)$ for $x \in[b, c]$

Global maxima ,

\square Here, $f(b)=f(b+h)$

$$
f(c)=f(c-h)
$$

b and c does not satisfy the condition of local maxima. b and c are points of global maxima but not points of local maxima.

Maxima \& Minima (Extrema)

Global or absolute extrema:

Global extrema may or may not exist for a function. For existence of global extrema, the value of the function must be attainable/achievable at global extrema point.
Example:
Local maxima : $x=b$

Local minima : $x=c$

Solution: To check extrema at $x=0$, let's draw the graph of $y=f(x)$

Here, for $0-h<0<0+h \Rightarrow f(0-h)<f(0)>f(0+h)$, where $h \rightarrow 0^{+}$
$y=f(x)$ has local maxima at $x=0$

Illustration
Let $f(x)=\left\{\begin{array}{ll}-x^{3}+\frac{b^{3}-b^{2}+b-1}{b^{2}+3 b+2}, & 0 \leq x<1 \\ 2 x-3, & 1 \leq x \leq 3\end{array}\right.$.
Find all possible values of b such that $f(x)$ has smallest value at $x=1$.
A. $b \in(-2,-1) \cup[1, \infty) \quad \mid$ B. $b \in(-2, \infty)$

$$
\text { C. } b \in(-1,1) \cup[2, \infty) \quad\lfloor\text { D. } b \in[-1, \infty)
$$

Graph of $f(x) \pm a$ can be obtained by shifting the graph of $f(x)$ by a units in vertical direction.

Solution:

$$
f(x)=\left\{\begin{array}{cc}
-x^{3}+\frac{b^{3}-b^{2}+b-1}{b^{2}+3 b+2}, & 0 \leq x<1 \\
2 x-3, & 1 \leq x \leq 3
\end{array}\right.
$$

For $f(x)$ to have minima at $x=1$

$$
\lim _{x \rightarrow 1}\left(-x^{3}+\frac{b^{3}-b^{2}+b-1}{b^{2}+3 b+2}\right) \geq-1
$$

$$
\Rightarrow \frac{b^{3}-b^{2}+b-1}{b^{2}+3 b+2} \geq 0
$$

$$
\Rightarrow \frac{\left(b^{2}+1\right)(b-1)}{(b+1)(b+2)} \geq 0 \quad \Rightarrow b \in(-2,-1) \cup[1, \infty)
$$

So, option (A) is the correct answer.

Let $f(x)$ be a continuous function.
Stationary points : A point at which $f^{\prime}(x)=0$ is called stationary points. Critical points: A point at which $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist is called critical points.

Stationary points	$f^{\prime}(x)=0$
Critical points	$f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.

Example: Find critical points \& stationary points of the function:
(i) $f(x)=x^{3}-6 x^{2}-36 x+7$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12 x-36=0 \\
& \Rightarrow x=-2,6 \quad \text { (both stationary \& critical points) }
\end{aligned}
$$

$$
\text { (ii) } f(x)=(x-1) x^{\frac{2}{3}}
$$

$$
\Rightarrow f(x)=x^{\frac{5}{3}}-x^{\frac{2}{3}}
$$

$\Rightarrow f^{\prime}(x)=\frac{5}{3} x^{\frac{2}{3}}-\frac{2}{3} x^{-\frac{1}{3}}=\frac{5 x-2}{3 x^{\frac{1}{3}}}$
\Rightarrow Critical points : $x=\frac{2}{5}, 0 \quad\left(\because f^{\prime}(x)=0\right.$ or $f^{\prime}(x)$ does not exist $)$
\Rightarrow Stationary points : $x=\frac{2}{5} \quad\left(\because f^{\prime}(x)=0\right)$

Methods to find Extrema

First Derivative Test:

Let $f(x)$ is a continuous function and $x=c$ is the critical point $\left(f^{\prime}(c)=0\right.$ or not defined) Observe sign change of $f^{\prime}(x)$ about $x=c$.
\square Case I : If sign of $f^{\prime}(x)$ changes sign from negative to positive as x crosses c from left to right, then $x=c$ is a point of local minima.

Example:

$$
\begin{aligned}
& f(x)=x^{2} \\
& f^{\prime}(x)=2 x=0 \quad \text { at } x=0 \\
& f^{\prime}\left(0^{-}\right)<0 ; f^{\prime}\left(0^{+}\right)>0
\end{aligned}
$$

Thus , minima at $x=0$.

First Derivative Test:

\square Case II : If sign of $f^{\prime}(x)$ changes sign from positive to negative as x crosses c from left to right, then $x=c$ is a point of local maxima.

Example:

$$
\begin{aligned}
& f(x)=\sin x, x \in(0, \pi) \\
& f^{\prime}(x)=\cos x=0 \quad \text { at } x=\frac{\pi}{2} \\
& f^{\prime}\left(\frac{\pi^{-}}{2}\right)>0 ; f^{\prime}\left(\frac{\pi^{+}}{2}\right)<0
\end{aligned}
$$

Thus, maxima at $x=\frac{\pi}{2}$

First Derivative Test:

Case III : If $f^{\prime}(x)$ does not changes sign as x crosses c, then $x=c$ is neither a point of maxima nor minima.
Example:
$f(x)=x^{3}$
$f^{\prime}(x)=3 x^{2}=0$, at $x=0$
But , sign of $f^{\prime}(x)$ does not change at $x=0$.
Thus, neither maxima nor minima.

Find points of extrema of the function $f(x)=x^{2}(x-2)^{2}$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =2 x(x-2)^{2}+2 x^{2}(x-2) \\
& =4 x(x-1)(x-2)
\end{aligned}
$$

Critical points : $x=0,1,2\binom{\because f^{\prime}(x)=0$ or }{$f^{\prime}(x)$ does not exist }

local maxima : $x=1$
local minima : $x=0,2$
Global maxima : not exist
$(\therefore$ as $x \rightarrow \infty$ or $x \rightarrow-\infty \Longrightarrow f(x) \rightarrow \infty)$
Global minima : $x=0,2$
$(f(0)=f(2)=0$, least value)

If S_{1} and S_{2} are respectively the sets of local minimum \& local maximum points of the function, $f(x)=9 x^{4}+12 x^{3}-36 x^{2}+25, x \in \mathbb{R}$, then \qquad .

$$
\begin{array}{ll}
\text { a. } S_{1}=\{-2,0\} ; S_{2}=\{1\} \quad \text { b. } S_{1}=\{-1\} ; S_{2}=\{0,2\} \\
\text { c. } S_{1}=\{-2,1\} ; S_{2}=\{0\} \quad \text { d. } S_{1}=\{-2\} ; S_{2}=\{0,1\}
\end{array}
$$

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=36 x^{3}+36 x^{2}-72 x=36 x\left(x^{2}+x-2\right) \\
& f^{\prime}(x)=36 x(x+2)(x-1)
\end{aligned}
$$

Here, sign of $f^{\prime}(x)$ changes its sign from negative to positive as x crosses -2 from left to right, so $x=-2$ is a point of local minima

Sign of $f^{\prime}(x)$ changes its sign from negative to positive as x crosses 1 from left to right, so $x=1$ is a point of local minima.

Sign of $f^{\prime}(x)$ changes its sign from positive to negative as x crosses 0 from left to right, so $x=0$ is a point of local maxima

$$
S_{1}=\{-2,1\}, S_{2}=\{0\}
$$

So, option (c) is the correct answer.

Summary Sheet

\square For $c-h<c<c+h \Rightarrow f(c-h)<f(c)>f(c+h)$, where $h \rightarrow 0^{+}$: then $x=c$ is a point of local maxima.
\square For $c-h<c<c+h \Rightarrow f(c-h)>f(c)<f(c+h)$, where $h \rightarrow 0^{+}$: then $x=c$ is a point of local minima.
$\square f(c) \geq f(x)$, for given Interval of x, then $x=c$ is a point of global maxima.
$\square f(c) \leq f(x)$, for given Interval of x, then $x=c$ is a point of global minima.

Summary Sheet

\square Normally, global maxima / minima occurs at points of local maxima or minima , but every time this is not true there can be exception.

Stationary points	$f^{\prime}(x)=0$
Critical points	$f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist.

B BYJU'S Classes

Application of Derivatives

$n^{\text {th }}$ Derivative Test

Road Map

The set of all real values of λ for which the function $f(x)=\left(1-\cos ^{2} x\right)(\lambda+\sin x), x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, has exactly one maxima and one minima, is \qquad .

$$
\underline{a \cdot}\left(-\frac{1}{2}, \frac{1}{2}\right)-\{0\} \quad\left\lfloor b .\left(-\frac{1}{2}, \frac{1}{2}\right) \quad\left\lfloor c .\left(-\frac{3}{2}, \frac{3}{2}\right) \quad\left\lfloor d .\left(-\frac{3}{2}, \frac{3}{2}\right)-\{0\}\right.\right.\right.
$$

Solution:

$$
\begin{aligned}
f(x) & \left.=\left(1-\cos ^{2} x\right)(\lambda+\sin x)=\lambda \sin ^{2} x+\sin ^{3} x \quad\left(\because 1-\cos ^{2} x=\sin ^{2} x\right)\right) \\
f^{\prime}(x) & =2 \lambda \sin x \cos x+3 \sin ^{2} x \cos x \\
& =\sin x \cos x(2 \lambda+3 \sin x)
\end{aligned}
$$

For critical points, $f^{\prime}(x)=0$

$$
f^{\prime}(x)=\sin x \cos x(2 \lambda+3 \sin x)=0
$$

$$
\Rightarrow \sin x=0,-\frac{2 \lambda}{3},(\lambda \neq 0) \quad\left(\text { Since, } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \cos x \neq 0\right)
$$

For exactly one maxima and minima : $-\frac{2 \lambda}{3} \epsilon(-1,1)$ and $\lambda \neq 0(\because \lambda=0, \sin x=0)$
$\Rightarrow-1<-\frac{2 \lambda}{3}<1$ and $\lambda \neq 0$
$\Rightarrow-\frac{3}{2}<\lambda<\frac{3}{2}$ and $\lambda \neq 0$
$\Rightarrow \lambda \in\left(-\frac{3}{2}, \frac{3}{2}\right)$ and $\lambda \neq 0$
$\therefore \lambda \in\left(-\frac{3}{2}, \frac{3}{2}\right)-\{0\}$
So, option (d) is the correct answer.

Illustration
The maximum value of the function $f(x)=3 x^{3}-18 x^{2}+27 x-40$, on the set $S=\left\{x \in \mathbb{R}: x^{2}+30 \leq 11 x\right\}$ is :

$$
\text { a. }-122 \quad \text { b. }-222 \quad \text { c. } 122 \quad \text { d. } 222
$$

Solution:

$$
\begin{aligned}
& S=\left\{x \in \mathbb{R}: x^{2}+30-11 x \leq 0\right\} \\
& S=\{x \in \mathbb{R}:(x-5)(x-6) \leq 0\} \Rightarrow x \in[5,6] \\
& f(x)=3 x^{3}-18 x^{2}+27 x-40 \\
& f^{\prime}(x)=9 x^{2}-36 x+27=9\left(x^{2}-4 x+3\right) \\
& f^{\prime}(x)=9(x-1)(x-3)
\end{aligned}
$$

For $x \in[5,6], f^{\prime}(x)>0 \Rightarrow f(x)$ is increasing for $x \in[5,6]$
Thus, $f_{\max }$. will occur at $x=6$
Maximum value: $f(6)=3 \cdot 6^{3}-18 \cdot 6^{2}+27 \cdot 6-40$

$$
=122
$$

So, option (c) is the correct answer.

