
What you already know

•	 Reflection by plane and spherical mirrors

•	 Refraction through spherical surfaces 
and prism

•	 Charge and its origin

•	 Measurement of charge

•	 Properties of charge

•	 Methods of charging a body

What you will learn

•	 Charge is an intrinsic property of matter.

•	 A charged body exerts a force on other charged bodies near it.

•	 There are two types of forces: attraction and repulsion.

•	 There are two types of charges: positive and negative.

•	 SI unit of charge: Coulomb

•	 Standard symbol: C 

•	 Charge of an electron, e– = –1e = –1.6 × 10–19 C 

•	 Charge of a proton, p+ = +1e = 1.6 × 10–19 C

Opposite charges attract one another, while similar charges repel.

Attraction Repulsion
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When we rub a glass rod with a cloth, the glass rod gets a positive charge. However, if we 
rub a plastic rod with the cloth, the plastic rod acquires a negative charge.

Charge
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Origin of Charge

Atoms are the basic building blocks of matter. We know 
that the atom consists of three subatomic particles: 
electrons, protons, and neutrons. The protons and 
neutrons are present in the nucleus of an atom, while the 
electrons revolve around the nucleus in a defined path. 
The electrons and protons are negatively charged and 
positively charged, respectively. However, the neutrons 
have no charge, and they are neutral.

Atoms

Electrons

Protons

Neutrons

Electrons 
Electrons have the smallest unit of negative charge in them. They are represented by e–.

Protons
Protons have the smallest unit of positive charge in them. They are represented by p+.

Properties of Charge

(i)	 Quantisation of charge

(ii) Charge is additive in nature (Measuring charge)

For measuring the charge, let us consider the following two objects:

In the first object, there are three protons and five 
electrons as shown in the figure.
We have,

np = 3
ne = 5
Net charge, q = Charge of protons + Charge of electrons

q = np(+e) + ne(–e)

q = 3e + (–5e)

q = –2e 

Here, np and ne are the number of protons and number of 

electrons, respectively. Also, (+e) and (–e) are the charges 
of a proton and an electron, respectively.

•	 The charge on one e– is  –1.6 × 10–19 C. It is the 
smallest charge that can exist independently.

•	 The charge on e– is also known as the elementary 
charge or fundamental charge.

•	 Charge on any object is an integral multiple of the 
fundamental charge, i.e., charge of an electron. A 
body cannot have a charge in fractions. 

      q = ±ne
P e

q

Electrons

Object 1

Protons

1e–, 2e–, 3e–... 1p+, 2p+, 3p+...

BOARDS
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(A) 5 × 10–16  (C) 10 × 10–16  (B) 10 × 1016 (D) 5 × 1016  

We have,

np = 3
ne = 1
Net charge, q = Charge of protons + Charge of electrons

q = np(+e) + ne(–e)

q = 3e + (–e) 

q = +2e 

In general, the net charge of a body is given by,

qnet = (np – ne)e
Or,  qnet = (np – ne)1.6 × 10–19 C
This shows that charge is additive in nature.

In the second object, there are three protons and one electron as shown in the figure.

Object 2

Negatively
charged body

Positively
charged body

Neutral body

•	 In general, atoms are electrically neutral, i.e., atoms contain equal numbers of protons 
and electrons. On the other hand, if an atom has an unequal number of protons and 
electrons, then the atom is known as electrically charged. 

•	 Objects with an excess of electrons are known as negatively charged objects. Those 
with a deficiency of electrons are known as positively charged objects.

+
+ +

+
+ +

+ +
+

+ +

+ +

– – –– – –

– –
– – –

– –

A body acquires a charge of 8 mC after it was struck by lightning during a thunderstorm. What 
is the difference between the number of protons and electrons on the body?

Solution

Given,
Net charge on the body, qnet = 8 mC = 8 × 10–3 C
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Thus, option (D) is the correct answer.
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Also, the net charge on the body is given by,

qnet = (np – ne)e
qnet = (n)e
Where,

n = Difference between number of protons and electrons

(iii) Conservation of charge

A charge can neither be created nor destroyed but can only be transferred from one body to 
another.

Consider two bodies with some charges which are isolated and separated from each other.

From the figure, we can observe that the charge on the first body is given by,

q1 = –2e
The charge on the second body is given by,

q2 = +2e 

Initially, the net charge of the system is given by,

qnet = q1 + q2 = –2e + 2e = 0
When the objects are made to interact (touch each other), then the electrons from the first body 
move to the second body.

Isolated system
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Interactive system Isolated system

(iv) Charge is always associated with mass; Charge cannot exist without mass

Some similarities between charge and mass:

Therefore, the net charge of the system is given by,

q’net = (3e – 3e) + (3e – 3e) = 0

1.	 Both are intrinsic properties of matter, i.e., without mass, 
a charge cannot exist. However, mass can exist without a 
charge.

2.	 Both of them exerts force on other bodies/chagres.

3.	 Both of them are scalar quantities

Matter Charge Mass

Differences between charge and mass

MassCharge

They always attract.

Masses are always positive.
Charges are of two kinds: positive and 
negative.

Mass can vary when the velocity is very very 
high (comparable to the velocity of light).

Charge does not vary with velocity. It is 
relativistically invariant.

They can attract and repel each other.

Charge is always conserved. Mass can be converted into energy.

Mass can exist with zero net charge.Charge cannot exist without mass.
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Dimension of Electric Charge

We know that the electric current is the amount of charge flowing per unit time.

Methods of Charging a Body

Suppose that there are two substances with different charge affinity. For example, let us take a silk 
cloth and a glass object. We know that the silk cloth has a good affinity towards negative charge, 
and the glass does not. It means that the silk cloth can attract more and more negative charges, 
whereas the glass objects lose their electrons very easily.

In this case, let us consider two objects, one is a positively charged object, and the other is a 
neutral object. These objects are placed very close to each other but not in contact. Let us assume 
that a glass rod is positively charged. When the glass rod is brought near the neutral object, due to 
electrostatic attraction and repulsion from the neutral object, the glass rod attracts all the negative 
charge towards itself and pushes all the positive charges in the opposite direction as shown in the 
figure on the next page.

Therefore, when we rub the silk cloth with the glass, the silk cloth attracts the negative charge from 
the glass and becomes negatively charged. At the same time, by losing the negative charges, the 
glass becomes positively charged. 

BOARDS

Charging by friction (Valid for insulators)

Charging by induction

+
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+ +
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Silk (High affinity to negative charge)
Negatively charged Positively charged

Glass (Low affinity to negative charge)
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Due to this separation of the charges, the polarisation 
of the charges takes place. After this, the positive side 
is connected to the ground. The ground is the infinite 
source, i.e., it can take or give any amount of charge. 
So, the positive charges of the body are neutralised 
by the negative charges. On removing the ground and 
the source (glass rod), the body now only contains 
excess negative charges that spread on the object and 
become negatively charged.

Unlike charging by induction, the charged source is 
brought in contact to the neutral object. When the source 
is brought in contact with the neutral object, it attracts all 
the opposite charges and takes away the charges from 
the body. Due to this, when the source is taken away, it 
makes the object deficient in the charge opposite to that 
of the source. Now, the object gets charged in the same 
charge as that of the source. This method of charging is 
known as charging by conduction.
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Positively charged 
source

Induced negative charge.
Body's charge is opposite to 
that of source.

Neutral body
(conducting)

––

– –
–

Neutral body

In contact

Ground
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Positively charged 
source

By this method, we can charge a body in the opposite nature to that of the source.

+
+

+
+

+
Positively charged 

source

Charging by conduction

++
+
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(A) Charging by induction

(C) Charging by friction (D) None of the above

(B) Charging by conduction

Which of the following methods of charging a body can lead to a charge of +2.4 × 10–19 C on 
a body?

The net charge on a body is given by,

Since the value of n cannot be a decimal or fraction, the transfer of charge is not possible.

Solution

Thus, option (D) is the correct answer.
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What you already know What you will learn

•	 Charge and its origin

•	 Properties of charge

•	 Method of charging a body

•	� Coulomb’s torsion balance

•	� Coulomb’s law

•	� Vector form of Coulomb’s law

Charles-Augustin de Coulomb invented an instrument known as the Coulomb’s torsion balance. 
Using this instrument, he measured the charge on a body. 

Concept

•  The torsion balance experiment helps to measure small forces. 

•  �It is based on the principle that a wire or thread resists twisting with a force that is proportional 
to the stress applied on it. 

•  Torsion balances are used to measure small electric, magnetic, and gravitational forces.

Coulomb’s Torsion Balance and Coulomb’s Law

Methodology

Torsion balance consists of a cylindrical glass case. A glass 
tube is attached to it and the tube ends with a piece of 
metal. A torsion fibre (metal or thread) runs through this 
metal that ends with a metal rod at one end and a sphere 
at the other. The ends of the metal rod are connected with 
two spheres. It can swing freely due to its suspended state 
by the torsional string . A scale encircling the glass case is 
shown in the figure. Another fixed sphere is present in the 
glass case.

Procedure and working

The fixed sphere  and the spheres connected with a straight 
rod, which can swing, are given the same nature of charge. 
Thus, they repel each other and start to rotate. On rotating, 
the torsional string gets twisted and the twisting shows 
reading on the force scale. Hence, we can measure the 
force exerted by one charged sphere on another charged 
sphere.

Torsion 
head

Torsion 
fibre

Cylindrical 
glass case

Glass 
tube

Lid

Scale

Force scale

Fixed

Movable

N
O

TE
S

ELECTROSTATICS

P H Y S I C S

COULOMB’S LAW

© 2020, BYJU'S. All rights reserved



Experimentally, let two charges be placed at distance D from each other. Let the charges be q1 
and q2 and the force exerted by them be F. Now, on changing the magnitude of charges q1 and q2 
or on changing the distance between the charges, we observe some changes. The changes are 
summarised in the following table:

From the table, we can observe that the magnitude of force acting on the charge is proportional 
to the magnitude of product of charges q1 and q2. Also, the force is inversely proportional to the 
square of the distance between the charges.

If two point charges are present at distance r from each other, then by Coulomb’s law, the force is 
given by, 

q qF
r

q qF K
r

∝

⇒ =

1 2
2

1 2
2

Where,

K = 9 × 109 Nm2C –2

It is the proportionality constant.

We know that if the first charge applies an attractive force 
on the second charge, i.e., 21F



, then the second charge 
applies an attractive force on the first charge, i.e., 12F



. 
Where, 12F



 and 21F


 are equal in magnitude but opposite 
in direction.

An experiment is done in which there are 
two charged bodies. One is fixed and the 
other is brought near it. A graph of F vs r is 
shown. 

If the charges are separated by a distance 
of 4r, then the force is F. When we bring 
the charge from 4r to 2r, then by applying 
Coulomb’s law, the force is 4F. Similarly, 
when the charge is brought to a distance of 
0.5r, then the force increases to 64F.

D

4r

4r

4r

2r

q1

–1

–2

–2

–1

q2

4

4

2

4

Force

F

2F

F

4F

Relation

 F ∝ q1

 F ∝ q2

 F ∝ q1 q2

 F ∝ 1
D2

 12F


 21F


12 21F F=
 

1 2

1 2

F
64F

16F

4F

F
O 0.5r r r2r 4r
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Let us consider that two charges of opposite nature are 
placed somewhere in space. The position vector of the 
first charge is 1r



. The position vector of the second charge 
is 2r . According to Coulomb’s law, the forces act along the 
direction of line joining the two charges. Since we have 
taken the charges of the opposite nature, there must be 
an attractive force acting between them.

There is a force on the first charge due to the second 
charge, i.e., 12F



. Similarly, there is a force on the second 
charge due to the first charge, i.e., 21F



. The displacement 

vector between the two charges is 21r . Let the distance 
between the two charges be r .

By applying Coulomb’s law, we get the following:

( )

Also, the displacement vector is given by,

Therefore, force acting on the first charge due

to the second charge is given by,

The direction vector is give

.....
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n by,

By substituting in equation we get,

Also, the force on the second charge due

to the first charge is given by,

,

.....
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( )Comparing this with equation we get,,
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( )

Also, the displacement vector is given by,

Therefore, force acting on the first charge due

to the second charge is given by,

The direction vector is give
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By substituting in equation we get,

Also, the force on the second charge due

to the first charge is given by,

,
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( )Comparing this with equation we get,,

r

ii

F F= −


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213

21 12

Thus, Coulomb’s law agrees with Newton’s 
third law of motion.

Coulomb’s Law in Vector Form

O

1 2
21r
r

1r


2r

y

x
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Solution

In the first case, the force due to the charges is given by,

( )

Now, of charge is transferred to charge .

Th

F

e charge becomes =

The charge becomes =

By applying Coulomb's law, the new force is given by,

.....

%

'

'

q q KQF K i
r r

A B

Q QA Q

Q QB Q

K Q Q
F

r

KQF
r

= = −

+ − = +

− + = −

  −  
  =

⇒ = −

2
1 2

2 2

2

2

2

25

3
4 4

3
4 4

3 3
4 4

9
16

( )rom equation , we get,

'

i

FF⇒ =
9

16
Thus, option (D) is the correct answer.

(A) 
16F

9

(A) 
2

2
r 

 
 

(B) 
4F
3

(B) 1
32

r

(C) F

(C) 
2

3
r

(D) 
9F
16

(D) 
2
3
r

Two point charges A and B have charges +Q and –Q, respectively. They are placed at a 
certain distance. The force acting between them is F. If 25% of charge A is transferred to B, 
then find the force between the charges. 

Two pith balls carry equal charges. They are suspended from a common point by strings 
of equal lengths. The equilibrium separation between them is r. Now, the strings are rigidly 
clamped at half the height. Find the equilibrium separation between the balls.

NEET

© 2020, BYJU'S. All rights reserved

04



Solution

In the first case,

The distance between the two pith balls is r. The distance from the point of suspension is y.

The FBD of the first charge is given, where,

Fe = Electrostatic force

T = Tension force

In the equilibrium condition, we get,

T sin θ = Fe …(i)

T cos θ = mg …(ii)

On dividing equation (i) by equation (ii), we get,
2

2tan        
 

eF KQ
mg r mg

θ = =
×

 ...(iii)

Also, in triangle ABD, we get,

tan   
2
r
y

θ = ...(iv)

From equations (iii) and (iv), we get,

( )

( ) ( )

( ) ( )

( )

Where, Constant

Similarly, when the relation changes to the following:

By dividing equation , we get the folq le owu ingby ation :

...

,

' ....

'

'

r KQ
y r mg

mgy r v
KQ

yy

y r vi

v vi

y r
y r

r
r

α α

α

α
α

=
×

 
⇒ = = = 

 

=

=

=
 
 
 

 ⇒ =  
 

⇒

2

2

3
2

3

3

3

3

1

2

2

2

2

2

2

2
'

'

r
r
rr

=

⇒ =

3

1
32

++

y

r
Q Q

y

A

B C
D

θ

r
2

r
2

θ 

T sin θ

T cos θ
T

Fe 

mg

Q
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( )

( ) ( )

( ) ( )

( )

Where, Constant

Similarly, when the relation changes to the following:

By dividing equation , we get the folq le owu ingby ation :
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,
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'

'
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 
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=
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Thus, option (B) is the correct answer.

Solution

At some instant of time t,

Consider that two spheres are present at distance x from each 
other. The charge is leaking at a constant rate.

The FBD of the first (left) sphere at time t is given below, where,

Fe = Electrostatic force

T = Tension force

In the equilibrium condition, we get the following:

T sin θ = Fe ..…(i)

T cos θ = mg ..…(ii)

On dividing equation (i) by equation (ii), we get,
2

2tan        
 

eF KQ
mg x mg

θ = =
×

 .....(iii)

From the triangle, we get,

( )

Since the term changes to,

tan

,

tan

tan .....

x

xl

x l

x
l

x iv
l

θ

θ

θ

=
 

−  
 

<<

=

⇒ =

2
2

2

2
4

2

2

(A) ( )
1
2 v x −

∝ (B) 1 v x−∝ (C) 
1
2  v x∝ (D)   v x∝

Two identical charged spheres are suspended from a common point by two massless strings, 
each of length 𝑙. Initially, they are apart at a distance of 𝑑 (𝑑 << 𝑙) because of their mutual 
repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, 
the spheres approach each other with velocity v. How does velocity v vary as a function of 
distance x between the spheres?

NEET

θ θ

x
2

x
2

θ 

T sin θ

T cos θ

Fe 

mg

T

l l
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( )

Since the term changes to,

tan

,

tan

tan .....

x

xl

x l

x
l

x iv
l

θ

θ

θ

=
 

−  
 

<<

=

⇒ =

2
2

2

2
4

2

2

From equations (iii) and (iv), we get the following:

Therefore, we get the fol n

Wh

low

r

i g,

e e,

eF x
mg l

KQ x
x mg l

KQ x
mg l

mgQ Ax A
Kl

Q x

=

⇒ =

⇒ =

 = = 
 

⇒ ∝

2

2

2 3

2 3

3
2

2

2

2

2

Also, it is given that the charge is leaking at a constant rate.

Constant

Also,

By differentiating both the side

W

s with respect to time, we get

 Constanthere,

,

' '

'

dQ C
dt

Q Ax

dQ dA x
dt dt

dxC A x
dt

CC x v C
A

Cv
x

v x

−

−

= =

=

 
=  

 

 
⇒ =  

 

 ⇒ = = = 
 

⇒ =

⇒ ∝

3
2

3
2

3 1
2

1
2

1
2

1
2

3
2

2
3

Thus, option (A) is the correct answer.

θ
l

x
2

2
2

4
xl −

© 2020, BYJU'S. All rights reserved

07



What you already know What you will learn

•   Origin of charge

•	 Coulomb’s torsion balance

•	 Coulomb’s law

•   Vector form of Coulomb’s law

•	 Permittivity of free space

•   Permittivity of medium

•   Relative permittivity

•   Limitations of Coulomb’s law

•   Principle of superposition

Permittivity of Free Space (𝜀o)

Let us consider that a positively charged plate and 
a negatively charged plate are separated by some 
distance and placed in a vacuum, i.e., there is no 
medium in between the charges.  
When there are charges that are present close to 
each other, they have their influence (they apply force 
on other charges) up to a certain distance. The region 
where they have the influence is known as the field of 
the charge. We also know that when two charges are 
present close to each other, they apply force on each 
other. The force given by Coulomb’s law is as follows:

Thus, the magnitude of the force depends on the value of k. The value of constant k is given by,

Here, 𝜀o is the permittivity of the free space.
𝜀o = 8.85 × 10–12 C 2N–1m–2

Permittivity: Permittivity is the property of a medium or a material that measures the opposition 
offered by a medium or material to an external electric field.
If the permittivity of a medium or material is high, it means that the opposition offered by the 
medium or material to an external electric field is high and vice versa. 

Note

The permittivity of free space is minimum, i.e., the opposition to an electric field in free space is 
minimum.

Free space or Vacuum

1 2
2  kq qF

r
=

1  
4 o

k
πε

=

N
O

T
E

S

ELECTROSTATICS

P H Y S I C S

PRINCIPAL OF SUPERPOSITION
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Permittivity of Medium (𝜀m)

Relative Permittivity (𝜀r)

Let us consider that a positively charged plate and 
a negatively charged plate are separated by some 
distance. Now, a medium is introduced in between 
the charged plates. The medium has some positive 
charges and some negative charges. Due to the 
influence of the charged plates, the charged particles 
of the medium get attracted to the opposite charges, 
and the medium gets polarised.
As the medium gets polarised, and due to its net 
dipole moment, it will generate a field (internal field) 
opposite to the direction of the field produced by the 
two oppositely charged plates (external field). 

Note

If the medium gets highly polarised, the magnitude of the net internal field produced by the medium 
becomes high. Therefore, the opposition offered by the medium of the material to an external 
electric field is high and vice versa.
Thus, the force between the actual charges (charged plates) gets influenced by the field generated 
by the medium.
The equation of Coulomb’s law is given as follows:

The value of k for this case is given by,

Here, 𝜀m is the permittivity of the medium.

Relative permittivity is the ratio of the permittivity of the medium to the permittivity of the free space.

So, the permittivity of any medium can be written as follows:
𝜀m = 𝜀r × 𝜀o

The value of k can be written as follows:

Relative permittivity is also known as the dielectric constant.

1  
4 m

k
πε

=

1 2
2  kq qF

r
=

  m
r

o

εε
ε

=

1 1    
4 4m r o

k
πε πε ε

= =
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(A) It decreases K times.                                                 (B) It remains unchanged.                                    
(C) It increases K times.                                           (D) It increases K–2 times.         

Consider that two opposite charges, +Q and –Q, are placed at a distance of r from each other.

Case I: When air is present between the charges

The force acting between the two charges is given by,

Case II: When air is replaced with a dielectric medium

The force acting between the two charges is given by,

Thus, option (A) is the correct answer.

When air is replaced by a dielectric medium of dielectric constant K, what happens to the 
maximum force of attraction between the two charges that are separated by a distance?

Solution

( )For air, value of is

o r

r
o

QF
r

QF
r

πε ε

ε
πε

=

⇒ =

2

2

2

2

1
4

1 1
4

( )Since is for the dielectric medium

Since

'

'

'

o r

r
o

o

QF
r

QF K
K r

F QF F
K r

πε ε

ε
πε

πε

=

⇒ =

 
⇒ = = 

 

2

2

2

2

2

2

1
4

1
4

1
4

Limitations of Coulomb’s Law

It is difficult to apply Coulomb’s law when 
charges are in arbitrary shape.

Coulomb’s law is not valid for charges in 
motion (relative motion should be zero).
Charges must be point charges, i.e., the 
extension of the charges must be smaller 
than the separation between the charges.

The separation must be greater than the 
nuclear size.

1.

2.

3.

4.
R >> D

R+ –

D
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Principle of Superposition

Consider a system with n number of charges 
present as shown in the figure.
Let us assume that the charges are of the same 
polarity. For finding the net force on any charge, 
we have to find the forces by each charge present 
in the vicinity. 
Let us consider charge qo and analyze all the 
forces acting on it. The forces acting on qo are 
shown in the figure.
The net force acting on qo is given by,

The force applied by one charge does not affect 
the force by other charges. They have their 
individual effects, but the net force acting on the 
charge changes.
Suppose q1 and q2 are applying a force on charge 
qo, then the net force is obtained by applying the 
triangle law of vector addition. 
By applying the triangle law of vector addition, 
we get,

The magnitude of the resultant 
vector is given by,

The principle of superposition states that in 
a system of n charges, the resultant force on a 
charge is the vector sum of forces due to all the 
remaining charges.

Similarly, for n charges, the net force is given by,

F1

q2

F2

qo

F01

q2

F02

qo

F1

q1

q2

q3
F2

F3

Fn

qo

qn

...net nF F F F F= + + + +1 2 3

    

The magnitude of the resultant vector is given by,

cos

R A B

R A B AB θ

= +

= + +2 2 2

 



The magnitude of the resultant vector is given by,

cos

R A B

R A B AB θ

= +

= + +2 2 2

 



The magnitude of the resultant vector is given by,

cos

R A B

R A B AB θ

= +

= + +2 2 2

 



The magnitude of the resultant vector is given by,

cos

R A B

R A B AB θ

= +

= + +2 2 2

 



The magnitude of the resultant vector is given by,

cos

R A B

R A B AB θ

= +

= + +2 2 2

 



01 02

2 2
01 02 01 022 cos 

net

net

F F F

F F F F F θ

= +

= + +

  

For forces      and       , the resultant vector is given 
by,

01 02

2 2
01 02 01 022 cos 

net

net

F F F

F F F F F θ

= +

= + +

  

01 02

2 2
01 02 01 022 cos 

net

net

F F F

F F F F F θ

= +

= + +

  

F01 + F02

q1

q2

q3

qo

qn

F01 + F02

F01 + F02 + F03 + ... + F0n

F01 + F02 + F03 

...net nF F F F F= + + + +1 2 3

    

q1

q1
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(A)                                                  (B)                                                  (C)                                                  (D)         

Solution

23kq
a

2

2
3kq
a

2

2
kq
a

2

2
2kq

a

Three identical charged particles A, B, and C, with 
a charge of +q, are present on the vertices of an 
equilateral triangle having sides of length a as shown 
in the figure. Find the resultant force on particle C.

+

+ +

A

B q q

q

a
60°

60°60°

C

+

+

A

B q q

q

a
60°

60°

60°

60° C

FCA

FCB

Fnet

+

For the charge at C, both the charges at A and 
B apply force. Since the charges are the same, 
repulsion forces act in the opposite directions as 
shown in the figure.
So, the magnitude of the force acting on C due to 
A is given by,

Thus, option (A) is the correct answer.

( )

( )

( ) ( )

......

......

,

cos

CA

CB

CA CB

net

net

kqF i
a

C
B

kqF ii
a

i ii

F F F

C

F F F F

F

=

=

= =

= + + °

⇒ =

Similarly, the magnitude of the force on due to

is given by,

By comparing equations and we get,

The net force acting on the charge at is given by,

2

2

2

2

2 2 22 60





  





net

net

net

F F F

F F

F F

kqF
a

+ + ×

⇒ =

⇒ =

⇒ =

2 2 2

2

2

2

12
2

3

3

3






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(A)                                                  (B)                                                  (C)                                                  (D)         
23kq

a

2

2
3kq
a

2

2
kq
a

2

2
2kq

a

Three charged particles, A, B, and C with respective 
charges of –q, +q, and +q, are present on the 
vertices of an equilateral triangle with sides of 
length a as shown in the figure. Find the resultant 
force on particle A. 

+ +

A

B q q

q

a
60°

60°60°

C

–

+ +

A

B q q

q

a
60°

60°60°

C

–

FAB FAC
Fnet

Since A has a negative q charge and the charges at B and 
C are positive, there will be forces of attraction between 
A and B and A and C.
So, the magnitude of the force acting on A due to B is 
given by,

Solution

( )

( )

( ) ( )

......

......

,

cos

AB

AC

AB AC

net

net

kqF i
a

A C

kqF ii
a

i ii

F F F

A

F F F F

F

=

=

= =

= + + °

⇒ =

Similarly, the magnitude of the force on due to is

given by,

By comparing equations and we get,

The net force acting on the charge at is given by,

2

2

2

2

2 2 22 60





  





net

net

net

F F F

F F

F F

kqF
a

+ + ×

⇒ =

⇒ =

⇒ =

2 2 2

2

2

2

12
2

3

3

3







Thus, option (A) is the correct answer.
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(A)                                                (B)                                                (C)                                                (D)         
2

2
3kq
a

Solution +

+

+

–q

q

q

q

a

C

D

B

A

2

2
12  
2

kq
a

 + 
  ( )

2

21  2 kq
a

+

Four particles, A, B, C, and D with respective 
charges of +q, +q, –q, and +q, are placed on the 
vertices of a square with sides of length a. Find the 
resultant force acting on particle C.

+

+

+

–q

q

q

q

a

C

D

B

A

FCD
FCA

FCB

Since the charge at C is –q, the acting net force becomes 
an attractive force, as the charge at A, B, and D is +q.
So, the magnitude of the force acting on C due to B is 
given by,

( )

( )

( ) ( )

( )

......

......

,

CB

CD

CB CD

CA

kqF i
a

C D

kqF ii
a

i ii

kqF F
a

C A
kqF

a

=

=

= =

=

Similarly, the magnitude of the force on due to is

given by,

By comparing equations and we get,

The magnitude of the force on due to is given by,

The distance bet

2

2

2

2

2

2

2

2
2





 

 ( )

cos
BD

BD

BD

CA

net CB CD CB CD

net CB CD

net

A C a

kqF
a

B D

F F F F F

F F F

kqF
a

⇒ =

= + + °

⇒ = +

⇒ =

ween and is

The resultant force due to the charge at and is given by,

2

2

2 2

2 2

2

2

2

2

2 90

2









NEET

2

2
2kq
a
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The net force is given by,

Now, by resolving the force on C due to A into its two components, we get,
The net force along the x-axis is given by,

Alternative method

We have,

BDnet CA net

net

net

F F F

kq kqF
a a

kqF
a

= +

⇒ = +

 ⇒ = + 
 

2 2

2 2

2

2

2
2

1 2
2

  





( )
( )

CB CD

CA

CA

kqF F
a

kqF A C a
a

kqF
a

= =

=

⇒ =

And,

The distance between and is

2

2

2

2

2

2

2
2

2

 





– x

y

FCD
FCA

FCB

FCA cos 45°

FCA sin 45°

45°

( )

( )

ˆ ˆcos

ˆ ˆ

ˆ ˆ

ˆ ˆsin

ˆ ˆ

ˆ

x CB CA

x

x

y CD CA

y

y

F F i F i

kq kqF i i
a a

kq kqF i i
a a

y

F F j F j

kq kqF j j
a a

kq kF j
a

= − − °

 
⇒ = − − × 

 
 

⇒ = − −  
 

= + + °

 
⇒ = + + × 

 

⇒ = + +

Similarly, along the -axis, the net force is given by,

2 2

2 2

2 2

2 2

2 2

2 2

2

2

45

1
2 2

2 2

45

1
2 2

  





  



 ˆ

cosnet x y x y x y

net

q j
a

F F F F F F F

kqF
a

 
 
 

= + = + + °

 ⇒ = + 
 

The net force is given by,

2

2

2 2

2

2

2 2

2 90

12
2

      



Thus, option (A) is the correct answer.

( )and are in the same direction
BDCA netF F

 


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(A)                                                (B)                                                (C)                                                (D)         

Solution

Three equal charges of +q are placed at the 
corners of a regular hexagon of side a as shown 
in the figure. Find the force on +q, which is placed 
at centroid O.

NEET

q

q q

qC D

E

F

B O

A +

+ +

+

2

2
kq
a

2

2
2kq

a

23kq
a

2

2
3kq

a

Since all the charges are of the same polarity, 
there will be repulsion between all the charges.
The angle between the forces is given by,

The direction of the vector will be along the direction of      .
The resultant of the forces       and         is given by,

Therefore, the magnitude of all three forces is the 
same, as they are at the same distance from O.

O

y

FOC

FOB

FOA

x

FOC  sin 60°

FOA  sin 60° FOC  cos 60° + FOA  cos 60°

+
 60°

 60°
360    60

n
θ °
= = °

cos
AC

AC

AC

AC

OA OB OC

net OA OC OA OC

net OA OC OA OC

net

net

kqF F F
a

A C

F F F F F

F F F F F

kq kq kqF
a a a

kqF
a

= = =

= + + °

⇒ = + −

     
⇒ = + −     

     

⇒ =

The resultant force due to the charge at and is given by,

2

2

2 2

2 2

2 2 22 2 2

2 2 2

2

2

2 120

  









cos
AC

AC

AC

AC

OA OB OC

net OA OC OA OC

net OA OC OA OC

net

net

kqF F F
a

A C

F F F F F

F F F F F

kq kq kqF
a a a

kqF
a

= = =

= + + °

⇒ = + −

     
⇒ = + −     

     

⇒ =

The resultant force due to the charge at and is given by,

2

2

2 2

2 2

2 2 22 2 2

2 2 2

2

2

2 120

  









cos
AC

AC

AC

AC

OA OB OC

net OA OC OA OC

net OA OC OA OC

net

net

kqF F F
a

A C

F F F F F

F F F F F

kq kq kqF
a a a

kqF
a

= = =

= + + °

⇒ = + −

     
⇒ = + −     

     

⇒ =

The resultant force due to the charge at and is given by,

2

2

2 2

2 2

2 2 22 2 2

2 2 2

2

2

2 120

  









cos
AC

AC

AC

AC

OA OB OC

net OA OC OA OC

net OA OC OA OC

net

net

kqF F F
a

A C

F F F F F

F F F F F

kq kq kqF
a a a

kqF
a

= = =

= + + °

⇒ = + −

     
⇒ = + −     

     

⇒ =

The resultant force due to the charge at and is given by,

2

2

2 2

2 2

2 2 22 2 2

2 2 2

2

2

2 120

  









ACnet OB net

net

net

F F F

kq kqF
a a
kqF
a

= +

⇒ = +

⇒ =

2 2

2 2

2

22

  





Thus, option (C) is the correct answer.
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(A) Zero                                          (B)                                                (C)                                                (D)         

Solution

Five equal charges of +q are placed at the corners 
of a regular pentagon of side a. Find the force on 
+q, which is placed at centroid O.

+

+
+ +

+ +

2

2
2kq
a

2

2
2kq

a

2

3
kq

a

C D

EB

O

A

All the charges are of the same polarity and are placed at the vertices of a regular pentagon, i.e., 
the charges are placed in a symmetrical manner.
Therefore, the net force applied by all the charges on a charge that is placed at the center of the 
symmetric figure is zero.
Thus, option (A) is the correct answer.

q

q

q q

q
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•	 Permittivity

•	 Limitations of Coulomb’s law

•	 Principle of superposition

What you already know

•	 Analysis of equilibrium

•	 Third charge in equilibrium

What you will learn

For n-sided polygon

The net force at the centre of a regular 
n-sided polygon due to n similar charge 
placed symmetrically at its vertices is zero.
The angle subtended by the force due to 
the charges on the charge present at the 
centre of the polygon is given by,

360
n

θ °
=

If one charge is removed from a regular n-sided polygon
On removal of a charge from the vertex of the n-sided polygon, the resultant force becomes the 
same as the charge but in the opposite direction.

Recap

𝜃𝜃
𝜃
𝜃 𝜃

𝜃𝜃
𝜃
𝜃 𝜃

4
Five charges of equal charge +q are placed at corners 
of a regular hexagon of side a. What is the force on +qo 
at centroid O?

A q

q

q

qo

O

q

B

C
D

E

F

𝜃
𝜃

𝜃

𝜃
𝜃

𝜃

2

3 okqq
a

(A) ( ) 21 3 okqq
a

+(B) 2

2 okqq
a

(C) 2
okqq

a
(D)

q

ELECTROSTATICS

P H Y S I C S

EQUILIBRIUM OF CHARGES

N
O

T
E

S
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Solution

Let us introduce a similar charge +q in the empty place at D. By 
doing this, the charges in the system become symmetrical, and the 
net force on +qo becomes zero. We can see that the force applied 
on charge +qo by the charges at B and E are equal in magnitude 
but opposite in direction. Thus, they cancel each other. Similarly, the 
force applied on charge +qo by the charges at C and F are equal in 
magnitude but opposite in direction. Thus, they cancel each other. 
However, in reality, there is no charge at D. So, the repulsive force 
due to charge at A is not canceled by the charge at D. Thus, this 
unbalanced force acting on charge +qo is the net resultant force 
acting on it.
The force acting on qo is given by,

2
okqqF

a
=

Thus, option (D) is the correct answer.

Analysis of Equilibrium

A charge is said to be in equilibrium if the net electrostatic force acting on that charge is zero. 
Based on the magnitude and location of the charges, there are two different types of equilibriums:

(a) Stable equilibrium
(b) Unstable equilibrium

Here, we will discuss stable equilibrium and unstable equilibrium in detail.

Stable equilibrium

When a particle is displaced slightly from an equilibrium position and the net force acting on it 
brings it back to the initial position, it is said to be in stable equilibrium.
For example, let us consider three positive charges namely 1, 2, and 3 of magnitudes q, q, and Q, 
respectively. Charges 1 and 2 are placed at a finite distance and they are fixed. The third charge Q 
is placed at the midpoint of the two charges along the line joining charges 1 and 2. It is not fixed. 
Thus, it can move from its position.

Let the repulsive force applied by charges 1 and 2 on the third charge be F31 and F32, respectively. 
F31 and F32 are opposite in direction. So, from Coulomb’s law, the magnitude is given by,

1 22 2
kqQ kqQ F F
r r

= ⇒ =

Case 1: In this case, if we shift the charge at the middle (third charge) towards the right by dx, then 
the repulsive force F32 acting on Q due to charge 2 increases as the distance decreases, and the 
force F31 acting on Q due to charge 1 decreases as the distance increases.

BOARDS

A q

q

q

q

qo

O

q

B

C
D

E

F

FOC

FOB

FOA

FOF

FOE

F32 F311 2

r
q q

Q r

3
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Due to this, the net force on 
Q acts towards the left (initial 
position of Q). Thus, we can 
say that charge 3 is in a stable 
equilibrium.

Case 2: In this case, if the 
charge at the middle (third 
charge) is displaced towards 
the left by dx, then the 
repulsive force F31 acting on Q 
due to charge 1 increases as 
the distance decreases, and force F32 acting on Q due to charge 2 decreases as the distance 
increases. Due to this, the net force on Q acts towards the right (initial position of Q). Thus, we can 
say that charge 3 is in a stable equilibrium. 

Unstable equilibrium

When a particle is displaced slightly from an equilibrium 
position and the net force acting on it tries to displace the 
particle further away from the equilibrium position, it is said 
to be in an unstable equilibrium.
In the same example (discussed above), the third charge Q 
placed at the middle along the line joining charges 1 and 
2 is displaced by a small distance dx either upwards or 
downwards from the equilibrium position in the direction 
perpendicular to the line joining the two fixed charges. 
In both cases, the separation distance of charge 3 from 
charges 1 and 2 varies in the same proportion. Thus, 
the magnitude of the repulsive forces acting on charge 
3 by charges 1 and 2 are F31 and F32. They are equal in 
magnitude and along the line joining the charges as shown in the figure. Hence, the net force acts 
in the direction of displacement of charge 3. Due to the net force, charge 3 moves further away 
from the initial position. Therefore, it can be said that charge 3 is in an unstable equilibrium.

Stable and Unstable Equilibrium (For Negative Centre Charge)

Consider the same system we discussed above (three positive charges namely 1, 2, and 3 of 
magnitudes q, q, and Q, respectively). However, in this case, the third charge Q is replaced by −Q, 
and other than that everything is the same. Charges 1 and 2 are placed at a finite distance and 
are fixed. The third charge (−Q) is placed at the midpoint of the two charges along the line joining 
charges 1 and 2, and it is not fixed. Thus, it can move from its position as shown in the figure.

Let the attractive forces applied by charges 1 and 2 on the third charge be F31 and F32, respectively. 
F31 and F32 are opposite in direction and equal in magnitude.

1 2

q qQ

dx dx
3

3

dx

F31 > F32

F32

Fnet

F31 3

dx

F32 > F31

F32

Fnet

F31

1 2

q qQ

dx

dx

3

F32

F32

Fnet

Fnet
F31

F31

1 2

q q− Q

3F31 F32
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Stable equilibrium

In this case, the third charge (−Q) placed at the middle along the line joining charges 1 and 2 is 
displaced by a small distance dx either upwards or downwards from the equilibrium position in 
the direction perpendicular to the line joining the two fixed charges. In both cases, the separation 
distance of charge 3 from charges 1 and 2 varies in the same proportion. Thus, the magnitude 
of the attractive force acting on charge 3 by charges 1 and 2 are F31 and F32. They are equal in 
magnitude and along the line joining the charges as shown in the figure. Hence, the net force 
acts in the opposite direction of displacement of charge 3. Due to the net force, charge 3 moves 
towards the initial position. Therefore, it can be said that charge 3 is in a stable equilibrium.

Unstable equilibrium

In the same example (discussed above), the third charge (−Q) placed at the middle along the line 
joining charges 1 and 2 is displaced by a small distance dx either towards the left or right from the 
equilibrium position along the line joining the two fixed charges. Two cases are possible where the 
third charge (−Q) can move towards the left or right, depending upon the direction of the net force.

Case 1:

In this case, if the charge at the middle (third charge) is displaced towards the left by a small 
distance dx, then the attractive force F31 acting on −Q due to charge 1 increases as the distance 
decreases, and the attractive force F32 acting on −Q due to charge 2 decreases as the distance 
increases. Due to this, the net force on −Q acts towards the left (away from the initial position of Q). 
Therefore, we can say that charge 3 is in an unstable equilibrium.

Case 2:

In this case, if the charge at the 
middle (third charge) is displaced 
towards the right by a small distance 
dx, then the attractive force F32 acting 
on −Q due to charge 2 increases 
as the distance decreases, and the 
attractive force F31 acting on −Q 
due to charge 1 decreases as the 
distance increases. Due to this, the 
net force on −Q acts towards the 
right (away from the initial position of 
Q). Therefore, we can say that charge 
3 is in an unstable equilibrium.
The conditions for the equilibrium of the system (with no charge fixed) of all the three charged 
particles (discussed above) are as follows:

(1)	 The three charges must be collinear.
(2)	 The three charges must not be of the same sign.
(3)	 The three charges must not be of the same magnitude.
(4)	 On obeying the mentioned conditions, the equilibrium of the system will always be unstable 

in nature.

1 2

q q−Q

dx dx
3

dx

3
F31

Fnet

F32

F32 > F31
F31 > F32

3

dx

F31

Fnet

F32

F31 F32
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Third Charge in Equilibrium

Case 1: Like charges
Let us consider three positive charges namely 1, 2, and 3 of magnitudes q, 4q, and Q, respectively. 
Charges 1 and 2 or charges q and 4q are fixed at distance L from each other. Let us divide the 
vicinity of space near charges q and 4q into three regions A, B, and C as shown in the figure. If a 
third charge Q has to be placed in this system such that it should be in equilibrium, then to find the 
equilibrium of the third charge Q in the given system, we have to draw the force diagram for charge 
Q in all three regions A, B, and C.

Region A
If the third charge Q is placed in region A, the repulsive forces acting on charge 3 by charges 1 and 
2 are F31 and F32. They have different magnitudes and are in the same direction (towards the left) 
along the line joining as shown in the figure. Hence, the net force cannot be zero in this region and 
it acts towards the left. Due to the net force, charge 3 moves towards the left. Therefore, there is 
no possibility for the third charge Q to attain equilibrium in this region.

Region C
Similar to region A, if we place the third charge Q in region C, the repulsive forces acting on charge 
3 by charges 1 and 2 are F31 and F32. They have different magnitudes and are in the same direction 
(towards the right) along the line joining as shown in the figure. Hence, the net force cannot be zero 
in this region and it acts towards the right. Due to the net force, charge 3 moves towards the right. 
Therefore, there is no possibility for the third charge Q to attain equilibrium in this region.

Region B
If we place the third charge Q in region B, the repulsive forces acting on charge 3 by charges 1 and 
2 are F31 and F32. They have different magnitudes and are in the opposite direction of the line joining 
as shown in the figure. Since F31 and F32 act in the opposite directions, there is a possibility that 
forces F31 and F32 can cancel each other. It is possible if the third charge is placed near the smaller 
charge q. Let the distance be x. Thus, the distance between 4q and the third charge becomes L − x.

Region Direction of F31 Direction of F32

Possibility of the equilibrium 
position

Region A Acting towards left Acting towards left
Not possible as both the forces 
are acting in the same direction

Region B Acting towards right Acting towards left
Possible as the forces are in the 

opposite direction

Region C Acting towards right Acting towards right
Not possible as both the forces 
are acting in the same direction

1 2

q 4qQx L − x

3 F31F32 F32

Fnet ≠ 0 Fnet ≠ 0

F32F31 F31

Region A Region B Region C

Q Q
Fnet = 0

For Fnet = 0, F31 = F32
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( )
( )

( )

kQ qkQq
x L x

L x
x

L x
x

Lx L x

Lx L x

=
−

−
⇒ =

−
⇒ = ±

⇒ = − =

− =

or

Since cannot be , we get, .

22

2

2

4

4

2

3

3

Shortcut method

The distance of the third charge from the smaller charge is given by,

( )1

2 1

q
x L i

q q

 
 =
 + 



Where,
L = Distance of separation between the charges
q1 = Smaller charge
q2 = Bigger charge
For the given example, if we substitute the charges in equation (i), we get,

4

2

3

q
x L

q q

q
x L

q q
Lx

 
=   + 

 
⇒ =   + 

⇒ =

This is similar to what we have obtained by the previous method.

Case 2: Unlike charges

Similar to the above case (like charges), let us consider three charges namely 1, 2, and 3 of 
magnitudes q, −9q, and Q, respectively. Charges 1 and 2 or charges q and −9q are fixed at distance 
L from each other. Let us divide the vicinity of space near charges q and −9q into three regions A, B, 
and C as shown in the figure. If a third charge Q has to be placed in this system such that it should 
be in equilibrium, then to find the equilibrium of the third charge Q in the given system, we have to 
draw the force diagram for charge Q in all three regions A, B, and C.

1 2

QQ q

x L

Q

3 33 F31 F31F31

Fnet ≠ 0 Fnet ≠ 0Fnet = 0
F32 F32F32

Region A Region B Region C

−9q
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Region B
If the third charge Q is placed in region B, the forces acting on charge 3 by charges 1 and 2 are 
F31 and F32. They have different magnitudes and are in the same direction along the line joining as 
shown in the figure. F31 is a repulsive force and F32 is an attractive force. Thus, both act in the same 
direction. Hence, the net force cannot be zero in this region and it acts towards the right. Due to the 
net force, charge 3 moves towards the right. Therefore, there is no possibility for the third charge 
Q to attain equilibrium in this region.

Region C
If we place the third charge Q in region C, the forces acting on charge 3 by charges 1 and 2 are F31 
and F32. They have different magnitudes and are in the opposite direction along the line joining 
as shown in the figure. The separation between charges 1 and 3 is higher than the separation 
between charges 2 and 3. The magnitude of charge 2 is greater than charge 1. Thus, F32 is greater 
in magnitude when compared with F31. Hence, the net force cannot be zero in this region and it 
acts towards the left. Due to the net force, charge 3 moves towards the left. Therefore, there is no 
possibility for the third charge Q to attain equilibrium in this region.

Region A
If we place the third charge Q in region A, the forces acting on charge 3 by charges 1 and 2 are F31 
and F32. They have different magnitudes and are in the opposite direction along the line joining as 
shown in the figure. Since F31 and F32 act in opposite directions, there is a possibility that forces F31 
and F32 cancel each other. It is possible if the third charge is placed near the smaller charge q. Let 
the distance be x. Thus, the distance between −9q and the third charge becomes L + x.

Region Direction of F31 Direction of F32 
Possibility of the 

equilibrium position

Region A Acting towards left Acting towards right
Possible as the forces are 

in opposite direction.

Region B Acting towards right Acting towards right
Not possible as both are 
along the same direction

Region C Acting towards right Acting towards left
Not possible as the 

negative charge is bigger 
and distance is less.

For Fnet = 0, F31 = F32

( )
( )

( )

, .

kQ qkQq
x L x

L x
x

L x
x

L Lx x

L Lx x

=
+

+
⇒ =

+
⇒ = ±

⇒ = − =

− =

or

Since cannot be we get,

22

2

2

9

9

3

4 2

4 2
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Shortcut method
The distance of the third charge from the smaller charge is given by,

( )1

2 1

q
x L i

q q

 
 =
 − 



Where,
L = Distance of separation between the charges
q1 = Smaller charge
q2 = Bigger charge
We will get the same value of x if we substitute the values of charge and distance as we did in the 
case of like charges.

4
A charge q is placed at the center of the line joining two equal positive charges Q. For the 
system of the three charges to be in equilibrium, what is the value of q?

Solution

We have two positive charges (Q) and a charge q is placed 
in between the two positive charges and the system is 
required to be in equilibrium. We know that for a system 
of charges to be in equilibrium, the charges must not be 
of the same sign. Thus, charge q should be negative in 
nature.
For the first charge to be in equilibrium, the net force 
acting on it will be 0.
Therefore,

( )

F F

kQ kQq
rr

kQ Q q
r

Qq

+ =

⇒ + =

 ⇒ + =  

⇒ = −

12 23

2

2 2

2

0

0
2

0
4

4
Thus, option (C) is the correct answer.

NEET

QQ qr

2r

(A)  −Q (B)
  2

Q
+ (C)

  4
Q

− (D)  Q
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Solution

The net force acting on −q charge is given as follows:

( )( ) ( )( )
q

k q q k q q
F

a a− = − + =2 2

4 4
0

Also, the net force acting on both the charges +4q is given by,

( )( ) ( )( )
( )q

q

k q q k q q
F

a a

kq kqF
a a

= − +

⇒ = − + =

4 22

2 2

4 2 2

4 4 4

2

4 4 0

Hence, we can clearly conclude that the system is in equilibrium as the net force on all the charges 
is 0. However, the charge in the middle is a negative charge and the other two charges are positive. 
So, on the slight movement of −q charge, the system will no longer be in a state of equilibrium. 
Therefore, all three particles are in an unstable equilibrium.
Thus, option (C) is the correct answer.

4
If point charges +4q, −q, and +4q are kept on the x−axis at points x = 0, x = a, and x = 2a, 
respectively, then which of the following statements is correct?

(A)	Only −q is in a stable equilibrium. (B)	None of the charges are in equilibrium.

(C)	All the charges are in an unstable equilibrium. (D)	All the charges are in a stable equilibrium.

To find the equilibrium, draw the force diagram in each possible region and check the 
regions in which the forces can cancel each other.

a
x

y

a

−q+4q

O

+4q
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What you already know

•	 Coulomb's law

•	 Third charge in equilibrium

•	 Electric field

•	 Electric field intensity

What you will learn

Electric field exists in a region where an electric charge experiences an electrostatic force.

When a charge is placed in an electric field, it experiences an electrostatic force. In the electric 
field of a positive charge, if another unit positive charge (test charge) is placed, then it experiences 
a repulsive force in that field. On the other hand, if a unit positive charge is placed in the electric 
field of a negative charge, then the unit positive charge experiences an attractive force towards 
the negative charge.

Radially outwards Radially inwards

Electric Field

+ –

To visualize the electric field geometrically, Michael 
Faraday introduced electric field lines or electric 
lines of force. From a positive charge, the electric 
field lines emerge radially outward. However, in a 
negative charge, the electric field lines goes radially 
inward.
If one positive and one negative charge are placed 
closer to each other, then the electric field lines 
appear to be coming out from the positive charge 
and going into the negative charge.

+

+

+ +

+

–

BOARDS

N
O

TE
S

 ELECTROSTATICS

P H Y S I C S

ELECTRIC FIELD INTENSITY
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Electric Field Intensity

Let us consider a positive charge that is the source 
charge, and a positive charge +qo which is so small that 
it cannot produce its own electric field. This small charge 
is known as the test charge. When the positive test 
charge is brought to the region of the electric field of 
the source charge, it experiences an electrostatic force. 
The direction of force experienced by the positive test 
charge gives the direction of the electric field.

As the source charge is positive, the direction of the electric field is radially outward.
The intensity of the electric field is given by,

Test charge

Source charge

+qo

+qo+q

r

E

At a point, the electric field intensity is the force experienced by a unit positive charge placed in  
the electric field.

Let us consider a positive test charge qo that is placed in the electric field of charge q at distance r 
as shown in the figure.

From the equation, we can observe that the electric field intensity is inversely proportional to the 
square of the distance between them.

( )

( )

| || | ...

| |

| | ,

| |

| |

e

o

e

o
e

e

o

o

FE i
q

F

kqqF
r

F i

kqq
rE
q

kqE
r

kqE
r

=

=

=

⇒ =

⇒ =

2

2

2

2













Where, is the electrostatic force.

By substituting in equation we get,

+

+

When the source charge is positive

NEET

( )

( )

| || | ...

| |

| | ,

| |

| |

e

o

e

o
e

e

o

o

FE i
q

F

kqqF
r

F i

kqq
rE
q

kqE
r

kqE
r

=

=

=

⇒ =

⇒ =

2

2

2

2













Where, is the electrostatic force.

By substituting in equation we get,

E
r

∝ 2
1
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The electric field is independent of the test charge but depends on the source charge.
E ∝ q
If we plot a graph between the electric field intensity and distance r for a point charge, then the 
obtained graph is as shown.

r

∞

0 Undefined

0

E

r

E

O

When the source charge is negative

Let us consider a positive test charge +qo, which is placed at distance of r from the source charge 
–q.

The electric field intensity is given by,

The electric field intensity in the vector form is 
given by,

(We use q with proper sign)

+qo–q

r

E–

Dimensional formula for

o

o

F NE
q C

F M L T

q l t A T

E M L A T

−

− −

= =

 =  

 = × =  

 =  

1 1 2

1 1

1 1 1 3

Dimensional formula for

o

o

F NE
q C

F M L T

q l t A T

E M L A T

−

− −

= =

 =  

 = × =  

 =  

1 1 2

1 1

1 1 1 3

The dimension of electric field intensity is given by,

ˆ

ˆ| |

| |

kqE r
r

r r r

kqE r
r

=

=

=

2

3









Where,  

( )

( )

| || | ...

| |

| | ,

| |

| |

e

o

e

o
e

e

o

o

FE i
q

F

kqqF
r

F i

kqq
rE
q

kqE
r

kqE
r

=

=

=

⇒ =

⇒ =

2

2

2

2













Where, is the electrostatic force.