If $f(x)$ is a non-zero polynomial of degree four, having local extreme points at $x=-1,0,1$: then the set $S=\{x \in \mathbb{R}: f(x)=f(0)\}$ contains exactly :
a. Four rational numbers
b. Two irrational and two rational numbers
c. Four irrational numbers d. Two irrational and one rational number Solution:
$f(x)$ has local extreme points at $x=-1,0,1$
$\Rightarrow f^{\prime}(x)=0$ at $x=-1,0,1$
Let $f^{\prime}(x)=a(x+1) x(x-1)=a\left(x^{3}-x\right), a \neq 0$
On integrating, we get,
$f(x)=a\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)+b$, where b is an arbitrary constant

Since, $f(x)=f(0)$
$\Rightarrow a\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)+b=b$
$\Rightarrow a\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)=0$
$\Rightarrow\left(\frac{x^{4}}{4}-\frac{x^{2}}{2}\right)=0$, since $a \neq 0$
$\Rightarrow \frac{x^{2}}{2}\left(\frac{x^{2}}{2}-1\right)=0$
$\Rightarrow \frac{x^{2}}{2}=0$ or $\left(\frac{x^{2}}{2}-1\right)=0$
$\Rightarrow x=0$ or $x^{2}=2 \Rightarrow x= \pm \sqrt{2}$
$\Rightarrow x=0, \pm \sqrt{2}$
So, option (d) is the correct answer.

Illustration
Find all possible values of a for which the function
$f(x)=x^{3}+3(a-7) x^{2}+3\left(a^{2}-9\right) x-1$, has a positive point of maximum .
a. $(-\infty,-3) \cup(3, \infty)\left\lfloor\right.$ b. $\left(-\infty, \frac{29}{7}\right)\left\lfloor\right.$ c. $(-\infty,-3) \cup\left(3, \frac{29}{7}\right) \quad$ d. $(-\infty, \infty)$

Solution:

Since, coefficient of $x^{3}>0 \Rightarrow$ As $x \rightarrow \infty, f(x) \rightarrow \infty$

$$
f(x)=x^{3}+3(a-7) x^{2}+3\left(a^{2}-9\right) x-1
$$

$$
f^{\prime}(x)=3 x^{2}+6(a-7) x+3\left(a^{2}-9\right)=0
$$

we can see from the graph that to get positive point of
 maxima, $f^{\prime}(x)=0$ has both roots positive

$$
f^{\prime}(x)=3 x^{2}+6(a-7) x+3\left(a^{2}-9\right)
$$

Case 1: $D>0 \Rightarrow b^{2}-4 a c>0$
$\Rightarrow 36(a-7)^{2}-4 \cdot 3 \cdot 3\left(a^{2}-9\right)>0$
$\Rightarrow a^{2}+49-14 a-a^{2}+9>0$
$\Rightarrow 58-14 a>0 \Rightarrow a<\frac{29}{7} \cdots$ (i)
Case 2: $-\frac{b}{2 a}>0$
$\Rightarrow \frac{6(a-7)}{2 \cdot 3}<0 \Rightarrow a<7 \cdots$ (ii)
Case 3: $f^{\prime}(0)>0 \Rightarrow a^{2}-9>0$
$\Rightarrow(a-3)(a+3)>0 \Rightarrow a \in(-\infty,-3) \cup(3, \infty) \cdots(i i i)$
By taking intersection of $(i),(i i),(i i i)$, we get, $a \in(-\infty,-3) \cup\left(3, \frac{29}{7}\right)$
So, option (c) is the correct answer.

Alternate Method

Since coefficient of $x^{3}>0 \Rightarrow$ As $x \rightarrow \infty, f(x) \rightarrow \infty$

$$
\begin{aligned}
& f(x)=x^{3}+3(a-7) x^{2}+3\left(a^{2}-9\right) x-1 \\
& f^{\prime}(x)=3 x^{2}+6(a-7) x+3\left(a^{2}-9\right)
\end{aligned}
$$

Let the roots of $f^{\prime}(x)$ be α, β
Since $f(x)$ has a positive point of maxima $\Rightarrow 0<\alpha<\beta$

$$
\alpha=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}>0
$$

$$
\alpha=\frac{-6(a-7)-\sqrt{36(a-7)^{2}-36\left(a^{2}-9\right)}}{6}>0
$$

$$
\alpha=\frac{-6(a-7)-\sqrt{36(a-7)^{2}-36\left(a^{2}-9\right)}}{6}>0
$$

$$
(7-a)-\sqrt{a^{2}-14 a+49-a^{2}+9}>0
$$

$$
\begin{equation*}
(7-a)>\sqrt{58-14 a} \tag{i}
\end{equation*}
$$

$$
7-a>0 \text { and } 58-14 a>0
$$

$$
\begin{equation*}
\Rightarrow a<7 \text { and } a<\frac{29}{7} \Rightarrow a<\frac{29}{7} \tag{ii}
\end{equation*}
$$

On squaring (i), we get,
$a^{2}-14 a+49>58-14 a \Rightarrow a^{2}-9>0$
$\Rightarrow(a-3)(a+3)>0 \Rightarrow a \in(-\infty,-3) \cup(3, \infty) \quad \cdots(i i i)$
By taking intersection of (ii), (iii), we get, $a \in(-\infty,-3) \cup\left(3, \frac{29}{7}\right)$
So, option (c) is the correct answer.

Second Derivative Test

If a function $f(x)$ is continuous and differentiable \& $f^{\prime}(x)=0$, at $x=c$.
\diamond If $f^{\prime \prime}(x)>0$ at $x=c \Rightarrow f^{\prime}(x)$ is increasing at $x=c$
$\Rightarrow x=c$ is a point of local minima

$$
\begin{aligned}
& f(x)=x^{2} \\
& f^{\prime}(x)=2 x=0 \Rightarrow x=0 \\
& f^{\prime \prime}(x)=2>0 \Rightarrow x=0 \text { is a point of local minima }
\end{aligned}
$$

\diamond If $f^{\prime \prime}(x)<0$ at $x=c \Rightarrow f^{\prime}(x)$ is decreasing at $x=c$
$\Rightarrow x=c$ is a point of local maxima

$$
\begin{aligned}
& f(x)=-x^{2} \\
& f^{\prime}(x)=-2 x=0 \Rightarrow x=0 \\
& f^{\prime \prime}(x)=-2<0 \Rightarrow x=0 \text { is a point of local maxima }
\end{aligned}
$$

Second Derivative Test

If a function $f(x)$ is continuous and differentiable $\& f^{\prime}(x)=0$, at $x=c$.
\diamond If $f^{\prime \prime}(x)>0$ at $x=c, \Rightarrow x=c$ is a point of local minima
\diamond If $f^{\prime \prime}(x)<0$ at $x=c, \Rightarrow x=c$ is a point of local maxima

If $f^{\prime \prime}(x)=0$ at $x=c$, then proceed to the higher derivative test.

Illustration

Find the points of extrema for the function $f(x)=2 x^{3}-9 x^{2}+12 x+6$

Solution:

$$
\begin{aligned}
& f(x)=2 x^{3}-9 x^{2}+12 x+6 \\
& f^{\prime}(x)=6 x^{2}-18 x+12
\end{aligned}
$$

$$
\text { For critical points, } f^{\prime}(x)=0
$$

$$
\Rightarrow f^{\prime}(x)=6\left(x^{2}-3 x+2\right)=0
$$

$$
\Rightarrow(x-1)(x-2) \Rightarrow x=1,2
$$

$f^{\prime \prime}(x)=6(2 x-3)$
$f^{\prime \prime}(1)=6(2-3)<0 \Rightarrow x=1$ is a point of local maxima
$f^{\prime \prime}(2)=6(4-3)>0 \Rightarrow x=2$ is a point of local minima

Find the points of extrema for the function $f(x)=x+\sin 2 x$ for $0 \leq x<2 \pi$
$f(x)=x+\sin 2 x$ for $0 \leq x<2 \pi$
$f^{\prime}(x)=1+2 \cos 2 x$
For critical points, $f^{\prime}(x)=0$
$\Rightarrow f^{\prime}(x)=1+2 \cos 2 x=0$
$\Rightarrow \cos 2 x=-\frac{1}{2} \Rightarrow 2 x=2 n \pi \pm \frac{2 \pi}{3}, n \in \mathbb{I}$
$\Rightarrow x=n \pi \pm \frac{\pi}{3}, n \in \mathbb{I}$
$\Rightarrow x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$
$f^{\prime \prime}(x)=-4 \sin 2 x$

$$
f^{\prime \prime}\left(\frac{\pi}{3}\right)=-4 \sin \left(\frac{2 \pi}{3}\right)<0 \Rightarrow x=\frac{\pi}{3} \text { is a point of local maxima }
$$

$f\left(\frac{\pi}{3}\right)=x+\sin 2 x=\frac{\pi}{3}+\sin \left(\frac{2 \pi}{3}\right)=\frac{\pi}{3}+\frac{\sqrt{3}}{2}$ local maximum value
$f^{\prime \prime}\left(\frac{2 \pi}{3}\right)=-4 \sin \left(\frac{4 \pi}{3}\right)=4 \sin \left(\frac{\pi}{3}\right)>0 \Rightarrow x=\frac{2 \pi}{3}$ is a point of local minima
$f\left(\frac{2 \pi}{3}\right)=\frac{2 \pi}{3}+\sin \left(\frac{4 \pi}{3}\right)=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2} \quad$ local minimum value
$f^{\prime \prime}\left(\frac{4 \pi}{3}\right)=-4 \sin \left(\frac{8 \pi}{3}\right)=-4 \sin \left(\frac{2 \pi}{3}\right)<0 \Rightarrow x=\frac{4 \pi}{3}$ is a point of local maxima
$f\left(\frac{4 \pi}{3}\right)=\frac{4 \pi}{3}+\sin \left(\frac{8 \pi}{3}\right)=\frac{4 \pi}{3}+\frac{\sqrt{3}}{2}$ local maximum value
$f^{\prime \prime}\left(\frac{5 \pi}{3}\right)=-4 \sin \left(\frac{10 \pi}{3}\right)=4 \sin \left(\frac{\pi}{3}\right)>0 \Rightarrow x=\frac{5 \pi}{3}$ is a point of local minima
$f\left(\frac{5 \pi}{3}\right)=\frac{5 \pi}{3}+\sin \left(\frac{10 \pi}{3}\right)=\frac{5 \pi}{3}-\frac{\sqrt{3}}{2}$ local minimum value

Observations using graph
$f(x)=x+\sin 2 x$ for $0 \leq x<2 \pi$
We can see from the graph that points of extrema are $x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$