By substituting in equation we get,

© 2020, BYJU'S. All rights reserved

03



Principle of Superposition

The principle of superposition states that every 
charge in space creates an electric field at a point 
independent of the presence of other charges in that 
medium. The resultant electric field is a vector sum of 
the electric field due to individual charges.

Consider that n number of charges are present in a 
system and a positive test charge is brought to the 
field as shown in the figure. The charges in the body 
are positive and the test charge is also positive. 

The electric field intensity at point P in space due to 

two point charges q1 and q2 is E1 and E2, respectively 

(as shown in the figure).

To obtain the resultant electric field intensity, we have 
to apply the triangle law of vector addition. 

Similarly, the net electric field at point P in space due 
to a system of n charges is given by,

+qo

q2

P

q1

cos

cos

net

net

net

E E E E E

E E E E

kqE
a

θ= + +

⇒ = + + °

⇒ =

2 2
1 2 1 2

2 2 2

2

2

2 60

3







+
+

+qo

q3

q2

E1

P

E2

E3

En

q1

qn

+

+

+
+

+qo

q3

q2

q1

qn

+

+

+
+

Therefore, in a system of n charges, the resultant 
electric field at a point in space is the vector sum of 
the electric field due to all individual charges.

... nE E E E E= + + + + =1 2 3 0
    

... nE E E E E= + + + + =1 2 3 0
    

... nE E E E E= + + + + =1 2 3 0
    

... nE E E E E= + + + + =1 2 3 0
    

... nE E E E E= + + + + =1 2 3 0
    
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Analysis of electric field

+qo

O

1

2

3

45

60°

60° 60°

6

n

Regular polygon arrangement

Due to the symmetrical arrangement of charges, the 
net electric field is zero at the centre of an n-sided 
polygon.

The angle subtended by an n-sided polygon

Example:

For a triangle, n = 3

The value of the angle subtended is given by,

So, at the center of the triangle, the angle between 

the electric field vector is,

Where, n is the number of sides.
–q

–q–q

–q

–q –q

–q–q

q1

q2 q3

–

–

– –

–

–

–

–

+ +

+

For a square, n = 4 q1 q2

q3q4
90°

90°

90°

90°

So, at the center of the square, the angle between the 

electric field vector is,

+

+ +

+

=
n
πθ 2

n
π πθ = = = °

2 2 120
3

n
π πθ = = = °

2 2 90
4

... nE E E E E= + + + + =1 2 3 0
    

... nE E E E E= + + + + =1 2 3 0
    

... nE E E E E= + + + + =1 2 3 0
    

cos

cos

net

net

net

E E E E E

E E E E

kqE
a

θ= + +

⇒ = + + °

⇒ =

2 2
1 2 1 2

2 2 2

2

2

2 60

3







... nE E E E E= + + + + =1 2 3 0
    

... nE E E E E= + + + + =1 2 3 0
    

... nE E E E E= + + + + =1 2 3 0
    

... nE E E E E= + + + + =1 2 3 0
    

... nE E E E E= + + + + =1 2 3 0
    

cos

cos

net

net

net

E E E E E

E E E E

kqE
a

θ= + +

⇒ = + + °

⇒ =

2 2
1 2 1 2

2 2 2

2

2

2 60

3







... nE E E E E= + + + + =1 2 3 0
    

E4
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For a pentagon, n = 5 q1

q2

q3

q5

q4

So, at the center of the pentagon, the angle between 

the electric field vector is, 72°
72°

72°72°
72°

(A) (C) (B) (D) 

Two identical charged particles A and B with charge +q 
are present on the vertices of an equilateral triangle 
having sides of length a as shown in the figure. Find 
the magnitude of the resultant electric field at point C.

    
kq kq kq kq

a a a a2 2 2
3 2 3

    
kq kq kq kq

a a a a2 2 2
3 2 3

    
kq kq kq kq

a a a a2 2 2
3 2 3

    
kq kq kq kq

a a a a2 2 2
3 2 3

60°

60° 60°
+

+

+q

+q

C

A

a

B

+

+ +

++

The electric field at point C due to the charges at A and B is given by EA and EB , respectively, as 
shown in the figure. 

The magnitude of the resultant electric field is given by,

Thus, option (A) is the correct answer.

Solution

60°

60° 60°

60°+

+

+q

+q

C EB

EA

A

a

B

A B
kqE E E
a

= = =2

 

cos

cos

net A B A B

net

net

E E E E E

E E E E

kqE
a

θ= + +

⇒ = + + °

⇒ =

2 2

2 2 2

2

2

2 60

3







n
π πθ = = = °

2 2 72
5

E4

E5

E1

E2

E3

cos

cos

net

net

net

E E E E E

E E E E

kqE
a

θ= + +

⇒ = + + °

⇒ =

2 2
1 2 1 2

2 2 2

2

2

2 60

3







... nE E E E E= + + + + =1 2 3 0
    
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The electric fields at point O due to the charges at A, B, and C are given by      ,       , and      respectively, 
as shown in the figure.
By applying the Pythagoras theorem in the right angled ΔBOC, we get,

BO = 5 m
Also, in ΔBOC,

Solution

(A) (C) (B) (D) 

For the given arrangement of charges, what will 
be the net electric field at point O?

C

–25q

–16q

–16q

+18q

O

3 m

4 m
B

A + –

–

  B CAE E E
  

  B CAE E E
  

  B CAE E E
  

To obtain the net electric field at point O, we have to calculate the individual electric field intensities 
due to the charges at A, B, and C.

The magnitude of the electric field at point O by the charges at A, B, and C are given as follows:

C

–25q+18q

O

a 3 m

4 m
B

A + –

–

  B CAE E E
  

  B CAE E E
  

  B CAE E E
  

53°
37°

NEET

( )

( )

( )

A

A

B

B

k q
E

E kq

k q
E kq

k q
E kq

=

⇒ =

= =

= =

18
9

2

16
16

25
25









Similarly,

      ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆkq kq kq kq kq kq kq kqi j i j i j i j+ − − +
9 7 9 7 11 9 11 9

5 5 5 5 5 5 5 5
      ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆkq kq kq kq kq kq kq kqi j i j i j i j+ − − +

9 7 9 7 11 9 11 9
5 5 5 5 5 5 5 5

      ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆkq kq kq kq kq kq kq kqi j i j i j i j+ − − +
9 7 9 7 11 9 11 9

5 5 5 5 5 5 5 5
      ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆkq kq kq kq kq kq kq kqi j i j i j i j+ − − +

9 7 9 7 11 9 11 9
5 5 5 5 5 5 5 5

sin  

  

θ

θ

=

= °

3
5

37
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Along y-axis, the component of net electric field is given by,

In the question, the net electric field is given in terms of unit vectors. Thus, we have to resolve the 
electric field along the x-axis and y-axis. 

Along the x-axis, the component of the electric field is given by,

Thus, option (B) is the correct answer.

x

y

  B CAE E E
  

  B CAE E E
  

  B CAE E E
  

53°
37°

Along axis, the component of net electric field is given by,

Therefore, the net electric field is given by,

cos

sin

ˆ ˆ

ˆ ˆ

x B C

x

x

y B A

y

y

net x y

net

E E E

E kq kq

E kq

y

E E E

E kq kq

E kq

E E i E j

kq kqE i j

= ° +

⇒ = +

⇒ =

−

= ° −

⇒ = −

⇒ = −

= +

= −

37

4
5

9
5

37

3 2
5

7
5

9 7
5 5





Along axis, the component of net electric field is given by,

Therefore, the net electric field is given by,

cos

sin

ˆ ˆ

ˆ ˆ

x B C

x

x

y B A

y

y

net x y

net

E E E

E kq kq

E kq

y

E E E

E kq kq

E kq

E E i E j

kq kqE i j

= ° +

⇒ = +

⇒ =

−

= ° −

⇒ = −

⇒ = −

= +

= −

37

4
5

9
5

37

3 2
5

7
5

9 7
5 5





Along axis, the component of net electric field is given by,

Therefore, the net electric field is given by,

cos

sin

ˆ ˆ

ˆ ˆ

x B C

x

x

y B A

y

y

net x y

net

E E E

E kq kq

E kq

y

E E E

E kq kq

E kq

E E i E j

kq kqE i j

= ° +

⇒ = +

⇒ =

−

= ° −

⇒ = −

⇒ = −

= +

= −

37

4
5

9
5

37

3 2
5

7
5

9 7
5 5





Along axis, the component of net electric field is given by,

Therefore, the net electric field is given by,

cos

sin

ˆ ˆ

ˆ ˆ

x B C

x

x

y B A

y

y

net x y

net

E E E

E kq kq

E kq

y

E E E

E kq kq

E kq

E E i E j

kq kqE i j

= ° +

⇒ = +

⇒ =

−

= ° −

⇒ = −

⇒ = −

= +

= −

37

4
5

9
5

37

3 2
5

7
5

9 7
5 5





Along axis, the component of net electric field is given by,

Therefore, the net electric field is given by,

cos

sin

ˆ ˆ

ˆ ˆ

x B C

x

x

y B A

y

y

net x y

net

E E E

E kq kq

E kq

y

E E E

E kq kq

E kq

E E i E j

kq kqE i j

= ° +

⇒ = +

⇒ =

−

= ° −

⇒ = −

⇒ = −

= +

= −

37

4
5

9
5

37

3 2
5

7
5

9 7
5 5





Solution

In such problems, where a charge is omitted 
from an n-sided polygon, we first assume that the 
empty space has a charge similar to the other 
vertices of the polygon.

Due to this, the net electric field will be zero at 
the centroid. Now, if we remove the charge at D, 
which was our original arrangement, then the net 
electric field will be along the direction of OD due 
to the charge at A.

(A) (C) (B) (D) 

Five charges with equal magnitudes of +q are placed at the corners of a regular hexagon of 
side a. What is the magnitude of the electric field at centroid O?

+q

+q +q

+q

+q +q

C D

E

O

B

A F

EOE

EOF

EOA

EOD
EOB

EOC

+ +

+

++

+

( )   
kq kq kq kq
a a a a

+2 2 2 2
3 21 3 ( )   

kq kq kq kq
a a a a

+2 2 2 2
3 21 3 ( )   

kq kq kq kq
a a a a

+2 2 2 2
3 21 3( )   

kq kq kq kq
a a a a

+2 2 2 2
3 21 3
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        OA
kq kqE
r a

= =2 2



Thus, option (D) is the correct answer.

Consider two fixed like charges, –q1 and –q2, which are present at distance L from each other. Now, 
we divide the whole region into three parts, A, B, and C, to search for the neutral point (where the 
net electric field is zero).

Analysis of Electric Field

Case: Like charges

Region A

Acting towards left

Acting towards left

Acting towards left

Acting towards right

Acting towards rightActing towards right Not possible as both the fields 
are acting in the same direction

Possible as the electric fields 
are in the opposite direction

Not possible as both the fields 
are acting in the same direction

Direction of E1 Direction of E2 
Possibility of the 

equilibrium position

Region B

Region C

Both charges are negative

–q1 –q2

L

B CA

E1

E1
E1

E1

E2

E2
E2

E2

– –

+q1 +q2

L

B CA

E1

E1 E1

E1

E2E2
E2 E2

++

For both positive charges:
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+q1 +q2

L

L – x x

E1
E2

For the net electric field to be zero,

Let the test charge be at distance x from charge +q1. The distance from charge +q2 becomes L – x. 
We also assumed the following:

|+q1| ≤ |+q2| 

++

Region A Acting towards left

Acting towards left

Acting towards left

Acting towards right

Acting towards right Acting towards right

Not possible as both the fields 
are acting in the same direction

Possible as the electric fields 
are in the opposite direction

Not possible as both the fields 
are acting in the same direction

Possibility of the 
equilibrium position

Region B

Region C

Both charges are positive

Direction of E1 Direction of E2 

Where,

x	 = Distance from the smaller charge

q1 = Smaller charge

q2 = Bigger charge

  
  
q

x L
q q

 
=   + 

1

2 1

( )

( )
( )

( ) ( )

( )

( )

( )

( )

...

...

E E

kqE i
x

kqE ii
L x

i ii

kq kq
x L x

q x
q L x

q x
q L x

qL
x q

L x L
x

=

=

=
−

=
−

 
⇒ =   − 

⇒ ± =
−

⇒ = ±

> <

1 2

1
1 2

2
2 2

1 2
22

2

1

2

1

2

2

1

1

1

 







By substituting the values in equations and , we get,

We know,
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(A) 1.5 m towards the left

(C) 1.5 m towards the right (D) 1.33 m towards the right

(B) 1.33 m towards the left

Let us assume the point where the net field is zero is at distance x from the smaller charge.

The electric field is zero at 1.33 m towards the right from A.

By applying the shortcut method, we get,

Solution

Find the distance of the point from A where the net 
electric field is zero for the given configuration.

+2C

+2C

+8C

+8C

4 m

x 4 – x

4 m

B

B

A

A

Thus, option (D) is the correct answer.

+ +

+ +

EB EA

(A) 4.2 m towards the left

(C) 2.2 m towards the right (D) 4.2 m towards the right

(B) 2.2 m towards the left

Let us assume the point where the net field is zero is at distance x from the smaller charge.

In this case, |–3q| < |–9q|

The electric field is zero at 2.2 m towards the right from A.

By applying the shortcut method, we get,

Solution

Find the distance of the point from A where the net 
electric field is zero for the given configuration.

–3q –9q

6 m BA

Thus, option (C) is the correct answer.

––

–3q –9q

x 6 – x

6 m

BA

EA EB –– 
  

      .  
    

q
x L

q q

qx m
q q

 
=   + 

 
⇒ = = ≈  + + 

1

2 1

3 66 2 2
9 3 1 3

 

 
  

   .
  

q
x L

q q

x m

 
=   + 

 
⇒ = = =  + 

1

2 1

2 44 1 33
38 2

© 2020, BYJU'S. All rights reserved

11



•	 Electric field

•	 Electric field intensity

•	 Principle of superposition

What you already know

•	 Analysis of electric field

•	 Electric field vs position curve

•	 Electric field due to continuous charge 

distribution

What you will learn

Case: Unlike charges

Consider that two fixed unlike charges +q1 and −q2 are present at distance L from each other. Now, 
divide the whole region into three regions A, B, and C to find the neutral point (the net electric field 
is zero). Let the electric fields due to charges q1 and −q2 be E1 and E2 respectively. We know that 
the electric field due to positive charge is away from it and due to negative charge is towards itself. 
Directions of electric fields in the three regions is shown in the figure.

Region Direction of E1 Direction of E2

Possibility of the equilibrium 
position

Region A Acting towards left Acting towards right
Possible as the electric fields 
are in the opposite direction

Region B Acting towards right Acting towards right
Not Possible as the electric 

fields are in the same direction

Region C Acting towards right Acting towards left
Possible as the electric fields 
are in the opposite direction

E1 E1 E1+q1 −q2

E2
E2 E2

L

Region A Region B Region C

Analysis of Electric Field

ELECTROSTATICS

P H Y S I C S

ELECTRIC FIELD DUE TO 
CONTINUOUS CHARGE-1

N
O

T
E

S
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The net electric field becomes zero in a position that is near the charge with less magnitude because 
it has to compensate for the electric field of a bigger charge.

E1 +q1 −q2E2

Lx

(L + x)

Let us assume that |+q1| < |−q2|. Let the test charge be at distance x from charge +q1 so that the 
distance from charge −q2 becomes L + x.
For the net electric field to be zero,

( )

( )

E E

kq kq
x L x

q x
q L x

q x
q L x

qL
x q

qL L
x q x

=

=
+

 
⇒ =   + 

 
⇒ ± =  + 

⇒ = ± −

 ⇒ = −  
 

cannot be negative

1 2

1 2
22

2

1

2

1

2

2

1

2

1

1

1

1

2 1

q
x L

q q

 
 =
 − 

Where,
x = Distance from the smaller charge
q1 = Smaller charge
q2 = Bigger charge

4 Find the distance of the point from A 
where the net electric field is zero for 
the given configuration.

(A)	6 m towards the left (B)	9 m towards the left

(C)	6 m towards the right (D)	9 m towards the right

+2q

A B

−8q

9 m
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Solution

In this case, |+2q| < |−8q|. So, the neutral point lies near charge +2q.

EA +2q −8qEB

9 mx

(9 + x)

A B

Let x be the distance from A where electric field will be zero.
We have,

1

2 1

2
9

8 2
9

q
x L

q q

q
x

q q
x m

 
 =
 − 

 
⇒ =   − 
⇒ =

Thus, option (B) is the correct answer.

Electric Field vs Position Curve

To draw an electric field vs position (E-x) curve, we have to follow the following sign conventions:

Sign convention

The electric field (E) is taken along the y-axis, whereas the position (x) is taken along the x-axis.

Positive electric field Negative electric field

At a point, the electric field 
towards the positive x-axis 
is considered as the positive 

electric field.

At a point, the electric field 
towards the negative x-axis 
is considered as the negative 

electric field.

The positive electric field is 
plotted above the x-axis.

The negative electric field is 
plotted below the x-axis.

For a positive point charge

We know that 
2

1E
x

∝ .

(+)

O

(−)

(−) (+)
x

E

NEET
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x E

∞ 0

0 Undefined

Approaches to zero ∞

For a positive charge, if we find the electric fields on the right and the left of the charge by placing 
a test charge, then we get the following:

Electric field of a positive charge

Direction of electric field Nature of electric field Graph

On the right side 
of the charge

Towards the 
positive x-axis 

Positive
Plotted above the 

x-axis 

On the left side 
of the charge

Towards the 
negative x-axis

Negative
Plotted below the 

x-axis

Hence, the E-x graph is given as follows:

+q0 +q +q0

E

x

E E

O

For a negative point charge

For a negative charge, if we find the electric fields on the right and the left of the charge by placing 
a test charge, then we get the following:

Electric field of a negative charge

Direction of electric field Nature of electric field Graph

On the right side 
of the charge

Towards the 
negative x-axis 

Negative
Plotted below 

the x-axis 

On the left side 
of the charge

Towards the 
positive x-axis

Positive
Plotted above 

the x-axis
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Hence, the E-x graph is given as follows:

−q+q0 +q0

E

x

E E

O

For two positive point charges

Here, the two like charges of the same magnitude are separated by some distance. So, there is a 

neutral point at the midpoint between the two charges (the net electric field is zero). Since  
2

1E
x

∝ , 

the electric field intensity of a charge is maximum near the vicinity of the charge. As the distance 
increases, the electric field intensity decreases. Here, let us consider two positive point charges A 
and B of the same magnitude separated by some distance. Now, identify the electric field near the 
vicinity of charges A and B as follows:

Electric field near the vicinity of charge A

Direction of electric field Nature of electric field Graph

On the right side 
of the charge A

Towards the 
positive x-axis 

Positive
Plotted above 

the x-axis 

On the left side 
of the charge A

Towards the 
negative x-axis

Negative
Plotted below 

the x-axis

Electric field near the vicinity of charge B

Direction of electric field Nature of electric field Graph

On the right side 
of the charge B

Towards the 
positive x-axis 

Positive
Plotted above 

the x-axis 

On the left side 
of the charge B

Towards the 
negative x-axis

Negative
Plotted below 

the x-axis

In between A and B, there is a point where the net electric field is zero.
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Hence, the E-x graph is given as follows:

EE

xx

+q+q

E E E E

A B

For two negative point charges

Similar to two positive charges, in this case also, let us consider two negative point charges A and 
B of the same magnitude separated by some distance. Now, identify the electric field near the 
vicinity of charges A and B.

Electric field near the vicinity of charge A

Direction of electric field Nature of electric field Graph

On the right side 
of the charge A

Towards the 
negative x-axis 

Negative
Plotted below 

the x-axis 

On the left side 
of the charge A

Towards the 
positive x-axis

Positive
Plotted above 

the x-axis

Electric field near the vicinity of charge B

Direction of electric field Nature of electric field Graph

On the right side 
of the charge B

Towards the 
negative x-axis 

Negative
Plotted below 

the x-axis 

On the left side 
of the charge B

Towards the 
positive x-axis

Positive
Plotted above 

the x-axis

In between A and B, there is a point where the net electric field is zero.
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Hence, the E-x graph is given as follows:

EE

xx
A B

q0q0 q0−q −q

E EE EA B

For two unlike charges
Here, the two unlike charges of the same magnitude are separated by some distance. There is 
no possibility of a neutral point (the net electric field is zero) between two unlike charges. Since 

2

1E
x

∝ , the electric field intensity of a charge is maximum near the vicinity of the charge. As the 

distance increases, the electric field intensity decreases. Therefore, the net electric field is not 
zero at the midpoint between unlike charges. Here, let us consider two point charges A (negative 
charge) and B (positive charge) of the same magnitude separated by some distance. Now, identify 
the electric field near the vicinity of charges A and B.

Electric field near the vicinity of charge A

Direction of electric field Nature of electric field Graph

On the right side 
of the charge A

Towards the 
negative x-axis 

Negative
Plotted below 

the x-axis 

On the left side 
of the charge A

Towards the 
positive x-axis

Positive
Plotted above 

the x-axis

Electric field near the vicinity of charge B

Direction of electric field Nature of electric field Graph

On the right side 
of the charge B

Towards the 
positive x-axis 

Positive
Plotted above 

the x-axis 

On the left side 
of the charge B

Towards the 
negative x-axis

Negative
Plotted below 

the x-axis

In between A and B, there is a point where the value of the electric field is minimum.
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Hence, the E-x graph is given as follows:

EE

xx

q0q0 q0−q +q

E EE

A

A

B

B

Electric Field Due to Continuous Charge Distribution

Consider a continuous charge Q distributed uniformly throughout area A to obtain the electric field 
at some point P, which is at distance r from the body.
Consider a small elemental charge dq of area da. Due to this small elemental charge, the field is dE.  
The distance between dq and point P is x.
The electric field due to charge dq is given by,

( )ˆk dqdE x i
x

=


2

The electric field for the whole body is given by,

ˆk dqdE x
x

=∫ ∫


2

The charge per unit area (𝜎) is given by,

Q
A

σ =

So, the small elemental charge dq is given by,

( )

dq
da

dq da
Qdq da
A

dq i
k dqdE

x
kQ dadE
A x

σ

σ

⇒ =

⇒ =

⇒ =

=

=

By substituting the value of in equation , we get,

2

2

On integrating the equation with proper limits, we can find the net electric field acting at point P.

x

dq

da
dE

P
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Linear charge density (𝝀)

The amount of charge per unit length is known as linear charge density (𝜆).

Charge Q is distributed across the wire

L

Q
L

λ =

Electric Field at an Axial Point

Consider a charged rod of length L and point P, which is at distance r from the rod. Consider a small 
charge dq of length dx that is at distance x from point P. Due to the small charge dq, the electric 
field dE is generated.

L
dx

dq
dE

x

P

r

The electric field due to the small charge dq is given by,

( )

( )

...

,
r L

r

r L

r

k dqdE i
x

Q
L

dq dx

Qdq dx
L

dq i

kQ dxdE
L x

dE x r x r L

kQ dxdE
L x

kQdE x dx
L

λ

λ

+

+
−

=

=

⇒ =

=

= = +

=

⇒ =

∫ ∫

∫ ∫

We know, =

By substituting the value of in equation , we get,

By integrating from to we get,

2

2

2

2
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r L

r

r L

r

net

kQ xdE
L

kQdE
L x

kQE
L r r L

+− +

+

 
⇒ =  − + 

 ⇒ = −  

 
⇒ = − + 

∫

∫


2 1

2 1

1

1 1

The direction of the net electric field can be determined by the nature of the charge on the rod.

L r

P

Enet

L r

P

Enet
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What you already know What you will learn

•	 Analysis of an electric field

•	 Electrified position curve

•	� Electric field due to continuous charge 
distribution

•	� Uniformly distributed line charge

•	� Special cases for uniformly distributed 
charges

Consider a wire of length L and charge Q is uniformly distributed along the length of the rod. Let us 
consider a non-axial point P that is at a distance of r from the wire. Now, let us drop a perpendicular 
to the wire from point P that meets the wire at point O. Since charge is uniformly distributed along 
the length, to find the electric field at point P, consider an element having a charge of dq with 
thickness dx at a distance of x from point O. Let the distance between the field point P and the 
element dx be a, and the angle subtended by element dq with the perpendicular dropped from the 
field point P be θ. For the extremes of the rod, the angle subtended by the left and right ends of 
the rod with the field point is ⍺ and β, respectively. Let us take the clockwise direction as positive 
and the anticlockwise as negative. So, the range of θ is from +⍺ to –β. Let dE be the electric field at 
point P by the element charge dq. Thus, it is resolved into perpendicular and parallel component of 
the electric field as dE cos θ and dE sin θ, respectively, as shown in the figure.

Uniformly Distributed Line Charge

Electric field at a non-axial point

Electric field (dE) at point P by the element charge (dq) is given by,

( )

( )

( )

From ,

By squaring both sides, we get,

By substituting the value of in equation , we get,

.......

cos

cos

cos

cos .......

k dqdE i
a

POR

r
a

ra

ra

a i

k dqdE ii
r

θ

θ

θ

θ

=

∆

=

⇒ =

⇒ =

=

2

2
2

2

2

2

2

NEET

+++++++++++++++++++

⍺
a

dq

dx
L

r
βθ

θ
dE
dE sin θ

dE cos θ
P

x
O

R

BOARDS

N
O

TE
S

ELECTROSTATICS

P H Y S I C S

ELECTRIC FIELD DUE TO CONTINUOUS 
CHARGE: 2
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( )

( )

( )

From ,

By squaring both sides, we get,

By substituting the value of in equation , we get,

.......

cos

cos

cos

cos .......

k dqdE i
a

POR

r
a

ra

ra

a i

k dqdE ii
r

θ

θ

θ

θ

=

∆

=

⇒ =

⇒ =

=

2

2
2

2

2

2

2

The linear charge density of the wire is given by,

( )

( )

=

The elemental charge can be written as follows:

By substituting the value of in equation , we get,

In

By differentiating both sides, we get,

By substitutin

cos ......

,

tan

sec

Q
L

dq

dq dx

Qdq dx
L

dq ii

kQ dxdE iii
L r

POR

x r

dx r d

λ

λ

θ

θ

θ θ

=

⇒ =

=

∆

=

=

2

2

2

( )

( )

g in equation we get,,

sec cos

...... sec
cos

dx iii

kQ r ddE
L r

kQ ddE iv
Lr

θ θ θ

θ θ
θ

=

 
⇒ = = 

 


2 2

2

2
2

1

The electric field at point P can be resolved into two components: one parallel to the length of the 
wire E∥ and one perpendicular to the length of the wire E⟂.

[ ]

[ ] ( )

sinsin

sin

cos

cos cos .........

kQ dE dE
Lr

kQE d
Lr

kQE
Lr

kQE v
Lr

α

β

α

β

α

β

θ θθ

θ θ

θ

β α

−

−

−

= =

⇒ =

⇒ = −

⇒ = −

∫ ∫

∫









a r
θ

P

x OR
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Also,

[ ]

[ ] ( )

cos cos

sin

sin sin .........

kQE dE d
Lr

kQE
Lr

kQE vi
Lr

α

β

α

β

θ θ θ

θ

α β

⊥
−

⊥ −

⊥

= =

⇒ =

⇒ = +

∫ ∫

Note

Equations (v) and (vi) are the generalised relations for the parallel and perpendicular components 
of the electric field at any arbitrary non-axial point due to linear charge distribution.

1. The electric field at a point on the perpendicular bisector (equatorial):

In this case, let us find the electric field at point P, which lies along the perpendicular bisector at 
a distance of r from the wire as shown in the figure. Thus, the angle subtended by the left and 
right ends of the rod with the field point P is, 

⍺ = β = θ

The parallel component of the electric field at any non-axial point is given by,

[ ]

[ ]

[ ]

[ ]

[ ]

The perpendicular component of the electric field is given by,

The net electric field is given by

cos cos

cos cos

sin sin

sin sin

sin

,

sin

net

net

kQE
Lr

kQE
Lr

kQE
Lr

kQE
Lr

kQE
Lr

E E E

kQE
Lr

β α

θ θ

α β

θ θ

θ

θ

⊥

⊥

⊥

⊥

= −

⇒ = − =

= +

⇒ = +

⇒ =

= +

⇒ =











2 2

0

2

2

+ + + + + + + + + + + + + + + + + +

θ θ
r

P E∥

E⟂

L
2

L
2

Special cases
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Consider an infinite wire with charge Q distributed uniformly along the length of the wire. Let us 
find the electric field at a non-axial point P, which is at a distance of r from the rod as shown in 
the figure.

The linear charge density of the wire is given by,

  Q
L

λ =

Since the wire is of infinite length, the angle subtended by the left and right ends of the wire with 
the field point P is, ⍺ = β = 90°.

The parallel component of the electric field at any non-axial point is given by,

[ ]

[ ]

[ ]

[ ]

The perpendicular component of the electric field is given by,

The net electric field is given by

cos cos

cos cos

sin sin

,

net

net

kQE
Lr

kQE
Lr

kQE
Lr

kQE
Lr

kE
r

E E E

kE
r

β α

λ

λ

⊥

⊥

⊥

⊥

= −

⇒ = ° − ° =

= ° + °

⇒ = +

⇒ =

= +

⇒ =











2 2

90 90 0

90 90

1 1

2

2

In a semi-infinite and long wire, one end is finite and the 
other end is infinite. Charge Q is distributed uniformly 
along the length of the wire. Let us find the electric 
field at a non-axial point P, which is at a distance of r 
from the wire as shown in the figure.

The linear charge density of the wire is given by,

  Q
L

λ =

Since the wire is semi-infinitely long, the angle subtended by the left and right ends of the wire 
with the field point P is, ⍺ = 0, β = 90°.

2. Electric field due to an infinite wire:

3. Electric field due to a semi-infinite wire:

++++++++++++++++++

P90°

90°

–∞

+∞

r

E∥

E⟂

+ + + + + + + + + + + + + + + + + +

P

∞

r
E∥

E⟂Enet
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The parallel component of the electric field at any non-axial point is given by,

[ ]

[ ]

cos cos

cos cos

kQE
Lr

kQE
Lr

kE
r

β α

λ

= −

⇒ = ° − °

⇒ = −

90 0







Negative sign shows that the direction of the field is opposite to the conventional positive 
direction

[ ]

[ ]

The perpendicular component of the electric field is given by,

The net electric field is given by

sin sin

,

net

net

kQE
Lr

kQE
Lr

kE
r

E E E

kE
r

λ

λ

⊥

⊥

⊥

⊥

= ° + °

⇒ = +

⇒ =

= +

⇒ =







2 2

0 90

0 1

2

Consider a ring of radius R and charge Q is uniformly distributed 
along the length of a wire as shown in the figure.

Let us consider a small element of charge dq on the ring 
and an electric field dE on the centre due to this charge. On 
the contrary, to the small element of charge dq, there exists 
another element of charge dq on the diametrically opposite 
side. It creates an equal and opposite electric field at the 
centre. Similarly, for every element, there will be a counter 
element in the ring. Thus, the net electric field at the centre of 
the ring is zero.

  0CE =


4. The electric field at the centre of a uniformly charged ring:

+
+

+
+

+ + + + + + + + + + + + +
+

+
+

+
+

+
+

++++++++++++++
+

+

Q dq
dE dE

C

R

dq
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Uniformly Charged Ring

Electric field intensity at an axial point

``What you already know

•	 Uniformly distributed line charges

•	 Special cases for uniformly distributed 
charges

•	 Electric field due to:

1.	 Uniformly charged ring

2.	Uniformly charged semicircular ring

3.	 Uniformly charged quarter ring

What you will learn

BOARDS NEET

Consider a circular ring of radius R. Charge Q is distributed uniformly along the circumference of 
the ring. To find the net electric field due to the uniformly charged ring at an axial point P which 
is at a distance r  from the center of the ring, consider a small elemental charge dq on the ring. At 
point P, the electric field due to small elemental charge dq will be dE as shown in the figure. This 
field dE can be resolved into two components, 
one along the axis of the ring and the other 
one perpendicular to the axis of the ring. Thus, 
the component of the electric field along the 
x-axis is given by dE cos θ and the component 
of the electric field along the y-axis is given by 
dE sin θ.

Let us consider another small elemental charge 
dq on the ring which is diametrically opposite 
to the small elemental charge dq considered 
earlier. Thus, at point P, the electric field due 
to small elemental charge dq will be dE and 
this electric field dE can be resolved into two 
components.The component along the x-axis 
is given by dE cos θ and the component along 
the y-axis is given by dE sin θ.

We can observe that due to the diametrically opposite element charge, the components of the 
electric field along the y-axis cancel each other. Because of the circular symmetry of the ring, the 
net electric field along the y-axis is zero. Thus, the net electric field due to all the elemental charges 
will be along the axis of the ring only (x-axis).

r

x

x
P

C

R

y
dq

Q

dE

dE cos θ 

dE sin θ

θ
θ

N
O

T
E

S

ELECTROSTATICS

P H Y S I C S

ELECTRIC FIELD DUE TO CONTINUOUS 
CHARGE: 3



The small elemental electric field dE due to small elemental charge dq at point P is given by,

cos

cos

, ,
cos

cos

c

x

x

x

x

k dqdE
x

x

E dE

k dqE
x

k x
k

x
kE dq

x
kQE

θ

θ

θ
θ

θ

=

=

⇒ =

⇒ =

⇒ =

∫

∫

∫

The net electric field along the -axis is given by,

We know that for a ring about an axial point, and is same for every elements of the ring.

Therefore, is constant.

2

2

2

2

( )os ...... i
x

θ
2

From the figure on the previous page, we get,

( )

( )

( )

cos

cos ,

.....

x

x

y

net x y

net

r r
x r R

i
kQ r kQrE
x x x

kQrE
r R

y
E

E E E

kQrE
r R

θ

θ

= =
+

= =

⇒ =
+

=

= +

⇒ =
+





By substituting the value of in equation we get,

Also, the electric field along -axis is given by,

The net electric field is given by,

2 2

2 3

3
2 2 2

2 2

3
2 2 2

0

( ). ii

Now, the linear charge density of the ring is given by,

( )

( )

,

net

Q
R

Q R
Q ii

k RrE
r R

λ
π

λπ

π λ

=

⇒ =

=
+



By substituting in equation we get,

3
2 2 2

2
2

2
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Case 1: When r >> R

( )
net

net

net

r R r

kQrE
r

kQrE
r

kQE
r

+ ≈

⇒ =

⇒ =

⇒ =







The net electric field is given by,

2 2 2

3
2 2

3

2

The ring acts as a point charge when r >> R.

To get the location of the maximum value of the net electric field of the ring,

( )

( )

( )

( ) ( ) ( )

( ) ( )

' '

'

'

dE
dr

d kQr
dr r R

d rkQ
dr r R

u r v r R

d u vu uv
dr v v

du dru
dr dr
dv dv r R r R r
dr dr

v r R r R

=

 
 

= 
 + 

 
 

⇒ = 
 + 

= = +

−  = 
 

= = =

= = + = +

 
= + = + 
 

Let and and we know that,

Now,

3
2 2 2

3
2 2 2

3
2 2 2

2

3 1
2 2 2 22 2

23 32 2 2 2 22

0

0

0

1

3 2
2

By substituting all the values, we get,

( )

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

.

dE d rkQ
dr dr r R

r R r r R rdE kQ
dr r R

r R r

r

M

r R

r R r R r r R

r R r
R

Rr

RE

N

r

 
 

= = 
 + 
 

+ − + 
⇒ = = 

 +
  

⇒ + − + =

⇒ + + = +

⇒ + =

⇒ =

⇒ = ±

∴ = ± In the figure,

 and  are t

will be maximum when

3
2 2 2

3 1
2 2 2 22 2

32 2

3 1
2 2 2 2 22 2

1 112 2 2 2 2 2 22 2

2 2 2

2 2

0

31 2
2 0

3 0

3

3
2

2

2

( )
.

max

max

max

ii

RkQ
E

R R

RkQ
E

R

kQE
R

r

 
 
 =

 
+ 

 
 
 
 ⇒ =

 
  
 

⇒ =







hese two points where the electric field 

due to the ring is maximum

By substituting the magnitude o equation , we gef  t,in

3
2 2

2

3

2

2

2

2
3 3
2 2
2

3 3

Case 2: When r << R

( )
net

net

r R R

kQrE
R

kQrE
R

+ ≈

⇒ =

⇒ =





The net electric field is given by,

2 2 2

3
2 2

3
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( )

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

.

dE d rkQ
dr dr r R

r R r r R rdE kQ
dr r R

r R r

r

M

r R

r R r R r r R

r R r
R

Rr

RE

N

r

 
 

= = 
 + 
 

+ − + 
⇒ = = 

 +
  

⇒ + − + =

⇒ + + = +

⇒ + =

⇒ =

⇒ = ±

∴ = ± In the figure,

 and  are t

will be maximum when

3
2 2 2

3 1
2 2 2 22 2

32 2

3 1
2 2 2 2 22 2

1 112 2 2 2 2 2 22 2

2 2 2

2 2

0

31 2
2 0

3 0

3

3
2

2

2

( )
.

max

max

max

ii

RkQ
E

R R

RkQ
E

R

kQE
R

r

 
 
 =

 
+ 

 
 
 
 ⇒ =

 
  
 

⇒ =







hese two points where the electric field 

due to the ring is maximum

By substituting the magnitude o equation , we gef  t,in

3
2 2

2

3

2

2

2

2
3 3
2 2
2

3 3

xC

R

y

Q
N M

R
2

R
2

Uniformly Charged Semicircular Ring

Consider a semicircular ring of radius R. Charge Q is 
uniformly distributed along the circumference of the 
semicircular ring. To find the net electric field due to 
the uniformly charged semicircular ring at its center, 
let us consider a small elemental charge dq on the 
ring that subtends an angle θ with the x-axis and the 
angular width of the elemental charge dq is dθ. At the 
center, the electric field due to small elemental charge 
dq will be dE as shown in the figure. This field dE can 
be resolved into two components, the component of 
the electric field along the x-axis is given by dE cos θ 
and the component of the electric field along the 
y-axis is given by dE sin θ.

Similarly, let's consider another elemental charge dq on the semicircular ring that resides at 
symmetrically opposite side to the small elemental charge dq considered earlier. Thus, at point P, 
the electric field due to the new small elemental charge dq will be dE and this electric field dE can 
also be resolved into two components along the x and y axes as dE cos θ and dE sin θ, respectively.

R

P

y

x

dE

dE cos θ 

dE sin θ

dθ

θ

dq

r

E

R
2

O

maxE


maxE


–
R
2
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Since for every elemental charge in the ring, there is a similar elemental charge in symmetrically 
opposite side of the ring. Hence, the net electric field along the x-axis is zero. Thus, the net electric 
field due to all the elemental charges of the semicircular ring will be along the y-axis only.

Let the small elemental charge of the semicircular ring be,

dq = 𝜆 dx     ....(i)

Here, dx is the small arc subtending angle dθ.

dx = R dθ 

By substituting the value of dx in equation (i), we get,

dq = 𝜆R dθ    ....(ii)

Also, the linear charge density of the semicircular ring (𝜆) is given by,

( )

,

cosx

Q
R

dq
k dqdE
R

k R ddE dq R d
R

kQ QdE d
R R

x

E dE
π

λ
π

λ θ λ θ

θ λ
π π

θ

=

=

⇒ = =

 ⇒ = = 
 

= =∫





The small elemental electric field due to small elemental charge is given by,

The net electric field along the -axis is given by

The net electric field al

2

2

2

0

0

[ ]

[ ]

,

sin

sin

cos

cos cos

y

y

y

y

y

net y

y

E dE

kQE d
R

kQE
R

kQE
R
kQE
R

kQ k QE E
R R R

π

π

π

θ

θ θ
π

θ
π

π
π

π

λ λ
π π

=

⇒ =

⇒ = −

⇒ = − +

⇒ =

 = = = = 
 

∫

∫

 



ong the -axis is given by

The net electric field is given by,

0

2
0

2 0

2

2

2

0

2

2 2
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Consider a quarter ring of radius R. Let us take a small charge 
dq at an angle θ from the x-axis. The angular width of the 
elemental ring is dθ. Due to the elemental charge dq, there 
will be a small electric field dE at the centre of the ring and 
this field dE can be resolved into components along the x 
and y axes as dE cos θ and dE sin θ, respectively.

Let the small elemental charge of the quarter ring be,

dq = 𝜆 dx     ....(i)

and, dx = R dθ

[ ]

,

cos cos

sin

sin sin

x

x

x

Q
R

dq
k dqdE
R

k Q d QdE dq d
R

x

kQ dE dE
R

kQE
R
kQE
R

π π

π

λ
π

θ θ
π π

θθ θ
π

θ
π

π
π

=

=

 ⇒ = = 
 

= =

⇒ =

 ⇒ = − 

∫ ∫



The small electric field due to charge is given by,

The net electric field along the -axis

is given by

2

2

2 2

2
0 0

2
2 0

2

2

2 2

2

2

2 0
2

[ ]

( ) ( )

,

sin sin

cos

cos cos

ˆ ˆ

ˆ

x

y

y

y

y

net x y

net

kQE
R

y

kQ dE dE
R

kQE
R
kQE
R
kQE
R

E E i E j

kQE
R

π π

π

π

θθ θ
π

θ
π

π
π

π

π



⇒ =

= =

⇒ = −

 ⇒ = − +  

⇒ =

= − + −

⇒ = −

∫ ∫





The net electric field along the -axis

is given by

The net electric field is given by,

2

2 2

2
0 0

2
2 0

2

2

2

2

2

2

2 0
2

2

2 ( ) ( )

( ) ( )

ˆ

ˆ ˆ
net

net x y

net

kQi j
R

kQ kQE i j
R R

E E E

kQ kE
R R

π

π π

λ
π

+ −

⇒ = − −

= +

⇒ = =



  



So,

2

2 2

2 2

2

2

2 2

2 2 2

R

P

y

x

dE

dE cos θ 

dE sin θ

dθ

θ

dq

[ ]

,

cos cos

sin

sin sin

x

x

x

Q
R

dq
k dqdE
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The small electric field due to charge is given by,

The net electric field along the -axis

is given by
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The net electric field along the -axis
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The net electric field is given by,

2

2 2

2
0 0

2
2 0

2

2

2

2

2

2

2 0
2

2

2 ( ) ( )

( ) ( )

ˆ

ˆ ˆ
net

net x y

net

kQi j
R

kQ kQE i j
R R

E E E

kQ kE
R R

π

π π

λ
π

+ −

⇒ = − −

= +

⇒ = =



  



So,

2

2 2

2 2

2

2

2 2

2 2 2

[ ]

,

cos cos

sin

sin sin

x

x

x

Q
R

dq
k dqdE
R

k Q d QdE dq d
R

x

kQ dE dE
R

kQE
R
kQE
R

π π

π

λ
π

θ θ
π π

θθ θ
π

θ
π

π
π

=

=

 ⇒ = = 
 

= =

⇒ =

 ⇒ = − 
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The small electric field due to charge is given by,

The net electric field along the -axis

is given by
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The net electric field is given by,
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∫ ∫
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The small electric field due to charge is given by,

The net electric field along the -axis

is given by
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The net electric field along the -axis
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The net electric field is given by,
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Uniformly Charged Quarter Ring
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•	 Electric field due to a:

1.	 Uniformly charged ring

2.	Uniformly charged semicircular ring

3.	 Uniformly charged quarter ring

What you already know

•	 Electric field due to a sector ring

•	 Motion of a charged particle in an external 

electric field

What you will learn

Uniformly Charged Ring Sector

Electric field at the centre of a sector ring

Consider a sector of a  ring of radius R and charge Q is distributed uniformly along the circumference 
of the ring. The ring subtends an angle 𝛼 at the centre P, and the y-axis divides the ring into two 
halves. To find the net electric field by a sector of a uniformly charged ring at its centre P, let us 
consider a small elemental charge dq of thickness dx at an angle θ from the vertical. The angular 
width of the small elemental charge is dθ and the electric field at point P due to the small elemental 
charge dq is dE as shown in the figure. The components of the electric field along the x-axis and 
y-axis are dE sin θ and dE cos θ, respectively.
Similarly, consider another small elemental charge dq that is symmetrically opposite to the small 
elemental charge considered earlier. Thus, at point P, the electric field due to the small elemental 
charge dq is dE, and this electric field dE can be resolved 
into two components as shown in the figure.
We can observe that due to the symmetrically opposite 
charge element dq, the components of electric field 
along the x-axis of both the charges cancel each other. 
Similarly, for every element, there is a symmetrically 
opposite element. Thus, the net electric field due to all 
the elemental charges is along the y-axis of the ring.
The linear charge density of the ring is given by,

The small charge is given by,

Q Q
L R

dq dx
Qdq dx

R
Qdq R d

R

λ
α

λ

α

θ
α

= =

=

⇒ =

⇒ =

dqdq
d𝜃

dE sin 𝜃

dE dE

dE sin 𝜃

dE cos 𝜃

x

y

𝜃𝜃

R

𝛼

ELECTROSTATICS

P H Y S I C S

MOTION OF CHARGED PARTICLE

N
O

T
E

S
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The small elemental electric field dE due to small elemental charge dq at point P is given by,

The component of the electric field along the -axis is given by,

The component of the electric field along the -axis is given by,
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=
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∫

∫

∫

[ ]

( )

The net electric field at the centre of the sector of the ring is given by,

2

2

n

sin sin
2 2

2 sin
2

2 2sin sin .....
2 2

y

y

net y

kQE
LR

kQE
LR

kQ kE E i
LR R

α

αθ

α α

α

α λ α

−

− ⇒ = −  

⇒ =

= = =
 

Equation (i) is the general relation for finding the electric field at the centre of an arc. Using this 
result, we can find the net electric field at the centre of a quarter ring, semicircular ring, etc. by 
substituting the proper value of 𝛼.

Case 1: Electric field at the centre of a quarter 
ring

For a quarter ring, 𝛼 = 90°
The net electric field is given by,

sin

sin sin

net

net

net

kE
R

k kE
R R
k kE
R R

λ α

λ λ

λ λ

=

°
⇒ = = °

⇒ = × =







2
2

2 90 2 45
2

2 1 2
2

Case 2: Electric field at the centre of a 
semicircular ring

For a semicircular ring, 𝛼 = 180°
The net electric field is given by,

sin

sin sin

net

net

net

kE
R

k kE
R R
k kE
R R

λ α

λ λ

λ λ

=

°
⇒ = = °

⇒ = × =







2
2

2 180 2 90
2

2 21
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4

Find the electric field at the centre of the ring shown in 
the figure (where λ is the linear charge density).

Zero(D)(A)
4k

R
λ

(B)
2k

R
λ

(C)
k
R
λ

Solution

The linear charge density of the upper ring is +λ and that of the lower part is −λ. To solve this kind 
of a problem, let us divide the ring into two semicircular rings.

−λ

P

R

B
EA EB

+λ

A
R

For the upper half of the ring, the electric field is acting away from the ring along vertically downward 
direction, and the magnitude of the electric field is given by,

[ ]Since the ring is semicircular    2
A

kE
R
λ

=

For the lower half of the ring, the electric field is also acting vertically downwards as the ring has 
negative linear charge density, and the magnitude of the electric field is given by,

2
B

kE
R
λ

=

The net electric field at point P is given by,

P A B

P

P

E E E

k kE
R R
kE
R

λ λ

λ

= +

⇒ = +

⇒ =

  





2 2

4

Thus, option (A) is the correct answer.

+λ

−λ

A

P

R

R
B

P
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Solution

For quadrant A, the electric field will be towards C (since the charge is positive in quadrant A), and 
the magnitude of the electric field is given by,

A
kE

R
λ

=
2

For quadrant B, the electric field is towards quadrant D (since the charge is positive in quadrant B), 
and the magnitude of the electric field is given by,

2 2
B

kE
R
λ

=

For quadrant C, the electric field is towards C itself as it is negatively charged, and the magnitude 
of the electric field is given by,

2 2
C

kE
R
λ

=

For quadrant D, the electric field is towards D itself, and the magnitude of the electric field is given 
by,

D
kE

R
λ

=
2

The net electric field along quadrant D is given by,

B DE E E

kE
R
λ

= +

⇒ =

  



1

1
3 2

The net electric field along quadrant C is given by,

A CE E E

kE
R
λ

= +

⇒ =

  



2

2
3 2

4

Find the electric field at the centre of the ring shown in 
the figure (where λ is the linear charge density).

Zero(D)(A) (B) (C)
k
R
λ 4k

R
λ 6k

R
λ

+λ +2λ

−λ −2λ

A

P

R

D C

B

+λ +2λ

−λ −2λ

A

P

R

D C

B

EAED

EB EC
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The net electric field is given by,

cosP

P

P

E E E E E

k k kE
R R R

kE
R

λ λ λ

λ

= + + °

     
⇒ = + =          

     

⇒ =







2 2
1 2 1 2

2 2

2 90

3 2 3 2 3 22

6

Thus, option (C) is the correct answer.

+λ +2λ

−λ −2λ

A
P

D C

B

E1 E2EP

45° 45°

4

Zero(D)(A) (B) (C)
4k

R
λ 2k

R
λ 6k

R
λ

Find the electric field due to the 
combination at point P (where λ is the 
linear charge density).

Solution

From the figure, it is clear that the given system is a combination of two semi-infinite wires and a 
semicircular ring. First, let us take the two semi-infinite wires. Due to wire A, the electric field at 
point P will have two components, one parallel to the rod and the other one perpendicular to the 
rod. Recall that the angle subtended by a semi infinite wire at the field point is given by,

[ ]

[ ]

and

The parallel component is given by,

The perpendicular component is given by,

E

The net electric field is given by,

Similarly, due to wire the ne

cos cos

sin sin

,

A

kQ kQ kE
Lr Lr r

kQ kQ k
Lr Lr r

kE E E
r

C

α β

λβ α

λα β

λ

⊥

⊥

= ° = °

= − = − = −

= + = =

= + =







2 2

0 90

2

t electric field is given by,

C
kE E E

r
λ

⊥= + =




2 2 2

+λ

+λ

+λ

A∞

∞

P
R

C

B
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,

C

C

kE E E
r
λ

⊥= + =

Similarly, due to wire the net electric field is given by,





2 2 2

As the net electric fields due to both the rods are in the opposite 
directions, they cancel each other. The net electric field in this 
configuration is only due to the semicircular ring.
The net electric field due to the semicircular ring at its centre 

is given by, B
kE
R
λ

=
2

, and it is directed away from the ring.

This is the net electric field due to the whole configuration.
Thus, option (B) is the correct answer.

4

Two parallel infinite line charges with linear charge 
densities +λ and -λ are placed at a distance of 2R 
in free space. What is the electric field midway 
between the two line charges?

+λ −λ

+∞

−∞

+∞

−∞

R

2R

Solution

The electric field due to both the infinite line charges is 
along the same direction as they are oppositely charged.
The electric field due to wire having line charge density 
+λ is given by,

kE
Rλ
λ

+ =
2

The electric field due to wire having line charge density 
−λ is given by,

kE
Rλ
λ

− =
2

Zero (D)(A) (B) (C)
0R
λ

πε 02 R
λ
πε 0

2
R
λ

πε

+λ

E+λ

E−λ

−λ

+∞

−∞

+∞

−∞

R

2R

NEET

+λ

+λ

+λ

A∞

∞

P
EC
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C

B
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The net electric field is given by,

0

net

net

net

kE E E
R

E k
R

E
R

λ λ
λ

λ
πε πε

λ
πε

+ −= + =

 
⇒ = = 

 

⇒ =









0 0

4

4 1
4 4

Thus, option (A) is the correct answer.