- $x=0$ is a global minima
- Global maxima is not defined

. $\dot{n}^{\text {th }}$ Derivative Test

Let $f(x)$ have derivatives up to $n^{\text {th }}$ order,
If $f^{\prime}(c)=f^{\prime \prime}(c)=\cdots=0$, then find the first non - zero higher derivative.
Let $f^{n}(c)$ be the first non - zero derivative.
\diamond If n is even, and $f^{n}(c)>0 \Rightarrow x=c$ is a local minima
If n is even, and $f^{n}(c)<0 \Rightarrow x=c$ is a local maxima

$$
\begin{aligned}
& \text { Example: } f(x)=(x-3)^{4} \\
& f^{\prime}(x)=4(x-3)^{3}=0 \Rightarrow x=3 \text { : critical point } \\
& f^{\prime \prime}(x)=12(x-3)^{2} \quad f^{\prime \prime}(3)=0 \\
& f^{\prime \prime \prime}(x)=24(x-3) \quad f^{\prime \prime \prime}(3)=0
\end{aligned}
$$

$$
\diamond \text { If } n \text { is even , and } f^{n}(c)>0
$$

$$
\Rightarrow x=c \text { is a local minima }
$$

If n is even, and $f^{n}(c)<0$
$\Rightarrow x=c$ is a local maxima

$$
f^{i v}(x)=24>0
$$

$\Rightarrow x=3$ is point of minima

: $\dot{n}^{\text {th }}$ Derivative Test

Let $f(x)$ have derivatives up to $n^{\text {th }}$ order,
If $f^{\prime}(c)=f^{\prime \prime}(c)=\cdots=0$, then find the first non - zero higher derivative
Let $f^{n}(c)$ be the first non - zero derivative
If n is odd, and $f^{n}(c)>0, \Rightarrow f(x)$ is increasing at $x=c$
If n is odd, and $f^{n}(c)<0, \Rightarrow f(x)$ is decreasing at $x=c$

Example: $f(x)=(2 x-1)^{3}, x \in \mathbb{R}$
$f^{\prime}(x)=6(2 x-1)^{2}=0 \Rightarrow x=\frac{1}{2}$ is a critical point $f^{\prime \prime}(x)=24(2 x-1) \Rightarrow f^{\prime \prime}\left(\frac{1}{2}\right)=0$ $f^{\prime \prime \prime}(x)=48>0$
$\Rightarrow f(x)$ is increasing at $x=\frac{1}{2}$
There is no point of local extrema.

Summary Sheet

- Second Derivative Test

If a function $f(x)$ is continuous and differentiable $\& f^{\prime}(x)=0$, at $x=c$.
\diamond If $f^{\prime \prime}(x)>0$ at $x=c, \Rightarrow x=c$ is a local minima
\diamond If $f^{\prime \prime}(x)<0$ at $x=c, \Rightarrow x=c$ is a local maxima
\diamond If $f^{\prime \prime}(x)=0$ at $x=c$, then proceed to the higher derivative test.

- $n^{\text {th }}$ Derivative Test

Let $f(x)$ have derivatives up to $n^{\text {th }}$ order, If $f^{\prime}(c)=f^{\prime \prime}(c)=\cdots=0$, then find the first non - zero higher derivative. Let $f^{n}(c)$ be the first non - zero derivative.
\diamond If n is even, and $f^{n}(c)>0 \Rightarrow x=c$ is a local minima
If n is even, and $f^{n}(c)<0 \Rightarrow x=c$ is a local maxima

Summary Sheet

Let $f(x)$ have derivatives up to $n^{\text {th }}$ order,
If $f^{\prime}(c)=f^{\prime \prime}(c)=\cdots=0$, then find the first non - zero higher derivative Let $f^{n}(c)$ be the first non - zero derivative
\diamond If n is odd, and $f^{n}(c)>0, \Rightarrow f(x)$ is increasing at $x=c$
\diamond If n is odd , and $f^{n}(c)<0, \Rightarrow f(x)$ is decreasing at $x=c$

B BYJU'S Classes
 Application of Derivatives
 Application of Maxima and Minima

Road Map

Previous years JEE problems

Mensuration Formulae
Applications of
Maxima and Minima

Mensuration Formulae

3D figures	Volume	3D Curved/lateral surface area	Total surface area
Cube	l^{3}	$4 l^{2}$	$6 l^{2}$
Cuboid	$l b h$	$2 h(l+b)$	$2(l b+b h+h l)$
Cone	$\frac{1}{3} \pi r^{2} h$	$\pi r l$	$\pi r l+\pi r^{2}$
Cylinder	$\pi r^{2} h$	$2 \pi r h$	$2 \pi r h+2 \pi r^{2}$
Sphere	$\frac{4}{3} \pi r^{3}$	$4 \pi r^{2}$	$4 \pi r^{2}$

Note: Triangular Prism

Area of base $=$ Area of equilateral triangle $=\frac{\sqrt{3}}{4} \cdot a^{2}$
Volume $=$ Area \times Height $=\frac{\sqrt{3}}{4} \cdot a^{2} \cdot h$
Lateral surface area $=$ Area of 3 lateral rectangle $=3 a \cdot h$

Total surface area $=2$ (Area of base) + Lateral surface area

$$
=3 a h+2\left(\frac{\sqrt{3}}{4} \cdot a^{2}\right)
$$

Area of base $=6 \times$ Area of equilateral triangle $=6 \cdot \frac{\sqrt{3}}{4} \cdot a^{2}$

Volume $=$ Area \times Height $=6 \cdot \frac{\sqrt{3}}{4} \cdot a^{2} \cdot h$

Lateral surface area $=$ Area of 6 lateral rectangle $=6 a \cdot h$
h Total surface area $=2$ (Area of base $\}+$ Lateral surface area

$$
=6 a h+2\left(6 \cdot \frac{\sqrt{3}}{4} \cdot a^{2}\right)
$$

Note: Triangular Pyramid (Tetrahedron)

Area of base $=$ Area of equilateral triangle $=\frac{\sqrt{3}}{4} \cdot a^{2}$
Volume $=$ Area \times Height $=\frac{1}{3} \cdot \frac{\sqrt{3}}{4} \cdot a^{2} \cdot h$
Lateral surface area $=$ Area of 3 equilateral triangle

$$
=3 \cdot \frac{\sqrt{3}}{4} \cdot a^{2}
$$

Total surface area $=$ Area of base + Lateral surface area

$$
=4 \cdot \frac{\sqrt{3}}{4} \cdot a^{2}
$$

Illustration
Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum.

Solution:
Given $x>0, y>0$ and $x+y=60 \Rightarrow x=60-y$
Let $F=x y^{3}$
$F=x y^{3}=(60-y) y^{3}=60 y^{3}-y^{4}\{$ Given $x=60-y\}$
By differentiating w.r.t y, we get,
$F^{\prime}(y)=180 y^{2}-4 y^{3}$
For extrema, $F^{\prime}(y)=0$
$\Rightarrow F^{\prime}(y)=180 y^{2}-4 y^{3}=0$
$\Rightarrow 4 y^{2}(45-y)=0$
$\Rightarrow y=0,45$

Critical points are 0,45

We can see here that at $y=45, F^{\prime}(y)$ is changing its sign from positive to negative. So, $F(y)$ is increasing from $x=0$ to $x=45$
\Rightarrow At $y=45, F(y)$ will be maxima
Given, $x+y=60 \Rightarrow$ At $y=45, x=60-45=15$
Thus, required positive numbers are: $y=45, x=15$

The maximum area (in sq. units) of a rectangle having its base on the X-axis and its other two vertices on the parabola, $y=12-x^{2}$ such that the rectangle lies inside the parabola, is

$$
\begin{array}{|l|l|}
\hline \text { a. } 32 & b .18 \sqrt{3}
\end{array}
$$

Solution:

Given: $y=12-x^{2}$
Let any point $P\left(a, 12-a^{2}\right)$ be on the parabola $y=12-x^{2}$

Area of rectangle, $A=l \times b$
From figure, $l=2 a, b=12-a^{2}$
\Rightarrow Area of rectangle, $A=2 a\left(12-a^{2}\right)=24 a-2 a^{3}$

Differentiate w.r.t a, we get,

$$
\frac{d A}{d a}=24-6 a^{2}
$$

To maximise area, $\frac{d A}{d a}=0$
$\Rightarrow 24-6 a^{2}=0 \Rightarrow a^{2}=4 \Rightarrow a= \pm 2$
We can see here that at $a>0 \Rightarrow a=2$, Also, at $a=2$, sign of $f^{\prime}(y)$ changes from positive to negative.
\Rightarrow Area will be maximum at $a=2$
Area $_{\max }=2 \times 2 \times(12-4)=32$ sq. units
Hence, option (a) is the correct answer.

Maxima

Illustration
The height(in units) of a right circular cylinder of maximum volume inscribed in a sphere of radius 3 units is :
a. $\sqrt{3}$
b. $2 \sqrt{3}$
c. $\frac{2 \sqrt{3}}{6}$
d. $\sqrt{6}$

Solution:

From right angle triangle,
$r^{2}+\left(\frac{h}{2}\right)^{2}=3^{2}=9 \cdots(i)$
We know, volume of cylinder $=\pi r^{2} h$
By substituting $r^{2}=9-\left(\frac{h}{2}\right)^{2}$, we get,
$V=\pi\left(9-\left(\frac{h}{2}\right)^{2}\right) \cdot h$
$\Rightarrow V=\pi\left(9 h-\frac{h^{3}}{4}\right)$

Differentiating w.r.t to h, we get,
$\frac{d V}{d h}=\pi\left(9-\frac{3}{4} h^{2}\right)$
To maximise the volume, $\frac{d V}{d h}=0$
$\Rightarrow \pi\left(9-\frac{3}{4} h^{2}\right)=0 \Rightarrow \frac{3 h^{2}}{4}=9 \Rightarrow h=2 \sqrt{3}(\because h>0)$
We can see here that at $h=2 \sqrt{3}$, sign of $\frac{d V}{d h}$ is changing from positive to negative.

\Rightarrow At $h=2 \sqrt{3}$, volume will be maximum

Thus, height of a right circular cylinder of maximum volume inscribed in a sphere of radius 3 units is $2 \sqrt{3}$ units.
Hence, option (b) is the correct answer.

A wire of length 2 units is cut into two parts which are bent respectively to form a square of side x units and a circle of radius of r units. If the sum of areas of square and the circle so formed is minimum , then :
a. $2 x=(\pi+4) r$
b. $(4-\pi) x=\pi r$
c. $x=2 r$
d. $2 x=r$

Solution:
Given, sum of perimeter of square and circle $=2$
$\Rightarrow 4 x+2 \pi r=2 \Rightarrow 2 x+\pi r=1 \cdots(i)$
$\Rightarrow x=\frac{1-\pi r}{2}$

Sum of areas $S=x^{2}+\pi r^{2} \cdots(i i)$

Substitute $x=\frac{1-\pi r}{2}$ in (ii), we get,
$S=\pi r^{2}+\left(\frac{1-\pi r}{2}\right)^{2}$
Differentiating w.r.t r, we get,
$\frac{d S}{d r}=2 \pi r-\frac{2 \pi(1-\pi r)}{4}=\frac{\pi}{2}((4+\pi) r-1)$
To minimise, $\frac{d S}{d r}=0$
$\Rightarrow \frac{\pi}{2}((4+\pi) r-1)=0 \Rightarrow r=\frac{1}{4+\pi}$
To check maxima and minima, calculate $\frac{d^{2} S}{d r^{2}}$
$\frac{d S}{d r}=\frac{\pi}{2}((4+\pi) r-1)$
$\frac{d^{2} S}{d r^{2}}=\frac{\pi}{2}(4+\pi)$
$\because \frac{d^{2} S}{d r^{2}}>0, \therefore S$ is minimum at $r=\frac{1}{4+\pi}$
Substituting $\pi r=1-4 r$ in (i)
$\Rightarrow 2 x+1-4 r=1 \quad \Rightarrow x=2 r$
Hence, option (c) is the correct answer.