Motion of a Charged Particle

Consider a uniform electric field E in 
space (gravity-free space). Consider 
that two charges (+q and −q) are placed 
in the electric field. The positively 
charged particle (+q) will experience 
an electrostatic force in the direction 
of the electric field, and the negatively 
charged particle (−q) will experience 
an electrostatic force opposite to the 
direction of the electric field as shown 
in the figure.
The magnitude of the electrostatic force 
is, F = qE.

y

x

vy

vx

v

θ

q, m
vo

To create a uniform electric field, let us take two oppositely charged plates of length x and place 
them parallelly with a small separation between them. One plate is positively charged and the 
other is negatively charged.

E

+q

−qF = qE

F = qE
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A constant electric field is generated in the region between the two plates and it is directed from 
the positively charged plate to the negatively charged plate. Now, let us consider that a charged 
particle of mass m having charge −q enters perpendicularly into the uniform electric field with 
a velocity vo as shown. As we know, when a charged particle moves through an electric field, 
it experiences an electrostatic force. Thus, charge −q experiences an electrostatic force in the 
upward direction (Since unlike charges attract and like charges repel). Therefore, charge −q gets 
deviated from its original path and let at a certain instant, the deviation is y. Let us assume that the 
velocity of the particle just before leaving the region of the uniform electric field is v.
Along the x-axis, the force acting on the particle is 0. Hence, the acceleration along the x-axis is 0.
Fx = 0 and ax = 0
Force along the y-axis is, Fy = qE.
The acceleration along the y-axis is, y

qEa
m

= .

Therefore, the net acceleration of the particle is given by, net y
qEa a
m

= = .

Along the x-axis,

( )

Hence, by applying the second equation of motion in , we get,

x o

x

x x x

o

o

u

i

D

v
S x

S u t a t

x v t
xt
v

=

=

= +

⇒ =

⇒ = 

2

1
1
2

Where, t is the time taken by the charge to travel through the electric field.
Along the y-axis,

( )

Again, by applying the second equation of motion in , we get,

From equation 

y

y

y y y

o

u

S y

S u t a t

qEy t
m
qE xy
m v

D

i

=

=

= +

⇒ =

 ⇒ =  

2

2

2

2

0

1
2

1
2

1

1
2

This is the net deviation of the charged particle after passing through the electric field.

Velocity of the charged particle

The velocity of the particle along the x-axis is given by, 
vx = ux + ax t
⇒ vx = vo
The velocity of the particle along the y-axis is given by, 
vy = uy + ay t
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y
o

qE xv
m v

⇒ =

The net velocity of the particle can be written as,

ˆ ˆ

ˆ ˆ

net x y

net o
o

v v i v j

qExv v i j
mv

= +

⇒ = +





The angle subtended by the net velocity vnet is given by,

tan y o

x o o

qE x
v m v qEx
v v mv

θ

 
 
 = = = 2

vy

θ vx

vnet

4
An electron falls from rest through a vertical distance h in a uniform and vertically upward 
directed electric field E. The direction of the electric field is now reversed, keeping its 
magnitude the same. A proton is allowed to fall from rest in it through the same vertical 
distance h. Find the time of fall of the electron in comparison to the time of fall of the proton.

(A)	Smaller (B)	5 times greater (C)	10 times greater (D)	Equal

Solution

In the first case, the electron falls a distance of h and the initial velocity of the electron is 0.
Force acting on the electron is given by, F = qE.

The acceleration of the particle is given by, 
e

qEa
m

= .

The time taken by the electron to fall is given by,

e

e

e
e

h ut at

ht
a
hmt
qE

= +

⇒ =

⇒ =

21
2
2

2

Where, te is the time taken by the electron to travel h distance.
For the second case, the proton travels a distance of h under the influence of the electric field. The 
time taken by the proton to travel distance h is given by,

p
p

hm
t

qE
=

2

We know that,
mp > me 
Time of fall of electron (te) < Time of fall of the proton (tp)

Thus, option (A) is the correct answer. 

NEET
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What you already know What you will learn

•  Electric fi eld intensity at the centre of ring 
sector

•  Charged particle in an electric fi eld 
and its parameters like acceleration, 
displacement, velocity, and angle of 
defl ection

•  Electric fi eld lines and their representation

•  Electric dipole

•  Electric fi eld at an axial point on a line 
joining a dipole

Michael Faraday fi rst developed the idea of 
visualising electric fi eld lines. They are also 
known as electric lines of force (ELOF), and they 
are imaginary lines.

For an electric charge q, the electric fi eld at a 
distance r is given by,

= 2  kqE
r

For a positive charge, the electric fi eld lines will 
be radially outwards ( just like a bulb emits light).
Whereas, for a negative charge, the electric fi eld 
lines will be radially inwards.

The following diagram shows the intensity of 
electric fi eld lines of a positive charge; as the 
distance increases, the intensity of the electric 
fi eld decreases (In the diagram the length of the 
arrow suggests the intensity of the fi eld).

Electric Field Lines

+

Radially outwards

–

Radially inwards

•  Electric lines of forces originate at a positive charge and terminate at a negative charge. 

Properties of electric fi eld lines

++q
E3E2E1

E1 > E2 > E3

BOARDS

q

E

N
O

TE
S

N
O

TE
S

ELECTROSTATICS

P H Y S I C S

ELECTRIC FIELD LINES AND THEIR 
PROPERTIES
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Electric Field Lines

visualising electric fi eld lines. They are also 
known as electric lines of force (ELOF), and they 

q

•  Electric fi eld at an axial point on a line 
joining a dipole

For a positive charge, the electric fi eld lines will 
be radially outwards ( just like a bulb emits light).
Whereas, for a negative charge, the electric fi eld 
lines will be radially inwards.

, the electric fi eld at a 

be radially outwards ( just like a bulb emits light).
Whereas, for a negative charge, the electric fi eld 

The following diagram shows the intensity of 
electric fi eld lines of a positive charge; as the 
distance increases, the intensity of the electric 
fi eld decreases (In the diagram the length of the 
arrow suggests the intensity of the fi eld).

Properties of electric fi eld lines



•   If two charges are close to each other, then the electric 
fi eld lines will be as shown in the fi gure.

•   For an isolated charge, the electric fi eld lines terminate at infi nity (∞). 

•   A tangent at any point on the electric line of force gives the direction of the net electric fi eld. It is 
shown in the following diagram (Fig. 1) more precisely.       
So, if we take tangents at various points along an electric fi eld line, they denote the direction of 
the electric fi eld at each of those points, as shown in the fi gure (Fig. 2).

•   Electric fi eld lines do not form a closed loop. The 
reason is that the points of origination and termination 
should be di� erent, as an electric fi eld line originates 
from a positive charge and ends at a negative charge. 

•   For a system of two charges having equal magnitude 
and opposite nature, electric fi eld lines are always 
symmetric about the line joining the two charges.

•   Electric fi eld lines are always perpendicular to 
the surface of the charged body.

•   For an individual charge, the number of electric 
lines of force is an independent choice. It means 
that for a given magnitude of the charge, the 
electric lines of forces can vary.

•   The magnitude of the charge is directly 
proportional to the number of electric lines of 
force originating or terminating at the charge. 
It means that if for a ‘+q’ charge, we take four 
lines, then for a ‘+2q’ charge, the lines of forces 
should be double, i.e., eight.

–+

+ –𝛼
𝛼

β

β

+ –

+ + +2q+q

–+

Fig. 2

–+

E+

Fig. 1

E–

Enet
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A tangent at any point on the electric line of force gives the direction of the net electric fi eld. It is 
shown in the following diagram (Fig. 1) more precisely.       
So, if we take tangents at various points along an electric fi eld line, they denote the direction of 

Electric fi eld lines do not form a closed loop. The 
reason is that the points of origination and termination 
should be di� erent, as an electric fi eld line originates 
from a positive charge and ends at a negative charge. 

For a system of two charges having equal magnitude 
and opposite nature, electric fi eld lines are always 
symmetric about the line joining the two charges.

Electric fi eld lines do not form a closed loop. The 
reason is that the points of origination and termination 
should be di� erent, as an electric fi eld line originates 
from a positive charge and ends at a negative charge. 

For a system of two charges having equal magnitude 

––––––

So, if we take tangents at various points along an electric fi eld line, they denote the direction of 
the electric fi eld at each of those points, as shown in the fi gure (Fig. 2).

and opposite nature, electric fi eld lines are always 
symmetric about the line joining the two charges.

Electric fi eld lines are always perpendicular to 
the surface of the charged body.

For an individual charge, the number of electric 



•   No two electric fi eld lines intersect, because the electric fi eld is a 
vector quantity and it cannot have two di� erent directions at the 
same point.

•   The electric lines of force for two positive charges 
are pictorially depicted in the fi gure,

•   The strength of the electric fi eld (or electric 
fi eld intensity) is represented as electric 
lines of force per unit area. For the given 
diagram, four equal surfaces A, B, C and D
are considered, and the electric lines of force 
passing through them are also shown in the 
fi gure. The descending order of the number 
of electric lines of force passing through the 
surfaces (line density) is A > B > C > D. Thus, 
the the descending order of the electric fi eld 
intensity is EA > EB > EC  > ED. In other words, 
denser the electric lines of force, higher is 
the electric fi eld intensity. Similarly, rarer the 
electric lines of force, lesser is the electric 
fi eld intensity.

•   The electric lines of force deviate from a 
positive charge and converge towards a 
negative charge.

E
E

+ +

+

–

A

nA = 8
nB = 6

nC = 4

nD = 3

B
C

D
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The strength of the electric fi eld (or electric 
fi eld intensity) is represented as electric 

nB = 6

fi gure. The descending order of the number 
of electric lines of force passing through the 

> B >
the the descending order of the electric fi eld 

B . In other words, 
denser the electric lines of force, higher is 
the electric fi eld intensity. Similarly, rarer the 
electric lines of force, lesser is the electric 

lines of force per unit area. For the given 
C and 

are considered, and the electric lines of force 
passing through them are also shown in the 
fi gure. The descending order of the number 

. In other words, 
denser the electric lines of force, higher is 
the electric fi eld intensity. Similarly, rarer the 

++++++++++++++++++

electric lines of force, lesser is the electric 
fi eld intensity.

The electric lines of force deviate from a 
positive charge and converge towards a 
negative charge.



Uniform and Non-Uniform Electric Field

For a uniform electric fi eld, all the electric fi eld lines are equi-spaced and parallel to each other. 
This means that the intensity of the electric fi eld at every point in the region is the same. While in 
a non-uniform electric fi eld, the electric fi eld lines are not equally spaced, i.e., they are converging 
or diverging, which means that the intensity of the electric fi eld at each point in the region is not 
the same.

AE


CE


BE


CA B EE E= =
 

Uniform

AE


CE


BE


CA B EE E< <
 

Non-Uniform

Far and Near Fields

As we know that the number of electric fi eld lines emerges or terminates from a point charge 
is directly proportional to the magnitude of the charge, i.e., for the given system of +2q and –q
charges, if there are eight electric lines of forces emerging from +2q charge, then, four electric 
lines of force terminate at the –q charge. For a near point of view, the electric fi eld lines for the 
combination of +2q and –q charges look as given in the fi gure.

For a far point of view, the charges +2q and –q look like a point charge and its magnitude is the sum 
of the two charges, i.e., from the +q charge, four electric fi eld lines should emerge and they look 
as shown in the fi gure.

+ +q

Far point of view

+ –+2q –q

Near point of view
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A BE EA BE EA B

Non-Uniform

Far and Near Fields

As we know that the number of electric fi eld lines emerges or terminates from a point charge 
is directly proportional to the magnitude of the charge, i.e., for the given system of 

E


charges, if there are eight electric lines of forces emerging from 
lines of force terminate at the –q charge. For a near point of view, the electric fi eld lines for the 

 charges look as given in the fi gure.

Far and Near Fields

As we know that the number of electric fi eld lines emerges or terminates from a point charge 
is directly proportional to the magnitude of the charge, i.e., for the given system of 
charges, if there are eight electric lines of forces emerging from 

 charge. For a near point of view, the electric fi eld lines for the 
 charges look as given in the fi gure.

  

For a far point of view, the charges 

+++++ +2q

Near point of view



Electric fi eld lines of force never enter inside a conductor, 
i.e., when a conductor is placed in a uniform electric fi eld, the 
free charges in the conductor move to the outer surface (net 
charge inside the conductor is zero), which ensures that the 
net electric fi eld inside the conductor is zero. Whereas in an 
insulator, the charges cannot move freely. If the net charge 
density inside an insulator is non-zero, then the net electric 
fi eld inside the insulator is non-zero. Thus, the electric fi eld 

Electrostatic Shielding

+
+
+
+–

–
–
–E

lines do exist inside an insulator. The given diagram explains how electrostatic shielding works in a 
conductor, i.e., how the charges inside a conductor oppose the external electric fi eld.

Solution

Let P be the charged body of charge q from which the electric fi eld lines are emerging. Then,

( )
( )

and

Therefore,

A B

A

B

A B

kq kqE E
a a r

E a r
aE

E E

= =
+

+
=

⇒ >

22

2

2

 





 

Thus, option (D) is the correct answer.

(A)   B
A

E
E

r
=





(B) 2  B
A

E
E

r
=





(C)   B AE E>
 

(D)   A BE E>
 

The fi gure shows the electric lines of force emerging from 
a charged body. If the electric fi elds at points A and B are  

AAAEEE


 and BBBEEE


, respectively, and the separation between A
and B is r, then which of the following is correct?

AAAEEE


BBBEEE


A B
r

AE


BE


A
P

+q

B
ra+

No 
electric 

fi eld
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The fi gure shows the electric lines of force emerging from 
a charged body. If the electric fi elds at points A

, respectively, and the separation between 
, then which of the following is correct?

A

––

lines do exist inside an insulator. The given diagram explains how electrostatic shielding works in a 
conductor, i.e., how the charges inside a conductor oppose the external electric fi eld.

fi eld

 be the charged body of charge q from which the electric fi eld lines are emerging. Then,

(B) AE


(C) 

, then which of the following is correct?

conductor, i.e., how the charges inside a conductor oppose the external electric fi eld.

( )
Therefore,

A BA BandA Band

A B

kq kqkq kqkq kqE EE EandE EandA BE EA BA BE EA BandA BandE EandA Band
kq kqE Ekq kqkq kqE Ekq kq

and
kq kq

andE Eand
kq kq

and
a

a r

E EE EA BE EA B

= == =E E= =E EE E= =E EE E= =E EandE Eand= =andE Eand

+a r+a r
=

2A B2A BA BE EA B2A BE EA B

2

kq kq kq kqkq kq kq kq

  

Thus, option (D) is the correct answer.



Solution

Solution

For a uniform electric fi eld, the lines of forces are always equi-spaced and parallel to each other. 

Thus, option (D) is the correct answer.

We know that the number of  electric lines of force is proportional to the magnitude of the charge

Therefore,

q x
q x

q
q x

x

⇒ =

⇒ =

=

1 1

2 2

2

2

4 28

7

Thus, option (B) is the correct answer.

(A) Divergent

(A) 4

(B) Convergent

(B) 7

(C) Circular

(C) 14

(D) Parallel

(D) 28

If electric fi eld is uniform, then the electric lines of force are:

If the number of electric lines of force emerging from the charge +4q are 28, then fi nd out the 
number of electric lines of force emerging from the charge +q.

(A) q1 = +ve, q2 = –ve (B) q1 = –ve, q2 = +ve (C) q1 = –ve, q2 = –ve (D) q1 = +ve, q2 = +ve

The given fi gure gives electric lines of force due to 
two charges, q1 and q2. What are the signs of the two 
charges?

q1 q2
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We know that the number of  electric lines of force is proportional to the magnitude of the charge

If the number of electric lines of force emerging from the charge 
number of electric lines of force emerging from the charge +q

For a uniform electric fi eld, the lines of forces are always equi-spaced and parallel to each other. 

, then fi nd out the 

Thus, option (B) is the correct answer.

We know that the number of  electric lines of force is proportional to the magnitude of the charge

If the number of electric lines of force emerging from the charge +4

Thus, option (B) is the correct answer.

The given fi gure gives electric lines of force due to 
two charges, 1 and q2. What are the signs of the two 
charges?



Solution

Solution

From the given fi gure, we can see the direction of the electric fi eld lines that are converging at both 
the charges. Therefore, it is clear that both the charges carry a negative charge. 

Thus, option (C) is the correct answer.

We know that the closer the electric fi eld lines (line density is high), the stronger will be the electric 
fi eld. At points A and C, the electric fi eld strength is equal in magnitude, while at point B, the fi eld 
lines are far from each other, i.e., the line density at point B is less. 

Thus, option (C) is the correct answer.

Determine the relation between the magnitude 
of the electric fi eld at points A, B, and C.

AAAEEE


EEE


BBBEEE


A
B C

(A) CA B EE E= =
 

(B)     A B CE E E≠ ≠
  

(C)     A C BE E E= ≠
  

(D)     A B CE E E≠ =
  

An electric dipole is a system consisting of two point 
charges that are equal in magnitude but opposite in 
nature, separated by an infi nitesimally small distance.

The centre of a dipole is considered to be the origin for 
all the measurements. Both the charges are at equal 
distance ‘l’ from the centre. 

The dipole moment p is a vector and it is given by,

  2p q l=




The direction of the dipole moment vector will be from 
–q to +q. Thus, we defi ne the dipole moment as the 
magnitude of the charge times the separation between 
the two charges. The SI unit of the dipole moment 
vector is Cm.

Electric Dipole

q q
–+

–+
q q

l l

  2p q l=




  2p q l=



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We know that the closer the electric fi eld lines (line density is high), the stronger will be the electric 
, the electric fi eld strength is equal in magnitude, while at point 

 is less. 

A C BA C BA C B    A C B        A C B    E E EE E EE E EA C BE E EA C BA C BE E EA C BA C B= ≠A C BA C B= ≠A C BE E E= ≠E E EE E E= ≠E E EA C BE E EA C B= ≠A C BE E EA C BA C BE E EA C B= ≠A C BE E EA C B

        

CCCEEEEEE

B C

E E EE E E
        

lines are far from each other, i.e., the line density at point 

Thus, option (C) is the correct answer.

An electric dipole is a system consisting of two point 
charges that are equal in magnitude but opposite in 

infi nitesimally small 

We know that the closer the electric fi eld lines (line density is high), the stronger will be the electric 
, the electric fi eld strength is equal in magnitude, while at point 

lines are far from each other, i.e., the line density at point 

Electric Dipole

An electric dipole is a system consisting of two point 
charges that are equal in magnitude but opposite in 
nature, separated by an 

The centre of a dipole is considered to be the origin for 
all the measurements. Both the charges are at equal 
distance ‘l’ from the centre. 

The dipole moment  is a vector and it is given by,

The direction of the dipole moment vector will be from 



Solution

Suppose that the charge –2q is made up of two charges of magnitude –q as shown in the fi gure. 
Therefore, there will be two dipoles: one made up with –q at B and q at A, and the other made up 
with –q at B and q at C.

For the combination of two dipoles, the net dipole moment is      
given by,

net

net

p pp

p p qa

= +

⇒ = =

 




2 2

2 2

Thus, option (A) is the correct answer.

(A) 2qa (B) qa (C) 2qa (D) 3qa

Find the magnitude of the net dipole moment for the given 
system.

+

+–

a

a2q

q

q

Electric Field Due to Dipole

Electric fi eld at an axial point

Consider that an electric dipole is placed in such a way that its midpoint is at the origin as shown 
in the fi gure. The length of the dipole is 2l, and the magnitude of the charges is q. Therefore, the 
magnitude of the dipole moment is, p = 2ql and the direction of the dipole moment vector is along 
the positive x-axis (from negative charge to positive charge). Suppose that we want to fi nd the 
electric fi eld at point S, which is x distance away from the origin.

The following diagram shows the electric fi eld direction at point S due to charges 1 and 2.

+–
1 2 E1 E2Eax

q S

x

q

p

Axial line l l

NEET

BOARDS

+–
1 2

q S

x

qAxial line l l
x

O

+

+–

a

a

–q

q

q
p

p

2pA

–q–q

A

–q–q

pp
qqqaa–q–q–q–q–q–q–q–qB C
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 is made up of two charges of magnitude 
 at B and q at 

For the combination of two dipoles, the net dipole moment is      For the combination of two dipoles, the net dipole moment is      

+++
a

–q

qFor the combination of two dipoles, the net dipole moment is      qFor the combination of two dipoles, the net dipole moment is      q

aa

qq

 as shown in the fi gure. 
, and the other made up 

(D) 3qa

a

Thus, option (A) is the correct answer.

Electric Field Due to Dipole

Electric fi eld at an axial point

Consider that an electric dipole is placed in such a way that its midpoint is at the origin as shown 
2l, and the magnitude of the charges is 

Electric Field Due to Dipole

Electric fi eld at an axial point

Consider that an electric dipole is placed in such a way that its midpoint is at the origin as shown 
in the fi gure. The length of the dipole is 
magnitude of the dipole moment is, 
the positive -axis (from negative charge to positive charge). Suppose that we want to fi nd the 
electric fi eld at point , which is 



( ) ( )

( ) ( ) ( )
( )

( ) ( )

,

Therefore, Since,

ax

ax

ax

kq kqE E
x l x l

E E E

kq kq xl xlE kq
x l x l x l

k xk q l x
E

p
p q l

x l x l

= =
+ −

= −

 
+ ⇒ = − =

 − + − 

 = = = − −

 

 







1 2

2 1

2 2

2 2 22 2

2 22 2 2 2

2 2

22 2
2

For x >> l,

4 3
2 2    ax

kpx kpE
x x

= =

In vector notation,

  
3

2  ax
kpE
x

=



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ELECTROSTATICS
P H Y S I C S

ELECTRIC FIELD DUE TO DIPOLE

What you already know

•	 Electric field lines and their 
representation

•	 Electric dipole
•	 Electric field at an axial point on a line 

joining a dipole

•	 Electric field at an equatorial point of a 
dipole

•	 Electric field at any point due to a 
dipole

•	 Dipole in a uniform electric field

What you will learn

Electric Field at an Equatorial point of a Dipole

An equatorial line is the perpendicular bisector of 
the axial line joining the charges of a dipole. Any 
point on the equatorial line is known as an equatorial 
point.
Consider an equatorial point s which is at distance 
x from the axis of the dipole. Let the length of the 
dipole be 2l.
The electric field (E1) due to charge –q at point 
s is towards itself and the electric field (E2) due to 
charge +q at point s is away from itself as shown in 
the figure. Since the point s is on the equatorial line, 
let us assume the distance of point s from both the 
charges to be r.
By using Pythagoras’s theorem on any of the right-angled triangles formed, we get the following:

2 2r x l= + 	 ...(i)
Since the charges of the dipole are same in magnitude and equidistant from the equatorial point, 
the magnitude of the electric field of both the charges will also be the same. 
Therefore,

1 2E E E= =
  

Let us divide the electric field vectors into their components along the x-axis and y-axis.
The net electric field along the x-axis is given by,

cos cos 2 cosxE E E Eθ θ θ= + =


Along the y-axis, the components of the electric field cancel each other. Therefore,
0yE =



Equatorial line

2E cos θ θ 
θ 

s

r
x

llq

1 2

q

θ 

E1 

E2 

θ p– +

y

x
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The net electric field due to the dipole on the equatorial point is given as follows:
2 coseq xE E E θ= =

 

	 ...(ii)

The magnitude of the electric field due to each charge of dipole at the equatorial point is given by,

If x >> l :

For any equatorial point which is far away from dipole, l becomes much smaller than x, and hence, 
l can be neglected. Therefore, the equation of the net electric field changes, which is given as 
follows:

( )
3 3

2 2 2 
eq

k p k p
E

xx l
= =

+

 



In this case, the dipole moment is in the opposite direction of the net electric field. So, the equation 
of the electric field at a far equatorial point can be written as follows:

3eq
kpE
x
−

=




( )

( ) ( )

( )

( )

By substituting the value of in equation we get,

By substituting the value of in equation we get,

2

2

2

3

3
2 2 2

,

2 cos

2 cos

2 ......

,

eq

eq

eq

eq

kqE
r

E ii
kqE
r

kq l lE
r r r

k p
E p ql iii

r
r iii

k p
E

x l

θ

θ

=

=

 ⇒ = × = 
 

⇒ = =

⇒ =
+





















Electric Field at Any General Point in Space Due to a Dipole

Consider point S to be at a distance of x from the 
centre of the dipole, which subtends an angle θ with 
the dipole axis at the centre of the dipole. In this case, 
we can observe that point S is neither an equatorial 
point nor an axial point of the dipole. But we know 
the value of the electric field at an axial point and 
an equatorial point of a dipole. Now, we resolve the 
dipole moment vector into two components, one is 
along the line joining the centre of the dipole and 
field point S and the other one is perpendicular to 
the line joining the centre of the dipole and the field 
point S. 

p cos θ 

p sin θ 

α

S

x

l l

1 2

q q

Eax 
Enet 

Eeq

p– +θ 
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Dipole in a Uniform Electric Field

Consider a dipole placed in a uniform electric 
field. The dipole moment subtends an angle of θ 
with the electric field. The charges of the dipole 
experience a force equal in magnitude and 
opposite in direction due to the electric field as 
shown in the diagram.
Although the net force on the dipole is zero, since 
there are two equal and opposite forces with 
different lines of action, they form a couple. The 
couple generates a torque about the centre (O) 
of the dipole, which gives the tendency to rotate 
in the electric field until the dipole comes to an 
equilibrium state. 

Since the dipole moment vector is resolved into its components, the components can be taken as 
two independent dipole moments, p cos θ and p sin θ, respectively. Also, the field point S is an axial 
point for the dipole moment p cos θ and an equatorial point for the dipole moment p sin θ.
Therefore, there are two electric fields acting on point S: one is the axial field and the other one is 
the equatorial field. 
The electric field due to p cos θ at an axial point is given by,

3
2 cos

ax
kpE

x
θ

=


The electric field due to p sin θ at an equatorial point is given by,
sin

eq
kpE

x
θ

= 3



The net electric field is given by,

The angle subtended by the net electric field is given by,

( )

2 2

2 2

3 3

2 2
3

2 2 2
3

2 cos sin

4cos sin

1 3cos cos sin 1

net ax eq

net

net

net

E E E

kp kpE
x x

kpE
x
kpE
x

θ θ

θ θ

θ θ θ

= +

   ⇒ = +   
   

⇒ = +

⇒ = + + =

  









tan

sintan
2 cos
tantan

2

eq

ax

E

E
α

θα
θ

θα

=

⇒ =

⇒ =





E


–

+

O

qE

qE

l

l

θ

l sin θ

l sin θ
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Maximum torque acting on a dipole Minimum torque acting on the dipole

θ = 0°

θ = 180°

E


p

p

–+

– +

The magnitude of torque is the maximum 
when the direction of the dipole moment is 
perpendicular to the direction of the electric 
field.