Illustration

A swimmer across the sea is at the distance 2 km from the closest point on a straight seashore. The house of the swimmer is on the shore at distance 2 km from that closest point. He can swim at a speed of 3 km per hour and walk at a speed of 5 km per hour. At what point on the shore should he land so that he reaches his house in the shortest possible time?

Solution:

Let swimmer lands on shore at $x \mathrm{~km}$ distance from straight seashore and walks $(2-x) \mathrm{km}$ to reach the house.
Total time $(t)=$ time taken from A to $\mathrm{D}\left(t_{A D}\right)+$ time taken from D to $C\left(t_{D C}\right)$
Time $=\frac{\text { Distance }}{\text { Speed }}$
Total time : $t=t_{A D}+t_{D C}$
$t=\frac{\sqrt{4+x^{2}}}{3}+\frac{2-x}{5}, 0 \leq x \leq 2$
$\frac{d t}{d x}=\frac{1}{2 \sqrt{4+x^{2}}} \times \frac{2 x}{3}-\frac{1}{5}=\frac{x}{3 \sqrt{4+x^{2}}}-\frac{1}{5}$
To minimise, $\frac{d t}{d x}=0$
$\Rightarrow \frac{x}{3 \sqrt{4+x^{2}}}-\frac{1}{5}=0$
$\Rightarrow 25 x^{2}=9\left(4+x^{2}\right)$
$\Rightarrow 16 x^{2}=36 \Rightarrow x^{2}=\frac{36}{16} \Rightarrow x=\frac{3}{2}(\because x>0)$
We can see here that at $x=\frac{3}{2}$, sign of $\frac{d t}{d x}$ is changing from negative to positive.
\Rightarrow At $x=\frac{3}{2}$, time will be minimum

So the swimmer should land on the shore at $\frac{3}{2} \mathrm{~km}$ from straight seashore to reaches his house in the shortest possible time.

Illustration

A piece of pipe is being carried down a hallway that is 27 ft wide. At the end of the halfway, there is a right angled turn and the hallway narrows down to 8 ft wide. What is the longest pipe (always keeping it horizontal) that can be carried around the turn in the hallway?
a. $13 \sqrt{13}$
b. $33 \sqrt{3}$
c. $6 \sqrt{13}$ d. $13 \sqrt{6}$

Solution: At the time of taking turn from one hallway to other hallway, at that instant, we have,

l_{1} is the length of pipe in 8 ft wide hallway l_{2} is the length of pipe in the 27 ft wide hallway
θ is the angle made by the pipe at the instant w.r.t ground
In $\triangle A O A^{\prime} \cos \theta=\frac{8}{l_{1}} \Rightarrow l_{1}=8 \sec \theta$
In $\triangle B O B^{\prime} \sin \theta=\frac{27}{l_{2}} \Rightarrow l_{2}=27 \operatorname{cosec} \theta$

Length of pipe, $L=l_{1}+l_{2}=8 \sec \theta+27 \operatorname{cosec} \theta$ To maximise the length $\frac{d L}{d \theta}=0$

$$
\begin{aligned}
& \frac{d L}{d \theta}=8 \sec \theta \tan \theta-27 \operatorname{cosec} \theta \cot \theta=0 \\
& \Rightarrow \frac{8 \sin \theta}{\cos ^{2} \theta}-\frac{27 \cos \theta}{\sin ^{2} \theta}=0 \\
& \Rightarrow 8 \sin ^{3} \theta-27 \cos ^{3} \theta=0
\end{aligned}
$$

$$
\Rightarrow \tan ^{3} \theta=\frac{27}{8} \Rightarrow \tan \theta=\frac{3}{2}
$$

$$
\frac{d L}{d \theta}=8 \sec \theta \tan \theta-27 \operatorname{cosec} \theta \cot \theta
$$

$\frac{d L}{d \theta}=8 \sec \theta \tan \theta-27 \operatorname{cosec} \theta \cot \theta$

$$
\frac{d^{2} L}{d \theta^{2}}=8\left(\sec \theta \tan ^{2} \theta+\sec ^{3} \theta\right)+27\left(\operatorname{cosec} \theta \cot ^{2} \theta+\operatorname{cosec}^{3} \theta\right)
$$

$\frac{d^{2} L}{d \theta^{2}}=8\left(\sec \theta \tan ^{2} \theta+\sec ^{3} \theta\right)+27\left(\operatorname{cosec} \theta \cot ^{2} \theta+\operatorname{cosec}^{3} \theta\right)$
$\frac{d^{2} L}{d \theta^{2}}=8\left(\sec \theta \tan ^{2} \theta+\sec ^{3} \theta\right)+27\left(\operatorname{cosec} \theta \cot ^{2} \theta+\operatorname{cosec}^{3} \theta\right)$
\Rightarrow At $\tan \theta=\frac{3}{2}, \frac{d^{2} L}{d \theta^{2}}>0$
\Rightarrow At $\tan \theta=\frac{3}{2}$, we get maximum length of the pipe
$L=8 \sec \theta+27 \operatorname{cosec} \theta$
$L=8 \cdot \frac{\sqrt{13}}{2}+27 \cdot \frac{\sqrt{13}}{3} \quad=13 \sqrt{13} \mathrm{ft}$.
Hence, option (a) is the correct answer.

Illustration
Two towns A and B are situated on the same side of a straight road at distances a and b respectively, perpendiculars drawn from A and B meet the road at point C and D respectively. The distance between C and D is C. A hospital is to be built at a point P on the road such that the distance $A P B$ is minimum. Find distance of P from point C.

$$
\text { !. } \frac{a c}{a+b} \quad \text { b. } \frac{b c}{a+b} \frac{a+c}{a+b} \quad \text { d. } \frac{b+c}{a+b}
$$

Solution:

Given A and B are situated on the same side of a straight road

$$
A C=a, \quad B D=b, \quad C D=x
$$

Let x be the distance of P from C

Since $A P B$ is minimum
$\Rightarrow A P B^{\prime}$ lies on a straight line where B^{\prime} is mirror image of B w.r.t line $C D$

From figure, $\triangle A P C$ and $\triangle D P B^{\prime}$ are similar.

$$
\begin{aligned}
b & \Rightarrow \frac{x}{a}=\frac{c-x}{b} \\
B & \Rightarrow x b=c a-a x
\end{aligned}
$$

$$
\Rightarrow(a+b) x=a c \Rightarrow x=\frac{a c}{a+b}
$$

Hence, option (a) is the correct answer.

Summary Sheet

Mensuration Formulae:

3D figures	Volume	3D Curved/lateral surface area	Total surface area
Cube	l^{3}	$4 l^{2}$	$6 l^{2}$
Cuboid	$l b h$	$2 h(l+b)$	$2(l b+b h+h l)$
Cone	$\frac{1}{3} \pi r^{2} h$	$\pi r l$	$\pi r l+\pi r^{2}$
Cylinder	$\pi r^{2} h$	$2 \pi r h$	$2 \pi r h+2 \pi r^{2}$
Sphere	$\frac{4}{3} \pi r^{3}$	$4 \pi r^{2}$	$4 \pi r^{2}$

B BYJU'S Classes

Application of Derivatives
Curve Tracing

Road Map

Asymptotes

Application of Maxima and Minima

Curve Tracing

Symmetry:

\square If on replacing $x \rightarrow-x$, equation of curve doesn't change, then the curve is symmetric about y-axis.

For plotting such curves, draw the curve for $x \geq 0$ and then take mirror image with respect to Y - axis.

Example: $y=x^{2}$

Curve Tracing

\square If on replacing $y \rightarrow-y$, equation of curve doesn't change, then the curve is symmetric about x-axis.

For plotting such curves, plot the curve for $y \geq 0$ and then take mirror image with respect to X - axis.

$$
\text { Example: } y^{2}=x
$$

Curve Tracing

If on replacing $y \rightarrow-y \& x \rightarrow-x$, equation of curve doesn't change then the curve is symmetric in all four quadrants

For plotting such curves, plot the curve for $1^{\text {st }}$ quadrant and then take mirror image with respect to X - axis as well as Y - axis.

Example: $x^{2}+y^{2}=4$

Curve Tracing

\square If on interchanging $x \& y$, equation of curve doesn't change, then the curve is symmetric about $y=x$.

The curve is mirror image with respect to line $y=x$.

$$
\text { Example: } y=\frac{1}{x}
$$

Curve Tracing

\square If $f(x)$ is an odd function then the graph of $f(x)$ is symmetric about the origin.

Example: $y=x^{3}$

Note:

For odd function, $f(-x)=-f(x)$
Substitute $x=0$,
$\Rightarrow f(0)=-f(0)$
$\Rightarrow f(0)=0$
\therefore If an odd function is defined at $x=0$, then $f(0)=0$.

Curve Tracing

Steps to draw curve:

\square Check symmetry (if any).
\square Get idea about domain and range of function to be drawn.
\square Identify discontinuity (if any).
Get critical points \& increasing/decreasing intervals.
\square Estimate value of function at $x=0$ (Points of intersection with Y - axis), $\pm \infty$ (behavior of curve at extreme points) and at critical points.
\square Find roots (if any)

Curve Tracing

Shape of Curve: Consider a curve $y=f(x)$
$\square \frac{d y}{d x}>0 \Rightarrow f(x)$ is increasing
$\square \frac{d y}{d x}<0 \Rightarrow f(x)$ is decreasing
$\square \frac{d^{2} y}{d x^{2}}>0 \Rightarrow f(x)$ will be concave upwards
$\square \frac{d^{2} y}{d x^{2}}<0 \Rightarrow f(x)$ will be concave downwards

Illustration
Plot graph of $y=(x-1)^{2}(x-2)$
Solution:

$$
y=(x-1)^{2}(x-2)
$$

i) On replacing $y \rightarrow-y$ or $x \rightarrow-x$ equation of curve changes. \Rightarrow Curve is not symmetric.
ii) Now, since the given function is polynomial,
\Rightarrow Domain is \mathbb{R}
\Rightarrow Range is \mathbb{R}
iii) For roots, $y=0 \Rightarrow x=1,2$ (1 is the repeated root)
iv) For critical points,

$$
\begin{aligned}
& \frac{d y}{d x}=(x-1)(3 x-5)=0 \Rightarrow x=1, \frac{5}{3} \\
& \frac{d y}{d x}>0 \Rightarrow x \in(-\infty, 1) \cup\left(\frac{5}{3}, \infty\right)
\end{aligned}
$$

function is increasing

$$
\frac{d y}{d x}<0 \Rightarrow x \in\left(1, \frac{5}{3}\right)
$$

function is decreasing
v) Value of function at critical points

Since function is increasing from $(-\infty, 1) \cup\left(\frac{5}{3}, \infty\right)$
\Rightarrow Local maxima: $y(1)=(1-1)^{2}(1-2)=0$
Since function is decreasing from $\left(1, \frac{5}{3}\right)$
\Rightarrow Local minima: $y\left(\frac{5}{3}\right)=\left(\frac{5}{3}-1\right)^{2}\left(\frac{5}{3}-2\right)=-\frac{4}{27}$

vi) Shape of curve

$$
\begin{aligned}
& \frac{d y}{d x}=(x-1)(3 x-5)=3 x^{2}-8 x+5 \\
& \frac{d^{2} y}{d x^{2}}=0 \Rightarrow 6 x-8=0 \Rightarrow x=\frac{4}{3} \text { is point of inflection. } \\
& \frac{d^{2} y}{d x^{2}}>0 \Rightarrow \text { concave upwards; } x>\frac{4}{3} \\
& \frac{d^{2} y}{d x^{2}}<0 \Rightarrow \text { concave downwards; } x<\frac{4}{3}
\end{aligned}
$$

Start drawing the curve from $-\infty$ (As $x \rightarrow$ $-\infty \Rightarrow y \rightarrow-\infty$)
From $-\infty$ to 1 , graph is increasing and concave downwards.
At $x=1$, we get a local maxima.
Further from 1 to $\frac{5}{3}$, graph is decreasing.
Also, it is concave downwards till $x=\frac{4}{3}$ and from $\frac{4}{3}$ onwards, it is concave upwards.
At $x=\frac{5}{3}$, we get a local minima.
From $\frac{5}{3}$ to ∞, Graph is increasing and concave upwards.
Clearly, $x=1$ and 2 are the roots of y

$$
y=(x-1)^{2}(x-2)
$$

$$
x=1,2 \text { (} 1 \text { is the repeated root) }
$$

$$
\frac{d y}{d x}=0 \Rightarrow x=1, \frac{5}{3}
$$

$$
y(1)=0 \& y\left(\frac{5}{3}\right)=-\frac{4}{27},
$$

$$
x=\frac{4}{3} \text { is point of inflection ,y }\left(\frac{4}{3}\right)=-\frac{2}{27}
$$

\Rightarrow concave upwards; $x>\frac{4}{3}$
\Rightarrow concave downwards; $x<\frac{4}{3}$

Solution:

i) $y=x+\sin x$ is an odd function $(\because(f(-x)=-f(x))$

Therefore, the function is symmetric about origin.
ii) For $y=x+\sin x$,

Domain is \mathbb{R}
Range is \mathbb{R}
iii) Value of function

Put $x=0 \Rightarrow y=0$
Put $x=\pi \Rightarrow y=\pi$
Put $x=2 \pi \Rightarrow y=2 \pi$
iv) For critical points
$\frac{d y}{d x}=0 \Rightarrow 1+\cos x=0 \Rightarrow \cos x=-1 \Rightarrow x=(2 k+1) \pi, k \in \mathbb{I}$ are critical points.
Also, $\frac{d y}{d x}=1+\cos x \geq 0 \forall x \in \mathbb{R} \Rightarrow f(x)$ is increasing $\forall x \in \mathbb{R}$
v) Shape of curve
$\frac{d^{2} y}{d x^{2}}=-\sin x, \frac{d^{2} y}{d x^{2}}=0 \Rightarrow-\sin x=0 \Rightarrow x=2 n \pi, n \in \mathbb{I}$
$\frac{d^{2} y}{d x^{2}}>0 \Rightarrow(2 n-1) \pi<x<2 n \pi,, n \in \mathbb{I}$ (concave upwards)
$\frac{d^{2} y}{d x^{2}}<0 \Rightarrow 2 n \pi<x<(2 n+1) \pi, n \in \mathbb{I}$ (concave downwards)

Since graph is symmetric about the origin so we can it draw for the $1^{\text {st }}$ quadrant and then take mirror image of it about origin
At $x=0, y=0$
From $x=0$ to $x=\pi$, graph is increasing and concave downwards. At $x=2 \pi, y=2 \pi$
From $x=\pi$ to $x=2 \pi$, graph is increasing and concave upwards. Similarly, graph can be drawn for the other intervals in $1^{\text {st }}$ quadrant. At the end take mirror image w.r.t origin to draw the whole graph.

Note: Here we superimpose

$$
y=\sin x \text { over } y=x .
$$

$$
\begin{aligned}
& y=x+\sin x \\
& x=0 \Rightarrow y=0 \\
& x=\pi \Rightarrow y=\pi \\
& x=2 \pi \Rightarrow y=2 \pi \\
& \frac{d y}{d x}=1+\cos x \geq 0 \text { (increasing) } \\
& \frac{d^{2} y}{d x^{2}}=-\sin x \\
& \frac{d^{2} y}{d x^{2}}>0 \text { (concave up) } \\
& \frac{d^{2} y}{d x^{2}}<0 \text { (concave down) }
\end{aligned}
$$

Note: Here we superimpose

$$
y=\sin x \text { over } y=x
$$

Illustration
Iliustration
Plot graph of iii) $f(x)=\frac{e^{x}}{x}$, also find range of $f(x)$.
Solution: $y=\frac{e^{x}}{x}$
i) On replacing $y \rightarrow-y$ or $x \rightarrow-x$ equation of curve changes.
\Rightarrow curve is not symmetric.
ii) Domain : $x \in \mathbb{R}-\{0\}$

For range,

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{e^{x}}{x}=\frac{e^{-\infty}}{-\infty} \rightarrow 0^{-} ; \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{e^{x}}{x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{1} \rightarrow \infty
$$

(Using L'Hospital's Rule)
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{e^{x}}{x} \rightarrow-\infty ; \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x} \rightarrow \infty$
iii) For critical points,

$$
\begin{aligned}
& f^{\prime}(x)=\frac{e^{x}(x-1)}{x^{2}}=0 \Rightarrow x=1 \\
& f(1)=\frac{e}{1}=e
\end{aligned}
$$

$f^{\prime}(x)$ is changing its sign from negative to positive as x going from left to right of 1, hence $x=1$ is the point of local minima
iv) Shape of curve

$$
\begin{aligned}
& f^{\prime}(x)>0 \Rightarrow x>1 \text { (increasing) } \\
& f^{\prime}(x)<0 \Rightarrow x<1 \text { (decreasing) }
\end{aligned}
$$

As $x \rightarrow-\infty, f(x) \rightarrow 0^{-}$
From $-\infty$ to $0^{-}, f(x)$ is decreasing Further as $x \rightarrow 0^{+}, f(x) \rightarrow \infty$ and from 0^{+}to $1, f(x)$ is decreasing.
At $x=1$, we get local minima.
From 1 to $\infty, f(x)$ is increasing and as $x \rightarrow \infty, f(x) \rightarrow \infty$

Solution:
i) On replacing $y \rightarrow-y, x \rightarrow-x$ equation of curve doesn't change.
\Rightarrow Symmetric in all four quadrants. Plot the curve for first quadrant i.e $x>0, y>0$
ii) Value of function

$$
\begin{aligned}
& \text { Put } x=0 \Rightarrow y^{2 / 3}=a^{2 / 3} \Rightarrow y= \pm a \\
& \text { Put } y=0 \Rightarrow x^{2 / 3}=a^{2 / 3} \Rightarrow x= \pm a
\end{aligned}
$$

iii) For critical points, differentiate $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$

$$
\Rightarrow \frac{2}{3} x^{-\frac{1}{3}}+\frac{2}{3} y^{-\frac{1}{3}} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{y^{\frac{1}{3}}}{x^{\frac{1}{3}}}
$$

For first quadrant $x>0, y>0 ; \frac{d y}{d x}<0 \Rightarrow$ function is decreasing
iv) Shape of curve

$$
\frac{d y}{d x}=-\frac{y^{\frac{1}{3}}}{x^{\frac{1}{3}}} \Rightarrow x^{\frac{1}{3}} \frac{d y}{d x}=-y^{\frac{1}{3}}
$$

Differentiating w.r.t x
$x^{\frac{1}{3}} \frac{d^{2} y}{d x^{2}}+\frac{1}{3} x^{\frac{-2}{3}} \frac{d y}{d x}=-\frac{1}{3} y^{\frac{-2}{3}} \frac{d y}{d x} \Rightarrow x^{\frac{1}{3}} \frac{d^{2} y}{d x^{2}}=-\frac{1}{3}\left(x^{\frac{-2}{3}}+y^{\frac{-2}{3}}\right) \frac{d y}{d x}$
Substituting $\frac{d y}{d x}$ and rearranging terms, we get $\frac{d^{2} y}{d x^{2}}=\frac{1}{3} \frac{x^{2 / 3}+y^{2 / 3}}{x^{4 / 3} y^{1 / 3}}$
For first quadrant $x>0, y>0 ; \frac{d^{2} y}{d x^{2}}>0 \Rightarrow$ concave up

$$
x^{2 / 3}+y^{2 / 3}=a^{2 / 3}, x>0, y>0
$$

Since $f(x)$ symmetric in all four quadrants. So plot the curve for first quadrant only i.e $x>0, y>0$ and then take mirror image about $X-$ axis and Y - axis both.
$x=0 \Rightarrow y=a, x=a \Rightarrow y=0$,
Also the graph is decreasing and concave upwards from $x=0$ to $x=a$

We get the final graph after taking mirror image of drawn graph about X - axis and Y - axis both.

This shape is known as asteroid.

$$
x^{2 / 3}+y^{2 / 3}=a^{2 / 3}, x>0, y>0
$$

$$
\begin{aligned}
& x^{2 / 3}+y^{2 / 3}=a^{2 / 3} \\
& \text { Put } x=0 \Rightarrow y= \pm a \\
& \text { Put } y=0 \Rightarrow x= \pm a \\
& \frac{d y}{d x}=-\frac{y^{\frac{1}{3}}}{x^{\frac{1}{3}}} \\
& \text { For } x>0, y>0 \\
& \frac{d y}{d x}<0 \Rightarrow \text { function is decreasing } \\
& \frac{d^{2} y}{d x^{2}}>0 \Rightarrow \text { concave up }
\end{aligned}
$$

$$
x^{2 / 3}+y^{2 / 3}=a^{2 / 3}
$$

\because Symmetric in all four quadrants

$$
\begin{aligned}
& \text { Put } x=0 \Rightarrow y= \pm a \\
& \text { Put } y=0 \Rightarrow x= \pm a
\end{aligned}
$$

This shape is known as asteroid.

Illustration
Plot graph of v) $y=\frac{2 x+3}{x^{2}+4}$

Solution:

i) On replacing $y \rightarrow-y, x \rightarrow-x$ equation of curve changes.
\Rightarrow curve is not symmetric.
ii) Value of function

$$
x=0 \Rightarrow y=\frac{3}{4} \quad y=0 \Rightarrow x=-\frac{3}{2}
$$

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{2 x+3}{x^{2}+4}=\lim _{x \rightarrow-\infty} \frac{\frac{2}{x}+\frac{3}{x^{2}}}{1+\frac{4}{x^{2}}}=0
$$

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{2 x+3}{x^{2}+4}=\lim _{x \rightarrow \infty} \frac{\frac{2}{x}+\frac{3}{x^{2}}}{1+\frac{4}{x^{2}}}=0
$$

iii) Domain : $x \in \mathbb{R}\left(\because x^{2}+4>0\right)$
iv) For critical points, differentiate $y=\frac{2 x+3}{x^{2}+4}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2\left(x^{2}+4\right)-2 x(2 x+3)}{\left(x^{2}+4\right)^{2}}=-\frac{2(x+4)(x-1)}{\left(x^{2}+4\right)^{2}} \\
& \frac{d y}{d x}=0 \Rightarrow x=-4,1
\end{aligned}
$$

$$
\frac{d y}{d x}<0 \Rightarrow x \in(-\infty,-4) \cup(1, \infty)
$$

$$
\frac{d y}{d x}>0 \Rightarrow \underbrace{x \in(-4,1)}_{\text {function is increasing }}
$$

v) Value at critical points

Function is decreasing from $(-\infty,-4) \cup(1, \infty)$
\Rightarrow Local minima: $y(-4)=\frac{2(-4)+3}{(-4)^{2}+4}=-\frac{1}{4}$
Function is increasing from $(-4,1)$
\Rightarrow Local maxima: $y(1)=\frac{2(1)+3}{(1)^{2}+4}=1$

$x \rightarrow-\infty \Rightarrow f(x) \rightarrow 0^{-}$
From $\mathrm{x} \rightarrow-\infty$ to $x=-4, f(x)$ is decreasing and from $x=-4$ to $x=1, f(x)$ is increasing
At $x=-4$, we get local minima.