The net torque acting on the dipole is given by,

The magnitude of torque is minimum (i.e., zero) 
when the direction of the dipole moment is 
opposite to or along the electric field.

For to be minimum,

minimum.

and
Theref e

needs  

or ,

to besin

sin 0
0 180

0

net

net min

p E

τ

θ

θ
θ

τ

∴ =
⇒ = ° °

=









Solution

For a dipole in a uniform electric field, the value of the torque is, τnet = pE sin θ.
Hence, this expression of the torque can only be achieved if we use the cross product of p and E



. 
Therefore, the correct equation for finding the torque is given by,.p E

p E
E p
p E

τ

τ

τ

τ

=

= ×

= +

= −





















(A) .p E
p E
E p
p E

τ

τ

τ

τ

=

= ×

= +

= −





















	 (B) 
.p E

p E
E p
p E

τ

τ

τ

τ

=

= ×

= +

= −





















	 (C) 

.p E
p E
E p
p E

τ

τ

τ

τ

=

= ×

= +

= −





















	 (D) 

.p E
p E
E p
p E

τ

τ

τ

τ

=

= ×

= +

= −





















A dipole of moment p is placed in a uniform electric field E


. Find the torque acting on it.

Thus, option (B) is the correct answer.

The torque due to charge is given by,

The torque due to charge is given by,

Therefore, the net torque acting is given by,

sin

sin

2 sin

sin

net q q

q

q

net

net

net

q

qEl

q

qEl

qEl

p E

p E

τ τ τ

τ θ

τ θ

τ θ

τ θ

τ

+ −

+

−

= +

+

=

−

=

=

=

= ×

  

















The torque due to charge is given by,

The torque due to charge is given by,

Therefore, the net torque acting is given by,

sin

sin

2 sin

sin

net q q

q

q

net

net

net

q

qEl

q

qEl

qEl

p E

p E

τ τ τ

τ θ

τ θ

τ θ

τ θ

τ

+ −

+

−

= +

+

=

−

=

=

=

= ×

  

















For to be maximum,

maxneeds to b imum.

Therefo

e

re,

sin

sin 1
90

net

net max

p E

p E

τ

θ

θ
θ

τ

∴ =
⇒ = °

=












90°

90°

p

–

+

E


p

–

+
E

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Analysis of the Equilibrium Position

When an electric dipole is placed in a uniform electric field, the net force on the dipole is zero and 
the net torque acting on the dipole can be zero or minimum at only two positions, i.e., 0° and 180°. 
Hence, it can be said that at θ = 0° and θ = 180°, the dipole is in equilibrium. 

When the dipole moment makes an angle of 0° with the electric field, the net torque (τnet = pE sin θ) 
on the dipole becomes zero (τnet = 0) and the net force on the dipole is already zero. Therefore, at 
θ = 0°, the dipole is in equilibrium.
On slightly rotating the dipole from its position, there will be equal and opposite forces with different 
lines of action on the charges of the dipole, which will generate a torque about the centre (O) of the 
dipole. This torque will make sure that the dipole moment vector gets aligned along the direction 
of E and comes back to its initial state. Thus, at θ = 0°, the dipole will be in a stable equilibrium.

When the dipole moment makes an angle of 180°  with the electric field, the net torque (τnet = pE sin θ) 
on the dipole becomes zero (τnet = 0) and the net force on the dipole is already zero. Therefore, at 
θ = 180°, the dipole is in equilibrium.
On slight rotation of the dipole from this position, there will be equal and opposite forces with 
different lines of action on the charges of the dipole, which will generate a torque about the centre 
(O) of the dipole. This torque will try to rotate the dipole even further away. It will not return to its 
initial state. Thus, at θ = 180°, the dipole will be in an unstable equilibrium.

Stable equilibrium 

Unstable equilibrium

O
qE qE

E


p
– +

Stable equilibrium 

O
qE qE

E


pp
–+

Unstable equilibrium 

(A) 7 mC	 (B) 8 mC	 (C) 5 mC	 (D) 2 mC

An electric dipole is placed at an angle of 30° with an electric field intensity of 2 × 105 NC–1. It 
experiences a torque equal to 4 Nm. Find the charge on the dipole if its length is 2 cm.
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Solution

Solution

Given,
Angle subtended by the dipole, θ = 30°
Electric field intensity, 5 12 10E NC −= ×



Torque experienced by the dipole, 4 Nmτ =


Length of the dipole, 2l = 2 cm
The torque experienced by the dipole is given by,

Given, 
Angle subtended by the dipole, θ = 90°
Torque is given by,

(A) 
2

p E E p Ep
I I p II E

  

 







	 (B) 
2

p E E p Ep
I I p II E

  

 







	 (C) 
2

p E E p Ep
I I p II E

  

 







	 (D) 
2

p E E p Ep
I I p II E

  

 







A molecule having a dipole moment p and moment 
of inertia I about an axis passing through its centre is 
suddenly subjected to a uniform electric field E



 at a right 
angle to the direction of the molecule's dipole moment. 
Find the magnitude of the initial angular acceleration of 
the molecule.

Thus, option (D) is the correct answer.

Thus, option (A) is the correct answer.

5

sin

2 sin

2 sin

4
2 10 0.5 0.02
2

p E

ql E

q
l E

q

q mC

τ θ

θτ

τ
θ

=

⇒ =

⇒ =

⇒ =
× × ×

⇒ =














90°

O α, τ

p

–

+

E


( )

( )
( ) ( )

Also, torque can be written as,

Comparing equations and we get,

sin

sin 90

...

...

,

p E

p E

p E i

I ii

i ii

I p E

p E
I

τ θ

τ

τ

ατ

α

α

=

⇒ = °

⇒ =

=

=

⇒ =
































( )

( )
( ) ( )

Also, torque can be written as,

Comparing equations and we get,

sin

sin 90

...

...

,

p E

p E

p E i

I ii

i ii

I p E

p E
I

τ θ

τ

τ

ατ

α

α

=

⇒ = °

⇒ =

=

=

⇒ =


































What you already know

•	 Electric field at an equatorial point of a 
dipole

•	 Electric field at any point due to a dipole
•	 Dipole in a uniform electric field

•	 Electric flux
•	 Measurement of electric flux
•	 Electric flux through a cube and a cylinder 

due to a uniform electric field
•	 Electric flux in a non-uniform electric field
•	 Electric flux through a sphere

What you will learn

As 2D objects do not enclose a volume, their 
surfaces are known as open surfaces, ( E.g., plane 
surfaces) . Consider a disc having two surfaces. For 
open surfaces, the unit normal or area vector can 
be drawn in either direction as shown in the figure. 

As 3D objects enclose a volume, their surfaces are 
known as closed surfaces, (E.g., spheres) . Consider 
a part of a sphere as shown in the figure. For closed 
surfaces, the unit normal or area vector is drawn 
radially outward and normal to the surface.

The value of the area is given by,

1.	 Area is generally considered as a scalar quantity; however, for many cases, the area of a surface 
is taken as a vector.

2.	 The direction of the area vector is taken in the direction normal to the surface.

Electric Flux (𝜙)

Area vector
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Surface 2

Surface 1

The number of the electric field lines that intersect a given area normally is known as the electric 
flux. It is denoted by 𝜙.

N
O

TE
S

 ELECTROSTATICS
P H Y S I C S

INTRODUCTION TO ELECTRIC FLUX
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Measurement of Electric Flux

Electric flux is measured in terms of electric field strength. 
The electric field strength at a particular point is defined 
as the electric flux passing through a unit normal area 
at that point.
In a uniform electric field, let us consider that a plane 
surface is placed normally to the field. The area vector is 
also along the direction of the electric field as shown in 
the figure.

S cos θ

S sin θ

Area = S

If 𝜙 is the flux passing through the surface area S, then 
the electric field intensity in terms of electric flux at any 
point in the area is given by,

Now, if the plane surface is placed in the uniform electric field at some angle θ with the electric 
field, then the area vector also subtends an angle θ with the electric field as shown in the diagram. 
By resolving the area into its two components, we get S cos θ and S sin θ.

The component of the area S sin θ is parallel to the electric field. Therefore, no electric field lines 
pass through it normally. Hence, the electric flux through the surface S sin θ is zero. The component 
of the area S cos θ is perpendicular to the electric field. Therefore, the electric field lines pass 
through it normally. Thus, the flux through the surface S cos θ is non-zero. 

Where θ is the angle between the area and the electric field.
Therefore, electric flux is the dot product of the electric field and the area vector and hence, is a 
scalar quantity.

The electric field intensity in terms of electric flux at any point in the area is given by,
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Positive and negative flux

Area vector for 2D geometry

Consider a 3D object placed in a uniform electric field. 
We know that the surface of a 3D object is considered 
as a closed surface and the area vector is taken along 
the radially outward normal as shown in the figure. Let 
us consider that there are two surfaces for the given 
closed surface, and the electric field lines are entering 
into the surface S2 and coming out from the surface S1. 
The area vector of surface 1, S S1 2

 

, subtends an angle θ 
with the electric field. The electric flux through surface 1 
is given by,

Therefore, when the electric field lines are coming out from a 3D object or a closed surface, it is 
considered as positive flux.

Therefore, when the electric field lines enter into a 3D object or a closed surface, it is considered 
as negative flux.

Let us find the area vector for the following surfaces:

1.  �A plane surface is placed in the xy-plane. For this plane 
surface, the area vector will be either along ( ) ( )

( ) ( )
( ) ( )
( ) ( )

or

or

or

or

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

A a k a k

A a i a i

A a j a j

A a j a jπ π

= −

= −

= −

= −

2 2

2 2

2 2

2 2









 or ( ) ( )
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( ) ( )
( ) ( )

or

or
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ˆ ˆ
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ˆ ˆ
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





 as 
shown in the figure.

Now, for surface 2, the electric field lines enter into the closed surface and the area vector S S1 2

 

 
subtends an angle 𝜋 – θ with the electric field as shown in the figure. The electric flux through 
surface 2 is given by,
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2. � �A plane surface is placed in the yz-plane. For this 
plane surface, the area vector will be either along 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

or

or

or

or

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ
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
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
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ˆ ˆ
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

 as shown in the figure.

3. � �A plane surface is placed in the xz-plane. For this plane 
surface, the area vector will be either along 
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shown in the figure.

4. � �A disc is placed in the xz-plane. For this plane surface, 
the area vector will be either along 
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in the figure.
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= −

= −

= −

2 2

2 2

2 2

2 2









( ) ( )
( ) ( )
( ) ( )
( ) ( )

or

or

or

or

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

A a k a k

A a i a i

A a j a j

A a j a jπ π

= −

= −

= −

= −

2 2

2 2

2 2

2 2









x

x

x

z

z

z

y

y

y

a

a

a

a

a

a

( ) ( )
( ) ( )
( ) ( )
( ) ( )

or

or

or

or

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

A a k a k

A a i a i

A a j a j

A a j a jπ π

= −

= −

= −

= −

2 2

2 2

2 2

2 2









a
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(A) EL2 (C) EL2 cos θ(B) EL cos θ (D) Zero

A square surface of side L (m) is placed in a uniform electric 
field E (volt m–1) acting along the same plane at an angle 𝜃 
with the horizontal side of the square. Find the electric flux 
linked to the surface in volt m.

In this case, let us consider the square surface to be in the xy-plane. 
So, the area vector 

  

      

   

 

ˆ

ˆ

 

ˆ
A A

A

r

A

dS d

n

n

S r

S dS

=

= −

=

= ∫

1

2












 is along the z-axis. It is also given that the 
electric field is acting along the xy-plane only. Thus, the area vector 
and the electric field are perpendicular to each other. 

 The flux through the square surface is given by,

Solution

θ

θ

Thus, option (D) is the correct answer.

x

z

y
  

      

   

 

ˆ

ˆ

 

ˆ
A A

A

r

A

dS d

n

n

S r

S dS

=

= −

=

= ∫

1

2












  E
S

E

φ
=


  E
S

E

φ
=


. cos

cos

E Sφ

φ

= °

° =

∴ =

90

90 0

0



Summary sheet

For a 3D object or a closed surface
1.	 Only the outward normal is considered as an area vector.
2.	 The flux entering the surface is taken as negative and the flux leaving the surface is taken 

as positive.
3.	 If a 3D object or a closed object is placed in a uniform electric field, the net flux through the 

closed object will be zero, given that no net charge is enclosed by it. In other words, if a 
closed object does not enclose any charge, then the net electric flux through the closed 
object will be zero.

© 2020, BYJU'S. All rights reserved

05



Electric Flux through a Cube Due to a Uniform Electric Field

Electric Flux through a Cylinder Due to a Uniform Electric Field

Consider that a cube of side a is placed in a uniform 
electric field. The area of all the surfaces are named 
A1, A2, A3, A4, A5, and A6 as shown in the figure. ( A6 is 
the surface parallel to A5 )

Consider that a cylinder with a cross-sectional area 
of A is placed in a uniform electric field as shown in 
the figure.

Other than A1 and A2, for all the other surfaces, the angle between the electric field and the area 
vector is 90°. So, the flux through surface areas A3, A4, A5, and A6 is zero.
Thus, the net flux is given by,

For the curved surface A3, the angle between the electric field and the area vector is 90°. So, the 
flux through surface area A3 is zero.

Therefore, the net flux through the cube is zero until any charge is placed inside the cube.

The net electric flux is given by,
Therefore, the net flux through the cylinder is zero until and unless there 
is a charge enclosed in it.

𝜙net = 𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 + 𝜙5 + 𝜙6

       = – Ea2 + Ea2 + 0 + 0 + 0 + 0
       = 0

𝜙net = 𝜙1 + 𝜙2 + 𝜙3 
       = – Ea + Ea + 0
       = 0

𝜙3 = 0

The electric flux through surface area A1 is given by,

The electric flux through surface A1 is given by,

The electric flux through surface area A2 is given by,

The electric flux through surface A2 is given by,

A A A A A Aφ φ φ φ φ φ= =
1 2 3 4 5 6

A A A A A Aφ φ φ φ φ φ= =
1 2 3 4 5 6

A A A A A Aφ φ φ φ φ φ= =
1 2 3 4 5 6

A A A A A Aφ φ φ φ φ φ= =
1 2 3 4 5 6

A1

A1

A2

A2

A3

A3

A5

A4

( )

. cosE A

Ea Ea

φ

φ

= °

⇒ = − = −

1 1

2 2
1

180

1

( )

. cosE A

Ea Ea

φ

φ

= °

⇒ = =

2 2

2 2
2

0

1

( )

. cosE A

EA EA

φ

φ

= °

⇒ = − = −

1 1

1

180

1

( )

. cosE A

EA EA

φ

φ

= °

⇒ = =

2 2

2

0

1

𝜙1 𝜙2

𝜙3

  E
S

E

φ
=


  E
S

E

φ
=


  E
S

E

φ
=


  E
S

E

φ
=

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(A) E0a3 (C) 2E0a3(B) –E0a3 (D) Zero

What is the total electric flux passing through the 
cube in the given situation?

The cube has six faces. They are named A1, A2, A3, A4, A5, and A6 as shown in the figure.
The electric flux through surface area A1 is given by,

The electric flux through surface area A2 is given by,

(Since x = a at the location of A1)

Other than A1 and A2, for all the other surfaces, the angle between the electric field and the area 
vector is 90°. So, the flux through surface areas A3, A4, A5, and A6 is zero.

So, the net electric flux is given by,
𝜙net = 𝜙1 + 𝜙2 + 𝜙3 + 𝜙4 + 𝜙5 + 𝜙6

       = –E0a3 + 2E0a3 + 0 + 0 + 0 + 0
       = E0a3

Given,
The electric field, ˆE E xi= 0



Solution

Thus, option (A) is the correct answer.

x

x

z

z

a

a

a

a

x = a

x = a

y

y

ˆE E xi= 0



ˆE E xi= 0



A1
A2

A3

A6

A5

A4( )

.

cos

cos

,o

E A

EA

EA

E xa E E x A a

E a

φ

φ θ

φ

φ

φ

=

⇒ =

⇒ = °

⇒ = − = =

⇒ = −

1 1

1 1

1 1

2 2
1 0 1

3
1 0

180





( )
( ) ( )

cos

,o

EA

E xa E E x A a

E a a x a

E a

φ

φ

φ

φ

= °

⇒ = = =

⇒ = =

⇒ =

2 2

2 2
2 0 2

2
2 0

3
2 0

0

2 2

2





  E
S

E

φ
=


  E
S

E

φ
=


  E
S

E

φ
=


  E
S

E

φ
=

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( )

( )

The total flux through the sphere is given by,

The value of electric field at a distance from the charge is given by,

By substituting the value of in equation we get,

. cos

....

,

sphere

sphere

d E dA EdA

d EdA

d EdA i

R

qE
R

E i

φ θ

φ

φ φ

πε

φ

= =

=

= =

=

∫ ∫

2
0

1
4



( )Surface area of sphere,

sphere

sphere

sphere

q dA
R

q dA
R

q R A R
R

q

πε

φ
πε

φ π π
πε

φ
ε

=

⇒ =

⇒ = × =

⇒ =

∫

∫

2
0

2
0

2 2
2

0

0

1
4

1
4

1 4 4
4



Electric Flux in a Non-uniform Electric Field

Electric Flux Through a Sphere

Consider a 2D surface M placed in a non-uniform electric field. To find the net flux passing through 
surface M, let us consider an elemental area on the given surface and the area vector of that 
element 

Total flux through the surface is given by,

.

.

cos

d E dS

M

E dS

EdS

φ

φ

φ θ

=

=

⇒ =

∫

∫





 that subtends an angle 𝜃 with the electric field. Let the electric flux passing through the 
elemental area be d𝜙.

Let us consider that a small positive charge +q is placed at the centre of a sphere of radius R. To 
find the net flux passing through the sphere, let us consider an elemental area on the concerned 
sphere, and the area vector of the element 

( )

( )

The total flux through the sphere is given by,

The value of electric field at a distance from the charge is given by,

By substituting the value of in equation we get,

. cos

....

,

sphere

sphere

d E dA EdA

d EdA

d EdA i

R

qE
R

E i

φ θ

φ

φ φ

πε

φ

= =

=

= =

=

∫ ∫

2
0

1
4



( )Surface area of sphere,

sphere

sphere

sphere

q dA
R

q dA
R

q R A R
R

q

πε

φ
πε

φ π π
πε

φ
ε

=

⇒ =

⇒ = × =

⇒ =

∫

∫

2
0

2
0

2 2
2

0

0

1
4

1
4

1 4 4
4



 is directed radially outward to the surface. Also, the 
electric field due to the small charge +q present inside the sphere is directed radially outward to 
the surface of the sphere.

The small elemental flux can be written as,

The angle between the area vector and the electric field 
is 0°.
The elemental flux passing through 

( )

( )

The total flux through the sphere is given by,

The value of electric field at a distance from the charge is given by,

By substituting the value of in equation we get,

. cos

....

,

sphere

sphere

d E dA EdA

d EdA

d EdA i

R

qE
R

E i

φ θ

φ

φ φ

πε

φ

= =

=

= =

=

∫ ∫

2
0

1
4



( )Surface area of sphere,

sphere

sphere

sphere

q dA
R

q dA
R

q R A R
R

q

πε

φ
πε

φ π π
πε

φ
ε

=

⇒ =

⇒ = × =

⇒ =

∫

∫

2
0

2
0

2 2
2

0

0

1
4

1
4

1 4 4
4



 is given by,

Total flux through the surface is given by,

.

.

cos

d E dS

M

E dS

EdS

φ

φ

φ θ

=

=

⇒ =

∫

∫





Total flux through the surface is given by,

.

.

cos

d E dS

M

E dS

EdS

φ

φ

φ θ

=

=

⇒ =

∫

∫





θ

M

R

+q

  E
S

E

φ
=


  E
S

E

φ
=


( )

( )

The total flux through the sphere is given by,

The value of electric field at a distance from the charge is given by,

By substituting the value of in equation we get,

. cos

....

,

sphere

sphere

d E dA EdA

d EdA

d EdA i

R

qE
R

E i

φ θ

φ

φ φ

πε

φ

= =

=

= =

=

∫ ∫

2
0

1
4



( )Surface area of sphere,

sphere

sphere

sphere

q dA
R

q dA
R

q R A R
R

q

πε

φ
πε

φ π π
πε

φ
ε

=

⇒ =

⇒ = × =

⇒ =

∫

∫

2
0

2
0

2 2
2

0

0

1
4

1
4

1 4 4
4



( )

( )

The total flux through the sphere is given by,

The value of electric field at a distance from the charge is given by,

By substituting the value of in equation we get,

. cos

....

,

sphere

sphere

d E dA EdA

d EdA

d EdA i

R

qE
R

E i

φ θ

φ

φ φ

πε

φ

= =

=

= =

=

∫ ∫

2
0

1
4



( )Surface area of sphere,

sphere

sphere

sphere

q dA
R

q dA
R

q R A R
R

q

πε

φ
πε

φ π π
πε

φ
ε

=

⇒ =

⇒ = × =

⇒ =

∫

∫

2
0

2
0

2 2
2

0

0

1
4

1
4

1 4 4
4


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N
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TE
S

ELECTROSTATICS
P H Y S I C S

GAUSS’S LAW

What you already know

•	 Electric flux
•	 Measurement of electric flux
•	 Electric flux through a cube and a cylinder 

due to a uniform electric field

•	 Electric flux through the base of a cone
•	 Electric flux through a closed surface

What you will learn

•	 Electric flux in a non-uniform electric field
•	 Electric flux through a sphere

•	 Gauss’s law

Electric Flux through the Base of a Cone

Let us consider a charge +q placed on the vertex of a cone of radius R and height x. The charge 
has its own electric field directed outwards. As we can see, the base of the cone is a disc, and a 
disc is a combination of infinite coaxial thin rings. To calculate the electric flux through the base of 
the cone, first divide the surface into small elementary areas,  dA



. Let us consider an element of the 
disc which is nothing but a ring of radius r and thickness dr at the base of the cone. The area of the 
elemental ring is given by,

2dA r drπ=


The electric field on the ring subtends an angle α with the area vector and the most outward electric 
field lines intercepting the base of the cone or disc subtend an angle 2θ at the vertex of the cone.

NEET

α
x

r

α

θ 
C B

A

+q

2 2x r+

dA


E

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The magnitude of the electric field on the small element of the ring at distance x from the charge 
+q is given by,

2 2
1

4 o

qE
x rπε

=
+



The electric flux through the small element of the ring is given by,

To get the net flux through the base of the cone or disc, we have to integrate dϕ from r = 0 to r = R.

( )

( )

( )

In

By substituting and in equation we get,

2 2

2 2 2 2

3
2 2 2

.

cos ...

,

cos

cos ,

cos

1 2
4

2

o

o

d E dA

d E dA i

ABC

x
x r

E i

d E dA

q xd r dr
x r x r

qx r drd
x r

φ

φ α

α

α

φ α

φ π
πε

φ
ε

=

⇒ =

∆

=
+

=

⇒ = × × ×
+ +

⇒ = ×
+



( )

( )
( )

( )

( )

Let

By partially differentiating we get,

By substituting the value in equation we get,

2 2

2 2

30 0
2 2 2

30
2 2 2

2 2 2

3
2 2

3

2

...
2

2 2

,

2

2

2

R

o

R

o

x R

x
o

x R

x
o

qx r drd
x r

qx r dr i
x r

x r t

r dr t dt

r dr t dt

i

qx t dt

t

qx t dt
t

qx

φ
φ

ε

φ
ε

φ
ε

φ
ε

φ
ε

+

+

= ×
+

⇒ =
+

+ =

⇒ =

⇒ =

⇒ =

⇒ =

⇒ =

∫ ∫

∫

∫

∫

( )

2 2

2 2

2

2 2

2 2

1
2

1
2

1 cos cos
2

x R

x
o

x R

xo

o

o

t dt

qx
t

q x
R x

q x
x R

φ
ε

φ
ε

φ θ θ
ε

+ −

+
 ⇒ = −  

 
 ⇒ = −
 + 

 
 ⇒ = − =
 + 

∫



( )

( )
( )

( )

( )

Let

By partially differentiating we get,

By substituting the value in equation we get,

2 2

2 2

30 0
2 2 2

30
2 2 2

2 2 2

3
2 2

3

2

...
2

2 2

,

2

2

2

R

o

R

o

x R

x
o

x R

x
o

qx r drd
x r

qx r dr i
x r

x r t

r dr t dt

r dr t dt

i

qx t dt

t

qx t dt
t

qx

φ
φ

ε

φ
ε

φ
ε

φ
ε

φ
ε

+

+

= ×
+

⇒ =
+

+ =

⇒ =

⇒ =

⇒ =

⇒ =

⇒ =

∫ ∫

∫

∫

∫

( )

2 2

2 2

2

2 2

2 2

1
2

1
2

1 cos cos
2

x R

x
o

x R

xo

o

o

t dt

qx
t

q x
R x

q x
x R

φ
ε

φ
ε

φ θ θ
ε

+ −

+
 ⇒ = −  

 
 ⇒ = −
 + 

 
 ⇒ = − =
 + 

∫


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Electric Flux through a Closed Surface

Consider a sphere (3D or closed object) placed near a point charge +q. The electric flux from the 
point charge passes through the closed object. 

We can observe that the flux entering the closed object is the same as the flux leaving the closed 
object. In other words, if a closed object does not enclose any charge, then the net electric flux 
through the closed object is zero.
So, the net flux is given by,
ϕnet = ϕin + ϕout = 0
The net flux, in this case, is zero.

+
q

E

Gauss’s Law

Gauss’s law states that net flux through a closed surface is 
0

1
ε  times the net charge enclosed by 

the surface.
This law gives the following:

1.	 It gives the analysis of electric flux through 
a closed surface and its relation with the 
enclosed charge.

2.	 The total electric flux associated with a closed 
surface or a Gaussian surface is equal to the 
product of the sum of all the charges enclosed 

by the surface and the constant  
0

1
ε .