At $x=1$, we get local maxima.
From $x=1$ to $x \rightarrow \infty, f(x)$ is
decreasing and as $x \rightarrow \infty, f(x) \rightarrow$ 0^{+}
Clearly $x=-\frac{3}{2}$ is the roots of $f(x)$

$$
y=\frac{2 x+3}{x^{2}+4}
$$

$$
y=\frac{2 x+3}{x^{2}+4}
$$

$$
\frac{d y}{d x}=0 \Rightarrow x=-4,1
$$

$$
x=0 \Rightarrow y=\frac{3}{4}, y=0 \Rightarrow x=-\frac{3}{2}
$$

Local maxima : $x=1, y(1)=1$

$$
\lim _{x \rightarrow-\infty} f(x) \rightarrow 0^{-} ; \lim _{x \rightarrow \infty} f(x) \rightarrow 0^{+}
$$

Local minima : $x=-4, y(-4)=-\frac{1}{4}$

Summary Sheet

If on replacing $x \rightarrow-x$, equation of curve doesn't change \Rightarrow curve is symmetric about y-axis.
\square If on replacing $y \rightarrow-y$, equation of curve doesn't change \Rightarrow curve is symmetric about x-axis.
\square If on replacing $y \rightarrow-y \& x \rightarrow-x$, equation of curve doesn't change \Rightarrow curve is symmetric in all four quadrants.

If on interchanging $x \& y$, equation of curve doesn't change, then the curve is symmetric about $y=x$.

If $f(-x)=-f(x) \forall x$ in domain of ' f ', then f is said to be an odd function. The graph of an odd function is symmetric about the origin.

Summary Sheet

Steps to draw curve:

\square Check symmetry (if any).
\square Get idea about domain and range of function to be drawn.
\square Identify discontinuity (if any).
\square Get critical points \& increasing/decreasing intervals.
\square Estimate value of function at $x=0$ (Points of intersection with $Y-a x i s$), $\pm \infty$ (behavior of curve at extreme points) and at critical points.
\square Find roots (if any)

B BYJU'S Classes

Application of Derivatives
Asymptotes of a Function

Road Map

Asymptotes

Nature of roots of a real valued cubic polynomial

Curve tracing

Asymptotes

A straight line is called an asymptote to a curve , if distance between a point on the curve and this line approaches zero as the line tends to infinity (i.e., tangent at infinity)

(i) Horizontal asymptote :

Let the curve be $y=f(x)$
If $\lim _{x \rightarrow \infty} f(x) \rightarrow a$, or $\lim _{x \rightarrow-\infty} f(x) \rightarrow a$
then the line $y=a$, will be the horizontal asymptote.
Example: $f(x)=\tan ^{-1} x$
Domain: $x \in \mathbb{R}$
Range: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\lim _{x \rightarrow \infty} f(x) \rightarrow \frac{\pi}{2}
$$

$\lim _{x \rightarrow-\infty} f(x) \rightarrow-\frac{\pi}{2}$
(ii) Vertical asymptote :

Let the curve be $y=f(x)$.
If $\lim _{x \rightarrow a} f(x) \rightarrow \infty$ or $-\infty$, then the line $x=a$, will be the vertical asymptote.
Example: $y=\frac{1}{x}$
$\lim _{x \rightarrow 0^{-}} f(x) \rightarrow-\infty ; \lim _{x \rightarrow 0^{+}} f(x) \rightarrow \infty$
$\Rightarrow x=0$ i.e Y-axis is a vertical asymptote.

$$
\lim _{x \rightarrow \infty} f(x) \rightarrow 0 ; \lim _{x \rightarrow-\infty} f(x) \rightarrow 0
$$

$\Rightarrow y=0$ i.e $X-a x i s$ is a horizontal asymptote.
(both vertical \& horizontal asymptotes exist in this case)
(iii) Inclined / Oblique asymptote : (not parallel to any of axis $\& m \neq 0$)

Let $y=m x+c$ be an asymptote of the curve $y=f(x)$ such that as $x \rightarrow \infty$ or $x \rightarrow-\infty$ we get $y \rightarrow \infty$ or $y \rightarrow-\infty$.

Then if $m=\lim _{\substack{x \rightarrow \infty \rightarrow \infty \\ \text { or } x \rightarrow-\infty}}\left(\frac{f(x)}{x}\right)$ is a finite value, asymptote exists.
Here $m=\lim _{x \rightarrow \infty}\left(\frac{f(x)}{x}\right) \Rightarrow \lim _{x \rightarrow \infty} f^{\prime}(x)$ is slope of function at ∞ i.e slope of asymptote.
Now $c=y-m(x)$
$\Rightarrow c=\lim _{\substack{x \rightarrow \infty \\ \text { or } x \rightarrow-\infty}}(f(x)-m x)$

Illustration

Plot graph of i) $x^{2}-y^{2}=a^{2}$
Solution: $y=f(x)= \pm \sqrt{x^{2}-a^{2}}$
For an inclined asymptote :

$$
\begin{aligned}
& m=\lim _{\substack{x \rightarrow \infty \\
\text { or } x \rightarrow-\infty}}\left(\frac{ \pm \sqrt{x^{2}-a^{2}}}{x}\right)=\lim _{\substack{x \rightarrow \infty \\
\text { or } x \rightarrow-\infty}}\left(\pm \sqrt{\frac{x^{2}}{x^{2}}-\frac{a^{2}}{x^{2}}}\right)=\lim _{\substack{x \rightarrow \infty \\
\text { or } x \rightarrow-\infty}}\left(\pm \sqrt{1-\frac{a^{2}}{x^{2}}}\right)= \pm 1 \\
& c=\lim _{\substack{x \rightarrow \infty \\
\text { or } x \rightarrow-\infty}}(f(x)-m x) \\
& \Rightarrow c=\lim _{\substack{x \rightarrow \infty \\
x \rightarrow-\infty}}\left(\pm \sqrt{x^{2}-a^{2}}-x\right) \text { for } m=1 . \\
& \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-a^{2}}-x\right) \quad \lim _{x \rightarrow-\infty}\left(-\sqrt{x^{2}-a^{2}}-x\right)
\end{aligned}
$$

$c=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-a^{2}}-x\right)$
$\Rightarrow \lim _{x \rightarrow \infty} \frac{\left(x^{2}-a^{2}-x^{2}\right)}{\left(\sqrt{x^{2}-a^{2}}+x\right)} \Rightarrow \lim _{x \rightarrow \infty} \frac{-a^{2}}{\left(\sqrt{x^{2}-a^{2}}+x\right)}=0$
Similarly, $\lim _{x \rightarrow-\infty}\left(-\sqrt{x^{2}-a^{2}}-x\right)=0$
Also, for $m=-1, c=0$.
\therefore Inclined asymptote : $y= \pm x$

$$
(\because m= \pm 1 \text { and } c=0)
$$

Illustration
Plot graph of ii) $y=x+\frac{1}{x}$.
Solution: Domain : $x \in \mathbb{R}-\{0\}$
$\lim _{x \rightarrow-\infty} f(x) \rightarrow-\infty ; \lim _{x \rightarrow \infty} f(x) \rightarrow \infty ;$
$\lim _{x \rightarrow 0^{-}} f(x) \rightarrow-\infty ; \lim _{x \rightarrow 0^{+}} f(x) \rightarrow \infty ;$

$f^{\prime}(x)=1-\frac{1}{x^{2}}=0 \Rightarrow x= \pm 1$ are critical points.
\Rightarrow Function is decreasing for $x=(-1,1)$.
\Rightarrow Local maxima: $x=-1, y(-1)=-2$
\Rightarrow Local minima: $x=1, y(1)=2$
$f^{\prime}(x)=1-\frac{1}{x^{2}}$
$f^{\prime}(x)>0 \Rightarrow x<-1$ or $x>1$ (increasing)
$f^{\prime}(x)<0 \Rightarrow-1<x<1$ (decreasing)

Now for the shape of curve,

$$
f^{\prime \prime}(x)=\frac{2}{x^{3}}
$$

$f^{\prime \prime}(x)>0 \Rightarrow x>0$ (concave upwards)
$f^{\prime \prime}(x)<0 \Rightarrow x<0$ (concave downwards)

$$
y=x+\frac{1}{x}
$$

Asymptotes :

As $\lim _{x \rightarrow 0^{-}} f(x) \rightarrow-\infty \& \lim _{x \rightarrow 0^{+}} f(x) \rightarrow \infty$
$\Rightarrow x=0$ i.e $Y-$ axis is a vertical asymptote.
Now for an inclined asymptote : $y=m x+c$,

$$
m=\lim _{\substack{x \rightarrow \infty) \\ x \rightarrow-\infty}}\left(\frac{f(x)}{x}\right)=\lim _{\substack{x \rightarrow \infty \text { or } \\ x \rightarrow-\infty}}\left(1+\frac{1}{x^{2}}\right)=1
$$

$$
c=\lim _{\substack{x \rightarrow \infty \rightarrow 0 r \\ x \rightarrow-\infty}}(f(x)-m x)
$$

$$
c=\lim _{\substack{x \rightarrow \infty \rightarrow 0 \\ x \rightarrow-\infty}}\left(x+\frac{1}{x}-x\right)=0
$$

Inclined asymptote : $y=x$

Cubic polynomial equation $a x^{3}+b x^{2}+c x+d=0$ will have one real root or three real roots.

Consider $f(x)=a x^{3}+b x^{2}+c x+d$
Case (i) $f^{\prime}(x)=3 a x^{2}+2 b x+c$

$$
\text { If } D=4 b^{2}-12 a c<0
$$

Then , $f(x)$ is increasing $(a>0)$ or decreasing ($a<0$).
Thus, $f(x)$ has exactly one real root.

Nature of roots of a real valued cubic polynomial equation
Note:
For $f(x)=a x^{3}+b x^{2}+c x+d$,

- If $a>0$, as $x \rightarrow \infty ; f(x) \rightarrow \infty$
- If $a<0$, as $x \rightarrow \infty ; f(x) \rightarrow-\infty$

$f(x)$ has exactly one real root.

Illustration
Let a function $f(x)=x^{3}+2 x^{2}+3 x-11$, then $f(x)=0$, has :
a. three real roots
b. one real root between $(-1,0)$
c. One real root between $(1,2)$
d. one real root between (0,1)

Solution: $f(x)=x^{3}+2 x^{2}+3 x-11$
$f^{\prime}(x)=3 x^{2}+4 x+3>0 \forall x \in \mathbb{R}^{\left(\because D=4^{2}-4(3)(3)<0\right)}$
Thus, $f(x)$ is increasing.