Important points about Gauss’s law:
•	 While using Gauss’s law, the considered closed or 3D surface is known as a Gaussian surface.
•	 The total electric flux through a closed surface is independent of the shape of the surface 

and the position of charge inside the closed surface. 

+q
qenclosed

Gaussian
surface

NEET
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Solution

According to Gauss’s law,

. en

o

qE dA
ε

=∫




There are three positive charges, q1, q2, and q3, present in space, and 
the Gaussian surface encloses the charges q1 and q2, and the third 
charge q3 is outside the surface. Find the net flux using Gauss’s law.

Consider a point charge +q that is inside three Gaussian 
surfaces S1, S2, and S3 as shown in the figure. The net flux 
through each surface is the same. 

•	 If a closed surface does not enclose any charge, then the 
net electric flux through the surface is zero.

S1q
S2

S3

+

Gaussian surface 
A Gaussian surface is defined as a closed surface or the periphery of a volume on which Gauss's 
law is applied. Using a Gaussian surface (closed surface) or a 3D surface in a three-dimensional 
space, the flux of any vector field can be determined. A Gaussian surface can be real or imaginary, 
and its shape is dependent upon the type of charge or charge distribution inside the surface.

The mathematical form of Gauss’s law
From Gauss’s law, the net flux through a surface is given by,

( )...en
net

o

q iφ
ε

=

Also, the net flux through a surface is given by,

( )

( ) ( )From equations and we get,

. ...

,

.

net

en

o

E dA ii

i ii

qE dA

φ

ε

=

=

∫

∫









+ +

+

q1 q2

q3
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The net flux through the Gaussian surface does not depend on the charge placed outside the 
Gaussian surface. So, the net charge enclosed by the surface is given as follows:
qen = q1 + q2

As we know, if a closed surface or object does not enclose any charge, then the net electric flux 
through the closed object is zero. Thus, the net flux by charge q3 through the given surface is zero. 
So, the net electric field is given as follows:

( )
The net flux is given by,

1 2 3

1 2
1 2 3 .

net

net
o

E E E E

q qE E E dAφ
ε

= + +

+
= + + =∫

   

  



Using Gauss’s law, we can find the electric field due to some symmetric charge distributions.

Essential properties of a useful Gaussian surface
•	 Gauss’s law is applicable to any closed surface, i.e., a Gaussian surface must be a closed or 

3D.
•	 The electric field must be symmetric and equal at all the points on the Gaussian surface.
•	 The angle between E



 and dA


 must be the same at all the points of the Gaussian surface 
(preferably, θ = 0° or 90°).

•	 For a point charge and line charge distribution, the Gaussian surface will be a sphere and a 
cylinder, respectively.

q

E

+

+

+

+

+

+

+

+

+

+

+∞

+

+

+

+

+

+

+

+

+

r
E



© 2020, BYJU'S. All rights reserved

06

The net flux for different surfaces can be obtained by using symmetry. Some of the shapes are 
given in the table.

Shape

Sphere

Cylinder

Cube

Hemisphere

Semi-cylinder

One face of cube

Net flux Shape Net flux

A charge is placed 
symmetrically at the 
centre of the sphere.

A charge is placed 
symmetrically at the 
centre of a cylinder.

A charge is placed 
symmetrically at the 

centre of a cube.

A charge is placed 
symmetrically at the 

centre of a hemisphere. 

A charge is placed 
symmetrically at 
the centre of a 
semi-cylinder.

A charge is placed 
symmetrically at the 
centre of a square 

surface.

net
o

qφ
ε

=

net
o

qφ
ε

=

net
o

qφ
ε

=

2net
o

qφ
ε

=

2net
o

qφ
ε

=

6net
o

qφ
ε

=



© 2020, BYJU'S. All rights reserved

01

What you already know

•	 Electric flux through the base of a 
cone

•	 Electric flux through a closed surface

•	 Gauss’s law

•	 Electric flux through the face of a cube

•	 Electric flux through the curved surface of 
a cylinder and a container 

•	 Applications of Gauss’s law

What you will learn

N
O

T
E

S

ELECTROSTATICS

P H Y S I C S

APPLICATION OF GAUSS'S LAW

What is the flux through a cube of side a if a point charge q is at one of its corners?

It is given that the charge is placed at one corner of the cube. 
To enclose the charge inside a closed surface or a Gaussian 
surface such that the charge is symmetrical to the closed 
surface, take seven more cubes of the same dimensions as 
that of the original cube. All the cubes are arranged in such 
a manner that the charge is at the centre of the bigger cube 
as shown in the figure.

We know that the total flux due to a point charge is,   
o

qφ
ε

= .

a

a

a a

(A) 
2

o

q
ε

          (B) 
8 o

q
ε

          (C) 
o

q
ε

          (D) 26
2 o

q a
ε

Solution

Therefore, the total flux through the bigger cube (closed surface) is given by,

  total
o

qφ
ε

=

The flux through each cube is given by,

 
    

8 8
total

each cube
o

qφ
φ

ε
= =

Thus, option (B) is the correct answer.

q

NEET
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Flux through Each Face of a Cube

Consider a charge placed at one corner of the cube. We know 
that if a charge is placed at a corner of a cube, then the total flux 
through the cube is given by, 

  
8net

o

qφ
ε

=

In a cube, there are six faces. The flux due to the charge does not 
pass through all the faces of the cube. 

Flux through the Curved Surface of a Cylinder

Consider a charge q placed symmetrically at the middle of a cylinder of 
radius R and height 2l as shown in the figure.

We know that the total flux due to a point charge is,   
o

qφ
ε

= .

Therefore, the total flux through the cylinder is given by,   net
o

qφ
ε

= .

Also, the net flux is shared by three faces, two circular faces (I, II) and 
one curved face (III) as shown in the figure.
𝜙net = 𝜙I + 𝜙II + 𝜙III 

III

II
2l q

From symmetry, the flux from the surface I is equal to that of surface II.
∴  𝜙I = 𝜙II 
So, the net flux through the curved surface is given by,
𝜙III  =  𝜙net – (𝜙I + 𝜙II)  …(i)
From the figure, for the flux through surfaces I and II, we can assume 
that the charge is over the apex of the cones so that surfaces I and II 
become the base of the cones.
We know that the net flux through the base of a cone is given by,

a

a

q

I

II
θ

R

l

From the diagram, we can observe that the electric field lines are 
parallel to the three adjacent faces that are connected to the charge 
denoted by the white arrows. Thus, the total flux associated with 
the cube passes through the three other remaining faces denoted 
by the red arrows. 
Therefore, the net flux through each of the surfaces is given by,

      
3 24
net

each face
o

qφ
φ

ε
= =

I
III

( )By substituting the values of and in equation , we get,

I II
o

I II

III
o o

III
o

q l
l R

i

q q l
l R

q l
l R

φ φ
ε

φ φ

φ
ε ε

φ
ε

 = − = 
+ 

  = − × −   +  
 ⇒ =  

+ 

2 2

2 2

2 2

1
2

2 1
2
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Flux through the Curved Surface of a Container

Consider a charge q placed inside a container with a mouth of radius R 
and the distance of the charge from the mouth is h.

We know that the total flux due to a point charge is,   
o

qφ
ε

= .

Therefore, the total flux through the container is given by,   net
o

qφ
ε

= .

Also, the net flux is shared by two faces, a circular face or the mouth of 
the container (I), and the other one is the curved face of the container (II), 
as shown in the figure.
𝜙net = 𝜙I + 𝜙II 
So, the net flux through the curved surface is given by,
𝜙II  =  𝜙net – 𝜙I  …(i)

From the figure, for the flux through surface I, we can assume that the 
charge is over the apex of the cone so that surface I becomes the base 
of the cone.
We know that the net flux through the base of a cone is given by,

h

E

R

R

h

This is the net flux through the curved surface of the container.

( )By substituting the value of in equation , we get,

I
o

I

II
o o

q l
h R

i

q q l
h R

φ
ε

φ

φ
ε ε

 
 = −
 + 

  
  = − −

  +  

2 2

2 2

1
2

1
2

A hollow cylinder has a charge of q coulomb inside it. If ϕ is the electric flux in Vm associated 
with the curved surface, then what will be the flux linked with the plane surface in Vm? 

The flux through the curved surface is given as 𝜙.

We know that the total flux due to a point charge is,   
o

qφ
ε

= .

Therefore, the total flux through the cylinder is given by,

  net
o

qφ
ε

=

(A) 
1   
2 o

q φ
ε

 
− 

 
           (B) 

2 o

q
ε

          (C) 
3
φ

          (D)   
o

q φ
ε
−

Solution

q

I

II

𝜙C

𝜙AA

B

C

Also, the net flux is shared by three faces, two circular faces (A, C) and one curved face (B), as 
shown in the figure.

NEET

+
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Calculation of Electric Field Using Gauss’s Law

To find the electric field at a point in the vicinity of the charge configuration using Gauss’s law, we 
need the following steps: We consider a closed surface in the surrounding of the charges such that 
the point is on the surface. The electric field is either parallel or perpendicular to this surface at 
every point of the surface.

We apply Gauss’s law for this surface as follows:
 .   enclosed

o

qE dA
ε

Σ
=∫




𝜙net = 𝜙A + 𝜙B + 𝜙C
The flux through surface A is equal to that of surface C due to symmetry.
∴ 𝜙A = 𝜙C 
So, the net flux through the curved surface is given by,
𝜙B  =  𝜙net – (𝜙A + 𝜙C)
⇒ 𝜙  =  𝜙net – 2𝜙A

( )1     
2
1     
2

net A

A
o

q

φ φ φ

φ φ
ε

⇒ − =

 
⇒ − = 

 
Thus, option (A) is the correct answer.

Applications of Gauss’s Law

1.	 Electric field due to infinitely long uniformly charged wire
Consider an infinitely long uniformly charged wire. Let 𝜆 be the linear charge density.
Let us find the electric field at a distance r from the infinitely long uniformly charged wire by 
using Gauss’s law. We have derived the field at r distance from the infinitely long uniformly 
charged wire as follows:

2  kE
r
λ

=

l

dA1

E

dA3

dA2

1 1

2 2

3 3

cos 90

cos 90

cos 0

E dA

E dA

E dA

φ

φ

φ

= °

= °

= °

∫
∫
∫

1 1

2 2

3 3

cos 90

cos 90

cos 0

E dA

E dA

E dA

φ

φ

φ

= °

= °

= °

∫
∫
∫

1 1

2 2

3 3

cos 90

cos 90

cos 0

E dA

E dA

E dA

φ

φ

φ

= °

= °

= °

∫
∫
∫

Now, to obtain the electric field 
intensity at a distance r from the 
rod using Gauss’s law, we have to 
take a Gaussian surface such that 
the electric field at every point 
on the surface is either parallel or 
perpendicular to this surface. In 
this case, we can take a cylinder of 
radius r and length l as the Gaussian 
surface as shown in the figure.

The cylinder (Gaussian surface) can be divided into three surfaces, two circular surfaces and 
one curved surface, A1, A2, and A3. Their elements are marked as dA1, dA2, and dA3, respectively, 
as shown in the figure.  
The net charge enclosed by the Gaussian surface is, qen = 𝜆l.

+∞

-∞
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( )

( )

and are perpendicular to the electric field.

Similarly,

Therefore, equat

The area ve

ion become

s

s

o

,

ct r

.

. . . .......

. cos

. cos

.

en

o

o

qE dA

lE dA E dA E dA i

dA dA

E dA E dA

E dA E dA
i

E d

ε
λ
ε

φ

=

+ + =

= ° =

= ° =

=

∫

∫ ∫ ∫



    

 









1 2 3

1 2

1 1

2 2

3

90 0

90 0

( ).......
o

lA iiλ
ε

=∫ 3

Now, the flux through surface 3 is given by, 

3 3 3

3

   cos 0    

   2

E dA E dA

E rl

φ

φ π

= °=

⇒ =
∫ ∫

The net flux through the cylinder is given by,

( )
1 2 3        

  0  0  2   2    .......
cylinder

cylinder E rl E rl iii

φ φ φ φ

φ π π

= + +

⇒ = + + =

From equations (ii) and (iii), we get,

o

o

o

l E rl

E
r

kE k
r

λ π
ε

λ
πε

λ
πε

=

⇒ =

 
⇒ = = 

 


2

2

2 1
4

Electric field (E) vs distance (r) graph

The electric field due to an infinitely long uniformly charged 
wire is inversely proportional to r.

For an infinite line charge,

2.  Electric field due to an infinitely large uniformly charged sheet
Consider a single layer sheet in which the charge is uniformly distributed. Let σ be the uniform 
surface charge density of the sheet. To obtain the electric field at a point x distance away from 
the sheet, we have to take a Gaussian surface such that the electric field at every point on the 
surface is either parallel or perpendicular to this surface. In this case, we can take a cylinder as 
the Gaussian surface as shown in the figure. The Gaussian surface (cylinder) can be divided into 
three surfaces, two circular surfaces and one curved surface, A1, A2, and A3. Their elements are 
marked as dA1, dA2, and dA3, respectively, as shown in the figure on the next page. 

r → ∞ E = 0

E = Undefinedr → 0

E

r

E ∝ r
1

Using Gauss’s law,

O
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The net flux through the cylinder is given by,

cylinder

cylinder c c

cylinder c

EA EA

EA

φ φ φ φ

φ

φ

= + +

⇒ = + +

⇒ =

1 2 3

0

2

The net charge enclosed by the Gaussian surface is, qen = σAc.
By applying Gauss’s law, we get,

Hence, the electric field due to a uniformly charged infinite sheet is constant everywhere.

By substituting the values of and in the above equation we get,,

en
cylinder

o

cylinder en

c
c

o

o

q

q

AEA

E

φ
ε

φ

σ
ε
σ
ε

=

=

⇒ =

2

2

What is the net electric field at points A, B, and C if two 
infinitely long, oppositely charged plane sheets having the 
same charge density σ are placed parallel to each other? A B C

(A)   ,   0,   A B C
o o

E E Eσ σ
ε ε

= = =             (B)   0,   ,   A B C
o o

E E Eσ σ
ε ε

= = =

(C)   0,   ,   0
2A B C

o

E E Eσ
ε

= = =             (D)   0,   ,   0A B C
o

E E Eσ
ε

= = =

The flux through the curved surface of 
the cylinder is zero as the area vector 
of the curved surface is perpendicular 
to the electric field.

3   0φ =
Due to symmetry, the flux through 
surface 1 is equal to that of surface 2.

( )1 2     .      ...c cE dA EA iφ φ= = ∫ =


  

Where, Ac is the circular surface area.

E
dA1dA2

dA3
2 2 cos 0E dAφ = °∫

3 3 cos 90E dAφ = °∫

1 1 cos 0E dAφ = °∫

c

q
A

σ =
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At point B
The electric field due to the positively charged sheet and the negatively charged sheet is directed 
in the same direction. So, the net field at B is given by,

B

A
o o o

E E E

E σ σ σ
ε ε ε

+ −= +

⇒ = + =

  

2 2

At point C
The electric field due to the positively charged sheet is away from the sheet, whereas the electric 
field due to the negatively charged sheet is towards the sheet. So, the net electric field at C is zero.

C

C
o o

E E E

E σ σ
ε ε

+ −= +

⇒ = − =

  

0
2 2

Thus, option (D) is the correct answer.

The electric field due to the positively charged infinite sheet is,   
2 o

E σ
ε+ = .

And the electric field due to the negatively charge infinite sheet is,   
2 o

E σ
ε− = .

Solution

At point A
The electric field due to the negatively charged sheet is 
towards the sheet, whereas the electric field due to the 
positively charged sheet is away from the sheet. So, the 
net electric field at A is zero.

A

A
o o

E E E

E σ σ
ε ε

+ −= +

⇒ = − =

  

0
2 2

A B CE+

E+

E–
Enet = 0 Enet = 0

E–

  net
o

E σ
ε

=



What you already know What you will learn

•   Electric flux through the face of a cube

• Electric flux through curved surface of  
     cylinder and container

•	 Applications of Gauss’s law: Charged  
     cylinders, sheet and sphere

Application of Gauss’s Law: Charged Cylinders

Different types of charged cylinders

Solid 
conducting 

cylinder

Hollow
conducting 

cylinder

Charge is 
distributed over 

the whole volume

Charge resides on 
surface only

The solid conducting, hollow conducting, or hollow non-conducting cylinders have similar charge 
distribution, i.e., the charge can only reside over the surface, so we can treat them as a single case. 
Due to similar charge distribution, at equal distances, they have the same electric fields.

Hollow 
non-conducting 

cylinder

Solid 
non-conducting 

cylinder

+∞
R

–∞

NEET
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O

T
E
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ELECTROSTATICS

P H Y S I C S

APPLICATIONS OF GAUSS’S LAW-2
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Electric field due to solid conducting cylinder/ hollow conducting cylinder/  
thin non-conducting cylinder

Here, we can take any of the three types of cylinders, i.e. solid conducting, hollow conducting, or 
hollow non-conducting. For our study, we are taking a hollow cylinder.

Since the surface area of the gaussian surface is a non-zero quantity, thus, to hold the equality, 
the net electric field inside the hollow cylinder must be equal to zero. Hence, the net electric field 
inside the solid conducting, hollow conducting, or hollow non-conducting infinitely long uniformly 
charged cylinders is zero.

By applying Gauss’s law, we get,

The electric field at a distance r inside the cylinder (r < R)

Consider an infinitely long, uniformly charged hollow 
cylinder of radius R, with surface charge density σ. Consider 
a point P, which is present inside the cylinder. For this case, 
the Gaussian surface will be a cylinder of radius r and 
length L, as shown in the figure.

The electric field at a distance r outside the cylinder (r > R)

a.

b.

L

dA

dA2

dA

P

R

r
E

+∞

–∞
As the charge enclosed is

.

,

en
inside

en

inside

q
E dA

q

E

ε
=

=

∴ =

∫
0

0
0

0







For surface areas, A1 and A2, the angle between area vector and the electric field is 90°, so  
ɸ1 = ɸ2 = 0.
Therefore, the net flux is given by,
ɸnet = ɸ1 + ɸ2 + ɸ3 

ɸnet = ɸ3 = 
ɸnet = E 2πrL

Consider an infinitely long, uniformly charged hollow cylinder of radius R, with surface charge 
density σ. Consider a point Q, which is present outside the cylinder. For this case, the gaussian 
surface will be a cylinder of radius r and length L. Now, the cylinder (gaussian surface) can be 
divided into three surfaces, two circular surfaces, and one curved surface, A1, A2, and A3, and 
their elements are marked as dA1, dA2, and dA3, respectively, as shown in the figure.

L
dA3

dA2

dA1

R

E

+∞

–∞

1 1 cos 90E dAφ = °∫

2 2 cos 90E dAφ = °∫

3 3 cos 0E dAφ = °∫

s

S

q
A

σ =

3 3. E dA EA=∫




Qr

© 2020, BYJU'S. All rights reserved

02



 

The net charge enclosed by the gaussian surface is given by,

qen = σ × 2πRL
By applying Gauss’s law, we get,

Consider an infinitely 
long, uniformly charged 
non-conducting solid 
cylinder of radius R, with 
volume charge density ⍴. 
Consider a point S, which 
is present inside the 
cylinder. For this case, the 
gaussian surface will be 
a cylinder of radius r and 
length L. Now, the cylinder 
(gaussian surface) can

. enqE dA

RLE dA

RLE rL

RE
r

ε

σ π
ε

σ ππ
ε

σ
ε

=

⇒ =

⇒ =

⇒ =

∫

∫

0

0

0

0

2

22







Electric field (E) vs distance (r) graph

Electric field due to the solid non-conducting cylinder

E = 0

r < R r > R r

R

r = R

0

E σ
ε

=

1E
r

∝

L

dA2

dA3

dA1

R

r

+∞

–∞

1 1 cos 90E dAφ = °∫

2 2 cos 90E dAφ = °∫

insideq
V

ρ =

3 3 cos 0E dAφ = °∫

The electric field at a distance r inside the cylinder (r < R)a.

be divided into three surfaces, two circular surfaces, and one curved surface as, A1, A2, and A3, 
and their elements are marked as dA1, dA2, and dA3, respectively, as shown in the figure.

E

S
E

© 2020, BYJU'S. All rights reserved

03



For surface areas A1 and A2 , the angle between area vector and the electric field is 90°, so  
ɸ1 = ɸ2 = 0.
The net flux is given by,
ɸnet = ɸ1 + ɸ2 + ɸ3 

ɸnet = ɸ3 = 
ɸnet = E 2πrL
The net charge enclosed by the gaussian surface is given by,
qen = ⍴V = ⍴πr2L
By applying Gauss’s law, we get,

. enqE dA

r LE dA

r LE rL

rE

ε

ρπ
ε

ρππ
ε

ρ
ε

=

⇒ =

⇒ =

⇒ =

∫

∫

0

2

0
2

0

0

2

2







For surface areas A1 and A2, the angle between area vector and the electric field is 90°, so  
ɸ1 = ɸ2 = 0.
The net flux is given by,
ɸnet = ɸ1 + ɸ2 + ɸ3 

ɸnet = ɸ3 = 
ɸnet = E 2πrL
The net charge enclosed by the gaussian surface is given by,
qen = ⍴V = ⍴πR2L

Consider an infinitely long, uniformly charged solid cylinder of radius R, with volume charge 
density ⍴. Consider a point T, which is present outside the cylinder. For this case, the gaussian 
surface will be a cylinder of radius r and length L. Now the cylinder (gaussian surface) can be 
divided into three surfaces, two circular surfaces, and one curved surface, A1, A2, and A3, and their 
elements are marked as dA1, dA2, and dA3, respectively, as shown in the figure.

The electric field at a distance r outside the cylinder (r > R)b.

L
dA3

dA2

dA1

R

r

+∞

–∞

1 1 cos 90E dAφ = °∫

2 2 cos 90E dAφ = °∫

3 3 cos 0E dAφ = °∫

q
V

ρ =

T

3 3. E dA EA=∫




3 3. E dA EA=∫



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By applying Gauss’s law, we get,

Consider a uniformly charged, non-conducting sheet of thickness d, with volume charge density ⍴. 
To find the electric field, we have to assume a gaussian surface that is symmetrical to the charge 
distribution. For this case, the gaussian surface will be a cylinder whose end caps are parallel to the 
sheet and the axis is perpendicular to the axis of the sheet. The length of the cylinder is 2x.

In this case, the field point lies inside the sheet at a distance of x from the 
axis of the sheet. For this case, the gaussian surface will be a cylinder 
of radius r and length 2x. Now the cylinder (gaussian surface) can be 
divided into three surfaces, two circular surfaces, and one curved surface 
as, A1, A2, and A3, and their elements are marked as dA1, dA2, and dA3, 
respectively, as shown in the figure on the next page.

For surface area A3, the angle between the area vector and the electric 
field is 90°, so ɸ3 = 0. Also, for surface area A1 and A2, the angle between 
the area vector and the electric field are 0°, and they are symmetrically 
located. Thus, the net flux passing through them will be equal, i.e.,  
ɸ1 = ɸ2

. enqE dA

R LE dA

R LE rL

RE
r

ε

ρπ
ε

ρππ
ε

ρ
ε

=

⇒ =

⇒ =

⇒ =

∫

∫

0

2

0
2

0
2

0

2

2







Electric field (E) vs distance (r) graph

r

RE

r = R

1E
r

∝

E     r1E
r

∝

+∞

–∞

02
RE ρ
ε

=

Electric field inside the sheet at pointa.   
2

<
dx

x

d

x

+∞

–∞

O

 Electric Field Due to an Infinitely Large, Uniformly Charged Non-Conducting Sheet
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dA3

dA2

dA1

E

insideq
V

ρ =
x x

1 1 cos 0E dAφ = °∫2 2 cos 0E dAφ = °∫

3 3 cos 90E dAφ = °∫

The net flux is given by,
ɸnet = ɸ1 + ɸ2 + ɸ3 = 2ɸ1

ɸnet

ɸnet = 2EA  (A1 = A2 = A and cos 0° = 1)
The charge enclosed by the Gaussian surface is given by,

Where, ⍴ is the volume charge density.
By applying Gauss’s law, we get,

In this case, the point lies outside the sheet at a distance of x from the axis of the sheet. For this 
case, the gaussian surface will be a cylinder of radius r and length 2x. Now, the cylinder (gaussian 
surface) can be divided into three surfaces, two circular surfaces, and one curved surface as, A1, 
A2, and A3 and their elements are marked as dA1, dA2, and dA3, respectively, as shown in the figure.

( )  2enq A xρ=

. enqE dA

AxEA

xE

ε

ρ
ε

ρ
ε

=

⇒ =

⇒ =

∫
0

0

0

22





Electric field outside the sheet at pointb.   
2

>
dx

d

+∞

–∞

dA3

dA2

dA1

E

insideq
V

ρ =

1 1 cos 0E dAφ = °∫
2 2 cos 0E dAφ = °∫

3 3 cos 90E dAφ = °∫

12 .net E dAφ = ∫



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Similar to the previous case, for surface area A3, the angle between the area vector and the 
electric field is 90°, so ɸ3 = 0.  Also, for surface areas A1 and A2, the angle between the area 
vector and the electric field are 0° and they are symmetrically located. Thus, the net flux passing 
through them will be equal, i.e., ɸ1 = ɸ2.

The electric field outside the sheet is constant.

The net flux is given by,
ɸnet = ɸ1 + ɸ2 + ɸ3 = 2ɸ1

ɸnet

ɸnet = 2EA  (∵ A1 = A2 = A and cos 0° = 1)
The charge enclosed by the Gaussian surface is given by,

Where, ⍴ is the volume charge density.
By applying Gauss’s law, we get,

  enq Adρ=

. enqE dA

AdEA

dE

ε

ρ
ε

ρ
ε

=

⇒ =

⇒ =

∫
0

0

0

2

2





Electric field (E) vs distance (x) graph

E

x

. enqE dA

AdEA

dE

ε

ρ
ε

ρ
ε

=

⇒ =

⇒ =

∫
0

0

0

2

2





E     x1E
r

∝

O

12 .net E dAφ = ∫




x <  2
d x >  2

d 
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Application of Gauss’s Law: Charged Spheres

Types of charged spheres

Solid 
conducting 

Sphere

Q Q Q

Charge resides on the surface only
Charge is distributed 

over the volume

Hollow
conducting 

Sphere

Thin 
non-conducting 
spherical shell

Solid 
non-conducting 

Sphere / Dielectric 
sphere

As in the case of cylinders, the same charge distribution happens in the case of spheres also. In 
the solid conducting, hollow conducting, and hollow/thin non-conducting spherical shell, the whole 
charge is distributed only on the surface so that we can treat them as a single case, i.e., due to the 
similar charge distribution, they have the same electric fields at equal distances.