$f(1)=1+2+3-11<0, f(2)=8+8+6-11>0$
So, by Intermediate value theorem, the root lies between (1,2).
Hence, option (c) is the correct answer.

Nature of roots of a real valued cubic polynomial equation

Case (ii) Let $f(x)=a x^{3}+b x^{2}+c x+d$
$f^{\prime}(x)=3 a x^{2}+2 b x+c=0, x=\alpha, \beta$ are the roots of $f^{\prime}(x)$
$>$ If $f(\alpha) \cdot f(\beta)>0$
$\Rightarrow f(x)=0$ has exactly one real root

Note: If $a>0$, first maxima and then minima occurs.

Nature of roots of a real valued cubic polynomial

Example: $f(x)=x^{3}-3 x+5$

$$
\begin{aligned}
& f^{\prime}(x)=3\left(x^{2}-1\right)=0 \Rightarrow x= \pm 1 \\
& f(-1)=7>0, f(1)=3>0
\end{aligned}
$$

Thus, $f(x)=0$, has one real root.

Case (iii) Let $f(x)=a x^{3}+b x^{2}+c x+d$
$f^{\prime}(x)=3 a x^{2}+2 b x+c=0, x=\alpha, \beta$ are the roots of $f^{\prime}(x)$
$>$ If $f(\alpha) \cdot f(\beta)<0$
$\Rightarrow f(x)=0$ has three real and distinct roots.

Nature of roots of a real valued cubic polynomial

Example: $f(x)=x^{3}-3 x^{2}-9 x+1$

$$
\begin{aligned}
& f^{\prime}(x)=3\left(x^{2}-2 x-3\right)=0 \\
& \Rightarrow x=-1,3
\end{aligned}
$$

$$
f(-1)=6>0, f(3)=-26<0
$$

Thus, $f(x)=0$, has three real and distinct roots.

Case (iv) Let $f(x)=a x^{3}+b x^{2}+c x+d$
$f^{\prime}(x)=3 a x^{2}+2 b x+c=0, x=\alpha, \beta$ are the roots of $f^{\prime}(x)$
$>$ If $f(\alpha) \cdot f(\beta)=0$ but $f^{\prime \prime}(\alpha), f^{\prime \prime}(\beta) \neq 0$

$\Rightarrow f(x)=0$ has three real roots of which two are equal.

Nature of roots of a real valued cubic polynomial

Example: $f(x)=x^{3}+3 x^{2}$

$$
\begin{aligned}
& f^{\prime}(x)=3\left(x^{2}+2 x\right)=0 \Rightarrow x=0,-2 \\
& f(0)=0 f(-2)=4>0 \\
& f^{\prime \prime}(x)=6(x+1), f^{\prime \prime}(0)=6 \neq 0, f^{\prime \prime}(-2)=-6 \neq 0
\end{aligned}
$$

Thus, $f(x)=0$, has one repeated root $x=0$.
Case (v) Let $f(x)=a x^{3}+b x^{2}+c x+d$
$f^{\prime}(x)=3 a x^{2}+2 b x+c=0$, has equal roots $(x=\alpha)$
$>$ If $f(\alpha)=0=f^{\prime}(\alpha)=f^{\prime \prime}(\alpha)$
$\Rightarrow f(x)=0$ has three equal roots.

Nature of roots of a real valued cubic polynomial
Example: $f(x)=x^{3}$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \Rightarrow f^{\prime}(0)=0 \\
& f^{\prime \prime}(x)=6 x \Rightarrow f^{\prime \prime}(0)=0 \\
& f(0)=0=f^{\prime}(0)=f^{\prime \prime}(0)
\end{aligned}
$$

Thus, $f(x)=0$, has three equal roots at $x=0$.

\square A straight line is called asymptote to a curve, if distance of a point on the curve to this line approaches zero as the point tends to infinity.
\square Let cubic polynomial equation be $a x^{3}+b x^{2}+c x+d=0$

$$
\text { Let } f(x)=a x^{3}+b x^{2}+c x+d
$$

case (i) $f^{\prime}(x)=3 a x^{2}+2 b x+c>0$ or <0

$$
\text { If } D=4 b^{2}-12 a c<0
$$

Then , $f(x)$ is increasing ($\mathrm{a}>0$) or decreasing ($\mathrm{a}<0$).
Thus, $f(x)$ has exactly one real root.
case (ii) $f^{\prime}(x)=3 a x^{2}+2 b x+c=0, x=\alpha, \beta$ are the roots of $f^{\prime}(x)$

$$
f(\alpha) \cdot f(\beta)>0 \Rightarrow f(x)=0 \text { has exactly one real root }
$$

Summary Sheet

case (iii) $f^{\prime}(x)=3 a x^{2}+2 b x+c=0, x=\alpha, \beta$ are the roots of $f^{\prime}(x)$ $f(\alpha) \cdot f(\beta)<0 \Rightarrow f(x)=0$ has three real and distinct roots.
case (iv) $f^{\prime}(x)=3 a x^{2}+2 b x+c=0, x=\alpha, \beta$ are the roots of $f^{\prime}(x)$

$$
f(\alpha) \cdot f(\beta)=0 \text { but } f^{\prime \prime}(\alpha), f^{\prime \prime}(\beta) \neq 0
$$

$\Rightarrow f(x)=0$ has three real roots of which two are equal.
case v) $f^{\prime}(x)=3 a x^{2}+2 b x+c=0$, has equal roots $(x=\alpha)$

$$
f(\alpha) \cdot f(\beta)>0 f(\alpha)=0=f^{\prime}(\alpha)=f^{\prime \prime}(\alpha)
$$

$\Rightarrow f(x)=0$ has three equal roots.

B BYJU'S Classes

Application of Derivatives
Miscellaneous Questions

Road Map

Monotonicity，Maxima and Minima

Rolle＇s Theorem and L．M．V．T

Tangents and Normal

Given, $\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2}$
Differentiating w.r.t x, we get
$2\left(y-x^{5}\right) \times\left(y^{\prime}-5 x^{4}\right)=x \times 2 \times\left(1+x^{2}\right) \times 2 x+\left(1+x^{2}\right)^{2}$
Substituting $x=1, y=3$ in the above equation
$2 \times\left(3-1^{5}\right) \times\left(y^{\prime}-5 \times 1^{5}\right)=2 \times 2 \times\left(1+1^{2}\right)+4$
$\Rightarrow 4\left(y^{\prime}-5\right)=12 \Rightarrow y^{\prime}=8$
\Rightarrow Slope of tangent at the point $(1,3)$ is 8

Illustration
Find the range of values of p for which the equation $p x=\ln x$, has exactly one solution.

$$
\text { a. }(-\infty, \infty) \quad\left\lfloor\text { b. } (- \infty , 0) \quad \left\lfloor\text { c. } (- \infty , 0] \cup \{ \frac { 1 } { e } \} \quad \left\lfloor\text { d. }\left(0, \frac{1}{e}\right)\right.\right.\right.
$$

Solution:
Given equation, $p x=\ln x$
Let $f(x)=p x$ and $g(x)=\ln x$
Case 1 : When graphs of $f(x)$ and $g(x)$ intersect at exactly one point

From the figure we can see that for all the non-positive
 slope of the line $\mathrm{y}=p x$, graph of the $f(x)$ and $g(x)$ intersects at exactly one point
$\therefore p x=\ln x$ will have exactly one solution ,for all $p \leq 0$

Case 2 : When graph of $f(x)$ and $g(x)$ touch each other Let $f(x)$ touches $g(x)$ at the point $P\left(x_{1}, y_{1}\right)$ as shown in the figure
$P\left(x_{1}, y_{1}\right)$ lies on the line $y=p x \Rightarrow y_{1}=p x_{1} \ldots(i)$
$P\left(x_{1}, y_{1}\right)$ lies on the curve $y=\ln x \Rightarrow y_{1}=\ln x_{1} \ldots$ (ii)
From (i) and (ii)

$$
p x_{1}=\ln x_{1} \cdots(i i i)
$$

Slope of tangent at the point $P\left(x_{1}, y_{1}\right)$ to the curve $y=\ln x$,

$$
m=\left(\frac{d y}{d x}\right)_{\left(x_{1}, y_{1}\right)}=\left(\frac{1}{x}\right)_{\left(x_{1}, y_{1}\right)}=\frac{1}{x_{1}}
$$

This slope m is equal to the slope of the line $y=p x$

$$
\begin{aligned}
& \Rightarrow p=m \\
& \Rightarrow p=\frac{1}{x_{1}} \Rightarrow p x_{1}=1 \\
& \Rightarrow \ln x_{1}=1 \quad(\text { From (iii)) } \\
& \Rightarrow x_{1}=e
\end{aligned}
$$

Substituting $x_{1}=e$ in the equation (i),

$$
p e=1 \Rightarrow p=\frac{1}{e}
$$

Combining the results of case 1 and case 2,
$p \in(-\infty, 0] \mathrm{U}\left\{\frac{1}{e}\right\}$
So, option (b) is the correct answer.

Rolle's Theorem (Recap)

Let f. be a real - valued function defined on the closed interval $[a, b]$ such that
(i) $f(x)$ is continuous in the interval $[a, b]$
(ii) $f(x)$ is differentiable in the interval (a, b)
(iii) $f(a)=f(b)$

Then there exists at least one $c \in(a, b)$, such that $f^{\prime}(c)=0$
Lagrange's Mean Value Theorem (L.M.V.T) (Recap)
Let f be a real - valued function defined on the closed interval $[a, b]$ such that
(i) $f(x)$ is continuous in the interval $[a, b]$
(ii) $f(x)$ is differentiable in the interval (a, b)
then , there exists at least one $c \in(a, b)$, such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
$a \cdot f^{\prime \prime}(x)=2, \forall x \in \mathbb{R}$

$$
\text { b. } f^{\prime}(x)=5=f^{\prime \prime}(x), \text { for some } x \in(1,3)
$$

c. There exists at least one $x \in(1,3)$ such that $f^{\prime \prime}(x)=2$
$d \cdot f^{\prime \prime}(x)=3, \forall x \in(2,3)$
Solution:
Given, f is twice differentiable function.
Let $g(x)=f(x)-x^{2}$
As $f(x)$ is twice differentiable function and x^{2} is a polynomial function. So, $\mathrm{g}(x)$ will be continuous and differentiable everywhere.
$g(1)=f(1)-1^{2}=1-1=0$
$g(2)=f(2)-2^{2}=4-4=0$ And $g(3)=f(3)-3^{2}=9-9=0$
Thus, by Rolle's theorem
$g^{\prime}\left(c_{1}\right)=0$, for some $c_{1} \in(1,2)$
Similarly,$g(2)=g(3)=0$
Thus, by Rolle's theorem
$g^{\prime}\left(c_{2}\right)=0$, for some $c_{2} \in(2,3)$
So , $g^{\prime}\left(c_{1}\right)=g^{\prime}\left(c_{2}\right)=0$
As $g(x)$ is twice differentiable, $g^{\prime}(x)$ is continuous and differentiable in the interval $\left(c_{1}, c_{2}\right)$.

Thus, by Rolle's theorem
$g^{\prime \prime}(c)=0$, for some $c \in\left(c_{1}, c_{2}\right)$
As $c_{1} \in(1,2)$ and $c_{2} \in(2,3) \Rightarrow c \in(1,3)$
$\Rightarrow f^{\prime \prime}(c)-2=0$, for some $c \in(1,3)\left(\because g(x)=f(x)-x^{2}\right)$
Now replacing c with x,

$$
f^{\prime \prime}(x)=2, \text { for some } x \in(1,3)
$$

So, option (c) is the correct answer.

If $f(x)$ is twice differentiable function such that $f(a)=0, f(b)=2$, $f(c)=-1, f(d)=2, f(e)=0$, where $a<b<c<d<e$, then the minimum number of zeros of $g(x)=\left(f^{\prime}(x)\right)^{2}+f^{\prime \prime}(x) . f(x)$ in the interval $[a, e]$ is

Solution:

Given, $f(b)=2$ and $f(c)=-1$
Here, sign of $f(x)$ changes.
So at least one zeros of $f(x)$ must lie between b and c.

Similarly, at least one zeros of $f(x)$ must lie between c and d as shown in the figure.

Hence, minimum number of zeros of $f(x)$ is 4 .

If $f(a)=f(b)=0$ where $f(x)$ is continuous and differentiable, then there will exist atleast one c for which $f^{\prime}(c)=0$. (Rolle's theorem) Hence minimum number of zeros of $f^{\prime}(x)$ is 3
$g(x)=\left(f^{\prime}(x)\right)^{2}+f^{\prime \prime}(x) \cdot f(x)$. We can see that $g(x)$ is derivative of $f(x) \cdot f^{\prime}(x)$
Let $h(x)=f(x) \cdot f^{\prime}(x) \rightarrow 7$ zeros ($\because f(x)$ has 4 zeros and $f^{\prime}(x)$ has 3 zeros)
$h^{\prime}(x)=\left(f^{\prime}(x)\right)^{2}+f^{\prime \prime}(x) \cdot f(x)$
$h^{\prime}(x)=g(x)$
$\because h(x)$ has 7 zeros \Rightarrow Minimum Number of zeros of $h^{\prime}(x)$ is 6 \Rightarrow Minimum Number of zeros of $g(x)$ is 6

Let the function $f:[-7,0] \rightarrow \mathbb{R}$, be continuous on $[-7,0]$ and differentiable on $(-7,0)$. If $f(-7)=-3$ and $f^{\prime}(x) \leq 2$, for all $x \in(-7,0)$, then for all such functions $f, f(-1)+f(0)$ lies in the interval :

$$
\text { a. }(-\infty, 20] \quad \text { b. }[-3,11] \quad \text { c. }(-\infty, 11] \quad \text { d. }[-6,20]
$$

Solution:
Given, the function $f:[-7,0] \rightarrow \mathbb{R}$ is continuous on $[-7,0]$ and differentiable on (-7,0).

Hence, L.M.V.T. can be applied to the function $f(x)$ in the interval $(-7,-1)$
$f^{\prime}(c)=\frac{f(-1)-f(-7)}{-1-(-7)} \cdots(i)$, where $c \in(-7,-1)$
(By L.M.V.T.)

Also given, $f^{\prime}(x) \leq 2 \cdots(i i)$

From (i) and (ii)
$\frac{f(-1)-f(-7)}{-1-(-7)} \leq 2$
$\Rightarrow \frac{f(-1)+3}{6} \leq 2 \Rightarrow f(-1) \leq 9 \cdots$ (iii)
L.M.V.T. can also be applied to the function $f(x)$ in the interval $(-7,0)$
$\Rightarrow f^{\prime}(d)=\frac{f(0)-f(-7)}{0-(-7)}$ where $d \in(-7,0)$
(By L.M.V.T.)
$\Rightarrow \frac{f(0)+3}{7} \leq 2 \Rightarrow f(0) \leq 11 \cdots$ (iv)
Adding (iii) and (iv),
$f(-1)+f(0) \leq 20$
So, option (a) is the correct answer.

If the function $f:[0,4] \rightarrow \mathbb{R}$ is differentiable , then show that for $(a, b) \in[0,4] ;(f(4))^{2}-(f(0))^{2}=8 f^{\prime}(a) f(b)$
Solution:
Given, the function $f:[0,4] \rightarrow \mathbb{R}$ is differentiable
Hence, L.M.V.T. can be applied to the function $f(x)$
Applying L.M.V.T. to $f(x)$ in the interval $(0,4)$
$f^{\prime}(a)=\frac{f(4)-f(0)}{4-0}$, for some $a \in(0,4) . .(i)$
Also, by Intermediate value theorem,

$$
f(b)=\frac{f(4)+f(0)}{2} \text {, for some } b \in(0,4) . .(i i)
$$

Multiplying (i) and (ii)

$$
\begin{aligned}
& f^{\prime}(a) f(b)=\left(\frac{f(4)-f(0)}{4}\right)\left(\frac{f(4)+f(0)}{2}\right) \\
& \Rightarrow 8 f^{\prime}(a) f(b)=(f(4)-f(0))(f(4)+f(0))
\end{aligned}
$$

$$
\Rightarrow(f(4))^{2}-(f(0))^{2}=8 f^{\prime}(a) f(b)
$$

Let $f:(1,3) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x[x]}{1+x^{2}}$, where $[x]$ denotes the greatest integer $\leq x$. Then the range of f :
a. $\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right]$
c. $\left(\frac{2}{5}, \frac{3}{5}\right)$
d. $\left(\frac{2}{5}, \frac{3}{5}\right) \cup\left(\frac{3}{4}, \frac{4}{5}\right)$
b. $\left(\frac{2}{5}, \frac{4}{5}\right]$

Solution:
Given, $f(x)=\frac{x[x]}{1+x^{2}}$
$\Rightarrow f(x)= \begin{cases}\frac{x}{1+x^{2}}, & x \in(1,2) \\ \frac{2 x}{1+x^{2}}, & x \in[2,3)\end{cases}$

Differentiating w.r.t. x,

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
\frac{1+x^{2}-x(2 x)}{\left(1+x^{2}\right)^{2}}, x \in(1,2) \\
2 \cdot \frac{1+x^{2}-x(2 x)}{\left(1+x^{2}\right)^{2}}, x \in[2,3)
\end{array} \quad, x \in(1,2)\right.
$$

In the interval $x \in(1,3), \frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}<0$
And In the interval $x \in(2,3), \frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}<0$
$\therefore f(x)$ is decreasing in $(1,3)$

$$
1<x<2 \Rightarrow f(1)>f(x)>f(2)
$$

$\Rightarrow \frac{1}{1+1^{2}}>f(x)>\frac{2}{1+2^{2}}$
$\Rightarrow \frac{1}{2}>f(x)>\frac{2}{5} \ldots(i)$
Also, $3>x \geq 2 \Rightarrow f(3)<f(x) \leq f(2) \quad(\because f$ is decreasing function)

$$
\Rightarrow \frac{2 \times 3}{1+3^{2}}<f(x) \leq \frac{2 \times 2}{1+2^{2}}
$$

$$
\Rightarrow \frac{3}{5}<f(x) \leq \frac{4}{5} \ldots(i i)
$$

From (i) and (ii), we get,

$$
\text { Range of } \left.f(x) \in\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right] \right\rvert\, \text { So, option }(a) \text { is the correct answer. }
$$

Maxima and Minima (Recap)

First Derivative Test

Let $f(x)$ be a continuous function
Step 1: $x=c$ is the critical point $\left(f^{\prime}(c)=0\right.$ or not defined)
Step 2: Observe sign change of $f^{\prime}(x)$ about $x=c$.
(i) If sign of $f^{\prime}(x)$ changes sign from negative to positive as x crosses c from left to right, then $x=c$ is a point of local minima.
(ii) If sign of $f^{\prime}(x)$ changes sign from positive to negative as x crosses c from left to right , then $x=c$ is a point of local maxima. $f(x)=\ln g(x), \forall x \in \mathbb{R}$, then the number of points in \mathbb{R} at which g has a local maximum is

Solution: Given $f(x)=\ln g(x)$
Differentiating w.r.t. x

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{g(x)} \cdot g^{\prime}(x) \\
& \Rightarrow g^{\prime}(x)=f^{\prime}(x) \cdot g(x) \\
& \Rightarrow g^{\prime}(x)=2010(x-2009)(x-2010)^{2}(x-2011)^{3}(x-2012)^{4} \cdot g(x)
\end{aligned}
$$

Here, critical points are: 2009 2010, 2011, 2012
Sign changes of $g^{\prime}(x)$ can be shown on the number line

$g^{\prime}(x)$ changes its sign from positive to negative only at $x=2009$
Maxima occurs at $x=2009$

Number of points at which g has a local maxima $=1$

Let $p(x)$ be the polynomial of degree 4 having extremum at $x=1,2$ and $\lim _{x \rightarrow 0}\left(1+\frac{p(x)}{x^{2}}\right)=2$. Then the value of $p(2)$ is
Solution: Let $p(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$
Given, $\lim _{x \rightarrow 0}\left(1+\frac{p(x)}{x^{2}}\right)=2$
$\Rightarrow \lim _{x \rightarrow 0}\left(1+\frac{a x^{4}+b x^{3}+c x^{2}+d x+e}{x^{2}}\right)=2$
$\Rightarrow \lim _{x \rightarrow 0}\left(1+a x^{2}+b x+c+\frac{d}{x}+\frac{e}{x^{2}}\right)=2$
As limit exists finitely,
$d=0, \mathrm{e}=0, \mathrm{c}+1=2 \Rightarrow c=1$
(For finite value in R. H. S.)
$\Rightarrow p(x)=a x^{4}+b x^{3}+x^{2}$

Differentiating w.r.t to x

$$
p^{\prime}(x)=4 a x^{3}+3 b x^{2}+2 x
$$

Given, $p(x)$ has extremum at $x=1,2$

$$
\begin{aligned}
& \Rightarrow p^{\prime}(1)=p^{\prime}(2)=0 \\
& \Rightarrow 4 a+3 b+2=0 \cdots(i)
\end{aligned}
$$

and $32 a+12 b+4=0 \cdots(i i)$
On solving (i) and (ii) simultaneously, we get, $a=\frac{1}{4}, b=-1$
Thus, $p(x)=\left(\frac{1}{4}\right) x^{4}-x^{3}+x^{2}$
$\Rightarrow p(2)=\left(\frac{1}{4}\right) 16-8+4=0$
$\Rightarrow p(2)=0$

Summary Sheet

- Rolle's Theorem

Let f be a real - valued function defined on the closed interval $[a, b]$ such that
(i) $f(x)$ is continuous in the interval [a, b]
(ii) $f(x)$ is differentiable in the interval (a, b)
(iii) $f(a)=f(b)$

Then there exists at least one $c \in(a, b)$, such that $f^{\prime}(c)=0$

- Lagrange's Mean Value Theorem (L.M.V.T)

Let f be a real - valued function defined on the closed interval $[a, b]$ such that
(i) $f(x)$ is continuous in the interval $[a, b]$
(ii) $f(x)$ is differentiable in the interval (a, b)

Then , there exists at least one $c \in(a, b)$, such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Let $f(x)$ be a continuous function such that $x=c$ is the critical point ($f^{\prime}(c)=0$ or not defined), then observe sign change of $f^{\prime}(x)$ about $x=c$.
(i) If sign of $f^{\prime}(x)$ changes sign from negative to positive as x crosses c from left to right, then $x=c$ is a point of local minima.
(ii) If sign of $f^{\prime}(x)$ changes sign from positive to negative as x crosses c from left to right , then $x=c$ is a point of local maxima.