In this case, we can use a sphere of radius r as a Gaussian surface. The gaussian surface do not 
enclose any charge inside it, so the net charge enclosed is 0,
i.e., qen = 0.
Therefore, by applying Gauss’s law, we get,

Electric field due to a uniformly charged spherical shell

Let us consider a hollow sphere of radius R and charge density σ. Also, charge Q is distributed 
uniformly along the surface of the spherical shell.

Electric field due to solid conducting sphere/ hollow conducting sphere/ 
thin non-conducting spherical shells

Electric field inside the sphere at a distance r from the centre (r < R)a.

R

r
dA

dAdA

Q

E E

E

σ
As the charge enclosed is

.

,

en
inside

en

inside

q
E dA

q

E

ε
=

=

∴ =

∫
0

0
0

0







NEET
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For this case as well, the Gaussian surface will be a sphere of radius r. At any given point on the 
sphere, the area vector and the electric field are in the same direction.
The net flux is given by,

The charge enclosed by the Gaussian surface is given by,
qen = Q
By applying Gauss’s law, we get,

Electric field at any point outside any uniform spherical symmetric charge distribution behaves as 
if all its charge is concentrated at the centre.

Electric field outside the sphere at a distance r from the centre (r > R)b.

.

cos

cos

net

net

net

net

net

E dA

E dA

E dA

E dA

E r

φ

φ θ

φ

φ

φ π

=

⇒ =

⇒ = °

⇒ =

⇒ =

∫

∫

∫

∫
2

0

4











. enqE dA

QE r

QE
r

ε

π
ε

πε

=

⇒ =

⇒ =

∫
0

2

0

2
0

4

4





Electric field (E) vs distance (r) graph

R

Q

E

E = 0
r > R rr < R

r = R

o

QE
Rπε

= 2
1

4

E
r

∝ 2
1

O
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What you already know

•	 Electric flux through the face of a cube

•	 Electric flux through the curved surface 
of a cylinder and a container 

•	 Applications of Gauss’s law

What you will learn

Application of Gauss’s Law

•	 Scalar and vector fields

•	 Conservative and non-conservative 
forces

•	 Electric potential

•	 Electric potential due to a point charge

•	 Electric potential for a system of charges

Electric field due to a solid non-conducting uniformly charged sphere

Let us consider a uniformly charged solid non-conducting sphere of radius R with volume charge 
density ρ. Also, the total charge Q is distributed uniformly throughout the sphere. 

In this case, we can assume a sphere of radius r as a Gaussian surface. The angle between the 
area vector and the electric field is 0° throughout the periphery of the Gaussian surface, i.e., 
θ = 0°. Thus, the magnitude of the electric flux at every point on the periphery of the Gaussian 
surface is the same.

The net flux through the Gaussian surface is given by,

The net charge enclosed by the Gaussian surface is given by,

qen = ρV = 
( )

. en

o

o

o

qE dA

r
E r

rE

ε

ρ π
π

ε
ρ
ε

=

×
⇒ =

⇒ =

∫
3

2

4
34

3





 

1.  Electric field inside the sphere at a distance r from the centre (r < R)

 θ = 0°  θ = 0°

 θ = 0°

E

R

r
dA

dA

dA

E

E

NEET

  inside

V
q

ρ =

( )

.

cos

cos

net

net

net

net

net

E dA

E dA

E dA

E dA

E r

φ

φ θ

φ

φ

φ π

=

⇒ =

⇒ = °

⇒ =

⇒ =

∫

∫

∫

∫
2

0

4











N
O
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S

 ELECTROSTATICS

P H Y S I C S

ELECTRIC POTENTIAL
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By applying Gauss’s law, we get,

By applying Gauss’s law, we get,

2.  Electric field outside the sphere at distance r from the centre (r > R)

Similarly, in this case, we can assume a sphere of radius r as a Gaussian surface. The angle 
between the area vector and the electric field is 0° throughout the periphery of Gaussian 
surface, i.e., θ = 0°. Thus, the magnitude of the electric flux at every point on the periphery of 
the Gaussian surface is the same.

The net flux through the Gaussian surface is given by,

The net charge enclosed by the Gaussian surface is given by,

For the electric field at any point outside the uniform spherical symmetric charge distribution, it 
behaves as if all its charge is concentrated at the centre.

qen = Q 

 θ = 0°  θ = 0°

 θ = 0°

E

R

r
dA

dA

dA

E

E

( )

.

cos

cos

net

net

net

net

net

E dA

E dA

E dA

E dA

E r

φ

φ θ

φ

φ

φ π

=

⇒ =

⇒ = °

⇒ =

⇒ =

∫

∫

∫

∫
2

0

4











( )

. en

o

o

o

qE dA

r
E r

rE

ε

ρ π
π

ε
ρ
ε

=

×
⇒ =

⇒ =

∫
3

2

4
34

3





  inside

V
q

ρ =

( )

Where,

. en

o

o

o

o

qE dA

QE r

QE
r

kQE k
r

ε

π
ε

πε

πε

=

⇒ =

⇒ =

 
⇒ = = 

 

∫

2

2

2

4

4

1
4




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A region in space where every point is characterized by a physical quantity is known as a field.

Scalar field 

Vector field

Electric field (E) vs distance (r) graph

Field

T1

T1 > T2 > T3

T2

T3

q1
A

B

C

If the physical quantity associated with a field is a 
scalar quantity, then the field is known as the scalar 
field, i.e., a scalar field is a function that gives us 
a single value of some variable for every point in 
space. 

Example: Temperature field

If the physical quantity associated with a field is a 
vector quantity, then the field is known as the vector 
field.

Example: Electrostatic field

Let us consider a heat source. The intensity of heat 
energy at different points around the heat source will 
be different as shown in the figure. Therefore, heat 
energy is a scalar quantity and the field associated 
with this is known as temperature field.

Consider a point charge +q1 placed in space. The 
magnitude of the electric field at different points 
that are radially equidistant from the point charge 
is the same, but the direction of the electric field is 
different for each of them as shown in the figure.

A B C

E
r r r



   A B C

E
r r r



  

A B C

E
r r r



  

A B C

E
r r r



  

A B C

E
r r r



  

A B C

E
r r r



  

 r = R
 r r > R r < R

E

O

R

o

E r

E
r

QE
Rπε

∝

∝

=

2

2

1

1
4

o

E r

E
r

QE
Rπε

∝

∝

=

2

2

1

1
4

o

E r

E
r

QE
Rπε

∝

∝

=

2

2

1

1
4
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Conservative Forces and Non-Conservative Forces

1.	 The work done by a conservative force is independent      
of the path taken. It only depends on the initial and 
final positions. 

3.   Potential energy can only be defined for conservative force fields.

 Examples: 
 �Gravitational force: To move a body of mass m to a 
height h, many paths can be taken, but the work done 
on each path will remain the same.

 �Electrostatic force: Electrostatic force is a conservative 
force as the work done to move a charge from A to B 
is independent of the path taken to move the charge.

2. � � �Non-conservative forces are also known as dissipative forces because they dissipate mechanical 
energy into other forms.

1.  � � �The work done by a non-conservative force depends on the path of the object. Non-conservative 
forces are path functions.

      Example: Friction force

 �Therefore, conservative forces are path independent. 

 (Wg)I = (Wg)II = (Wg)III = –mgh

 (Wel)I = (Wel)II = (Wel)III 

2.  � ��A force is conservative if the work it does around any 
closed path is zero.

 Examples: 
 �Gravitational force: If a block of mass m is raised up to 
a height h by following path I and is brought back to 
the initial position following path II, then the net work 
done in the closed cycle is zero.

 (Wg)I + (Wg)II = 0

Conservative forces

A B

C

hI

Path I

Path II

Path III

III
IIm

A B

h

A B

I

II

Non-conservative forces
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Electric Potential (V)

The electric field in a region of space is described by assigning a vector quantity (

A B C

E
r r r



  

) at each point. 
Pictorially, it is represented by electric lines of force. The same electric field can also be described 
by assigning a scalar quantity (V) at each point known as electric potential.

Electric potential difference

The electric potential difference between two points is defined as the work done by an external 
agent in moving a unit positive charge from one point to another.

If we assume that point B is at infinity and V∞ = 0, then the electric potential at point A can be 
defined as the amount of work done by an external agent in moving a unit positive charge from 
infinity to point A. 

Consider a point charge Q and a positive test charge qo that is brought from infinity to point A by 
an external force. Let us assume that the test charge is brought very slowly without any change 
in velocity, such that, at any given instant, there is no acceleration. So, the net force acting on it at 
any point is zero. 

Suppose a positive charge +qo is brought from point B to point A. Thus, the potential difference 
between VA and VB  is as follows: 

If the unit charge is, +qo = +1 C,

If the unit charge is, +qo = +1 C,

The SI unit of electric potential is JC–1 or Volt.

A
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B
+

∞
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− =
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=

1.	 The work done by the external agent is to be considered while calculating electric 
potential at a point.

2.	 The work done by the external agent is against the electric field.
3.	 Since electrostatic force is a conservative force, the work done by the electrostatic 

force is independent of its path.

Electric potential due to a point charge Q 

+

BOARDS
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Therefore, the electrostatic force is equal to the external force but in the opposite direction.

Since the electrostatic force is a conservative force and its magnitude is equal to the external force,  
we can consider the external force as the conservative force. The work done by the external force 
for moving the positive charge from A to infinity and infinity to A will be opposite to each other but 
equal in magnitude.

While moving the positive charge from A to infinity, consider that the positive test charge is x 
distance away from charge Q at an instant. If the charge moves a small distance dx, then the work 
done by the external force is given by,

Since V is a scalar quantity, the charge should 
be substituted along with its sign. This means 
that a positive and a negative charge will have a 
positive and a negative potential, respectively, at 
all points.

A
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Q + +
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At point the electric potential is given by,,
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Potential Due to a System of Point Charges

If charges q1, q2, –q3, –q4, …., qn are placed in space at distance 
r1, r2, r3, r4, …, rn, respectively, then the value of the electric 
potential at point P is given by,

( ) ( )
... n

P
n

k q k qkq kq kq
V

r r r r r
− −

= + + + + +3 41 2

1 2 3 4

P

q1

r1
r2

r3

r4

q2

q3

q4 qn

rn

–

–

+
+

+

(A) Q = –q (B)   

  

Q
q

Q
q

= −

=

1

1

(D) 

  

  

Q
q

Q
q

= −

=

1

1
(C) Q = q

Four point charges, –Q, –q, 2q, and 2Q are placed at each 
corner of a square. What is the relation between Q and q for 
which the potential at the centre of the square will be zero?

In a square, all the diagonals are of the same length. Therefore, 

OA = OB = OC = OD = x
The value of the electric potential at the centre is given by,

Since the potential at O is 0, we get,

0 = Q + q
⇒ Q = –q

Solution

Thus, option (A) is the correct answer.

++

– –A

D

B

C

Ox

–Q –q

2q2Q

( ) ( ) ( ) ( )
O

O

O

k Q k q k Q k q
V

x x x x

kQ kq kQ kqV
x x x x

kV Q q
x

− −
= + + +

−
⇒ = − + +

⇒ = +

2 2

2 2
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•	 Applications of Gauss’s law

•	 Scalar and vector field

•	 Conservative and non-conservative forces

•	 Electric potential

•	 Electric potential due to a point charge

•	 Electric potential for a system of charges

What you already know

•	 Null potential points due to two point 
charges

•	 Electric potential due to extended charges, 
ring, and disc

•	 Electric potential energy for two-charge 
and three-charge systems

What you will learn

The point where the net potential is zero is known as a null potential point. In a system of two like 
charges, at all the points in space near the vicinity of the charges, the potential is either positive or 
negative. Hence, null potential points are not possible. 

System of two unlike charges

Let us consider two unlike charges, +q1 and −q2, where, |q1| > |q2|. Let the distance between the 
charges be d.

There are two points along the line joining the charges at which the potential will be zero. A null 
potential point will be possible near the smaller charge on either side of the line joining the two 
unlike charges. Let us divide the space around them into three zones, zone 1, zone 2, and zone 3, 
as shown in the figure. Thus, two null potential points will be possible, one in zone 1 and the other 
in zone 2.

Zone 3

q1 q2

Zone 1 Zone 2

Null point (P1) in zone 1:

Let the null point be P1, which is at a distance x from charge q2.

Zone 3 q1 q2
Zone 1 Zone 2

d – x x
d
P1

Null Potential Points Due to Two Point Charges

ELECTROSTATICS

P H Y S I C S

ELECTRIC POTENTIAL-2

N
O

T
E

S
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The net potential at point P1 is given by,

( )
( )

( )

( )
( )

For the net potential to be zero,

P q q
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k qkqV
d x x
kq kqV

d x x

kq kqV
d x x

q x q d x
dx q

q

+ −= +

−
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Null point (P2) in zone 2:

Let the null point be P2, which is at a distance x from charge q2.

Zone 3
q1 q2

Zone 1 Zone 2

d + x
x

d

P2

 

The net potential at point P2 is given by,

( )
( )

( )

( )
( )

For the net potential to be zero,
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The general relation for null potential points along the line joining the two unlike charges is,

1

2

1

dx q
q

=
±
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Let us consider an extended body of area A and charge Q is distributed uniformly over the area. Let 
us consider a small element of the body having area da and charge dq.

Q

P

dq

r

da

The steps for obtaining the potential due to the extended charge systems are given as follows:

Step 1: Step 2: Step 3: Step 4:

Find the small 
charge (charge of the 
element) according to 
the surface taken for 
study.

Qdq da
A

=

Find the electric 
potential due to the 
small charge dq.

k dqdV
r

=

Substitute the 
value of dq in dV.

Integrate the potential 
dV with proper limits to 
obtain the net electric 
potential due to the 
extended charge 
system.

Electric Potential Due to Extended Charges

Electric Potential Due to a Uniformly Charged Rod at an Axial Point

Consider a uniformly charged rod of length L and charge Q. To find the electric potential at point P, 
which is at a distance r from one end of the rod, let us consider a small element dx having a small 
charge dq at a distance x from point P as shown in the figure. 

L

dx
x

dq P

r

The small charge on the elemental length can be written as follows:

Qdq dx
L

=
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The potential due to the small charge dq at point P is given by,

( )

( )

[ ]

( )

By substituting the value of in equation we get,

Integrating both the sides,we get,
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By substituting the value of in equation we get,

Integrating both the sides,we get,

The limits of will be from to

,

.

ln

ln ln

ln

r L

r

r L

r

k dqdV i
x

dq i
kQ dxdV

Lx

kQ dxdV
L x

x x r x r L
kQ dxV
L x

kQV x
L

kQV r L r
L
kQ r LV
L r

+

+

=

=

=

= = +

=

⇒ =

 ⇒ = + − 

+ ⇒ =  
 

∫ ∫

∫



Electric Potential Due to a Uniformly Charged Ring

Consider a uniformly charged ring of radius R and charge Q. To find the electric potential along the 
axis of the ring at point P, which is at a distance x from the centre of the ring, let us consider a small 
element of the ring having length dx charge dq at a distance r from point P as shown in the figure. 

  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
    

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  

r
R

Q
dq

x

P

The potential due to the small charge dq at point P is given by,

k dqdV
r

=
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( )
Here, is a constant at every element of the ring.

By integrating both the sides, we get,

At centre, ,

C

k dqdV r x R
x R

x R

kdV dq
x R

kQV
x R

x
kQV
R

⇒ = = +
+

+

=
+

⇒ =
+

=

=

∫ ∫



2 2

2 2

2 2

2 2

2 2

0

Consider a uniformly charged disc of radius Ro and charge Q. The disc is the combination of 
infinitesimally thin coaxial rings. To find the electric potential along the axis of the disc at point P, 
which is at a distance x from the centre of the disc, let us consider an element of the disc, which is 
nothing but an infinitesimally thin ring of radius R, having thickness dr and charge dq at a distance 
r from point P as shown in the figure.

2 2r x R= +

Q

R

Ro

dq

x

P

The charge of each thin infinitesimal ring is given by,

2 2
o

Qdq R dR
R

π
π

=

The potential at point P due to charge dq is given by,

( ) ( )...

k dqdV
r

k dqdV r x R i
x R

=

⇒ = = +
+



2 2

2 2

Electric Potential Due to a Uniformly Charged Disc
BOARDS
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( )

( )

( ) ( )

By substituting the value of in equation we get,

By integrating both the sides, we get,

The limits of will be from to

Take

By differe

,

.

....

....

o

o

o

o

R

o

dq i
kQ R dRdV
R x R

kQ R dRdV
R x R

R R R R
kQ R dRV ii
R x R

x R P iii

π

π
⇒ =

+

=
+

= =

=
+

+ =

∫ ∫

∫

2 2 2

2 2 2

2 0 2 2

2 2

2

2

0
2

( )
( ) ( ) ( )

ntiating partially with respect to we get,

By substituting equations and in equation we get,

,
....

,

o

o

o

R

o

R

o

R

o

o
o

o
o

R
R dR dP iv

iii iv ii
kQ dPV
R P

kQV P
R
kQV x R
R
kQV x R x
R
kQV x R x
R

=

=

 ⇒ =  

 ⇒ = +
 

 ⇒ = + −
 

 ⇒ = + −
 

∫ 12 0
2

2 0

2 2
2

0

2 2
2

2 2
2

2

2

2

2 2

2

( )

( )

( ) ( )

By substituting the value of in equation we get,

By integrating both the sides, we get,

The limits of will be from to

Take

By differe

,

.

....

....

o

o

o

o

R

o

dq i
kQ R dRdV
R x R

kQ R dRdV
R x R

R R R R
kQ R dRV ii
R x R

x R P iii

π

π
⇒ =

+

=
+

= =

=
+

+ =

∫ ∫

∫

2 2 2

2 2 2

2 0 2 2

2 2

2

2

0
2

( )
( ) ( ) ( )

ntiating partially with respect to we get,

By substituting equations and in equation we get,

,
....

,

o

o

o

R

o

R

o

R

o

o
o

o
o

R
R dR dP iv

iii iv ii
kQ dPV
R P

kQV P
R
kQV x R
R
kQV x R x
R
kQV x R x
R

=

=

 ⇒ =  

 ⇒ = +
 

 ⇒ = + −
 

 ⇒ = + −
 

∫ 12 0
2

2 0

2 2
2

0

2 2
2

2 2
2

2

2

2

2 2

2

Electric Potential Energy (U)

Recall what we have learnt about potential energy till now. We cannot define absolute potential 
energy. However, what we can define is the change in potential energy.

The change in potential energy is the negative of the work done by the conservative force, as 
the system changes from the initial to the final configuration. Mathematically, the change in the 
potential energy is defined as, ΔU = Uf − Ui = (−Wconservative force )i → f

Let us consider that two charges +q1 and −q2 are initially separated by some distance, and are finally 
brought close to each other as shown in the figure.

q1 q2
Ui

Initial configuration

q1 q2
Uf

Final configuration
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Thus, the change in potential energy of the system is given by, 

ΔU = Uf − Ui = (− Wconservative force)i → f

Now, suppose that those two charges are brought close to each other because of the work done 
(Wext) by some external agent. According to the work-energy theorem,

Wext + Wel = Δ(K.E.)

Assuming that the charges are brought very slowly without changing their speeds, it can be said 
that, Δ(K.E.) = 0. 

Therefore,

Wext + Wel = 0

⇒ Wext = −Wel

Thus, the change in potential energy of the system is given by, 

ΔU = Wext, if and only if Δ(K.E.) = 0

It is very important to note that potential energy can be defined only for conservative force fields. 
Thus, the change in potential energy of a system in a conservative force field does not depend on 
the path through which the system changes from the initial to the final configuration. It is because 
the change in potential energy is not a path function but a state function, i.e., it depends only on 
the initial and final states of the system.

Definition

Electric potential energy is defined as the amount of work done 
in assembling a system of charges against the electric forces of 
the system by bringing individual charges from infinity to their 
respective positions in the system.

That is, initially, all these charges are at the infinite separation 
between them, and finally they are brought to the required 
configuration shown in the figure.

q4

qn

q1

q3

q2

Electric Potential Energy of a Two-Charge System

q1 q2
r

A B

Let us consider two like charges +q1 and +q2. Initially, they are infinitely separated and are finally 
brought to the configuration as shown in the figure, i.e., charges +q1 and +q2 are separated by a 
distance r. Let us assume that the electric potential energy at infinity is zero, i.e., Ui = 0

For bringing the first charge +q1 from infinity to point A, there is no charge present near the vicinity. 
So, the work done against the electrostatic force is zero.

1 0q
AW∞→ =

We know that due to a point charge, at all the points in space near the vicinity of the charges, 
the potential is either positive or negative. Thus, at point B, the potential due to +q1 is given by, 

1
B

kqV
r

= .
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For bringing the second charge q2 from infinity to point B, which is at a distance r from point A, the 
work done is given by,

2

2

2

1 2

q
B B

q
B

W q V

kq qW
r

∞→

∞→

=

⇒ =

We know that the change in electric potential energy is given by,

q q
f i A B

f

f

U U U W W

kq qU
r

kq qU
r

∞→ ∞→∆ = − = +

⇒ − = +

⇒ =

1 2

1 2

1 2

0 0

q q
f i A B

f

f

U U U W W

kq qU
r

kq qU
r

∞→ ∞→∆ = − = +

⇒ − = +

⇒ =

1 2

1 2

1 2

0 0

Electric Potential Energy of a Three-Charge System

Let us consider three like charges +q1, +q2, and +q3. Initially, they are infinitely separated and are 
finally brought to the configuration as shown in the figure. Let us assume that the electric potential 
energy at infinity is zero, i.e., Ui = 0.

q1

q2

q3

A

a

b

c

C

B

For bringing the first charge +q1 from infinity to point A, there is no charge present near the vicinity. 
So, the work done against the electrostatic force is zero.

1 0q
AW∞→ =

We know that due to a point charge at all the points in space near the vicinity of the charges, the 
potential is either positive or negative. Thus, at point B, the potential due to +q1 is given by, 

1
B

kqV
a

=

For bringing the second charge +q2 from infinity to point B, which is at a distance a from point A, the 
work done is given by,

2

2

2

1 2

q
B B

q
B

W q V
kq qW

a

∞→

∞→

=

⇒ =
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For bringing the third charge +q3 from infinity to point C, which is at distance b and c from +q1 and 
+q2, respectively, the work done is given by,

q
C C

q
C

W q V
kq q kq qkq kqW q

b c b c

∞→

∞→

=

 ⇒ = + = + 
 

3

3

3

1 3 2 31 2
3

The change in the electric potential energy is given by,

qq q
f i A B C

f

f

U U U W W W

kq q kq qkq qU
a b c

kq q kq qkq qU
a b c

∞→ ∞→ ∞→∆ = − = + +

⇒ − = + + +

⇒ = + +

31 2

1 3 2 31 2

1 3 2 31 2

0 0

From the given relation, it is clear that the potential energy of a system is the sum of the potential 
energies of all the possible pairs of charges in the system (without repeating).

For a system having n charges, the number of pairs are given by,

( )1
2

n n
N

−
=

The work done in moving a charge between two points having the same potential is zero. 
W = q∆V = 0 (since ∆V = 0)

4
Three charges, each +q, are placed at the 
corners of an isosceles triangle ABC of sides BC 
and AC as 2a. D and E are the midpoints of BC 
and CA. Find the work done in taking a charge 
Q from D to E.

Zero(D)(A) (B) (C)
3

o

qQ
aπε

3
8 o

qQ
aπε 4 o

qQ
aπε

E

D

+q
B

+q
C

+q
A
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Solution

Due to the symmetric charge configuration,

Potential at D = Potential at E

VD = VE

The change in the potential energy is given by,

( )
E D Ext D E

E D E D

Ext D E

U U U W
U U Q V V

W

→

→

∆ = − =

⇒ − = − =

⇒ =

0

0

Thus, option (D) is the correct answer.

Zero(A)

4
As per the diagram, a point charge +q is 
placed at the origin O. Find the work done 
in taking another point charge −Q from 
point A [coordinates (0, a)] to another point B 
[coordinates (a, 0)] along the straight path AB. 

A

y

x
BO

q

−Q

(0, a)

(a, 0)

(B) 2
1 2

4 o

qQ a
aπε

 
 
 

(C) 2
1 2

4 o

qQ a
aπε

 −
 
 

(D) 2
1

4 2o

qQ a
aπε

 
 
 

NEETSolution

The potential at point A is given by, A
kqV
a

= .

The potential at point B is given by, B
kqV
a

= .

⇒ VA = VB

The change in the potential energy is given by,

( )
B A Ext A B

B A B A

Ext A B

U U U W
U U Q V V

W

→

→

∆ = − =

⇒ − = − =

⇒ =

0

0

Thus, option (A) is the correct answer.

a

a

Q

E

D

+q
B

+q
C

+q
A
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NEET

4 Charges +q and −q are placed at points 
A and B, respectively, which are at a 
distance 2L from each other. C is the 
midpoint between A and B. Find the work 
done in moving a charge +Q along the 
semicircle CRD.

A

q −q

R

C

2L

B D

Solution

The potential at point C due to both the charges is given by,

The potential at point is given by,

C

D

D
o

kq kqV
L L

D
kq kq kqV

L L L
qV

Lπε

= − =

= − = −

⇒ = −

0

2
3 3

6

The net work done by the external force is given as follows:

( )
D C Ext C D

Ext C D D C D C

Ext C D
o

Ext C D
o

U U U W

W U U Q V V

qW Q
L

qQW
L

πε

πε

→

→

→

→

∆ = − =

⇒ = − = −

 
⇒ = − − 

 

⇒ = −

0
6

6

Thus, option (C) is the correct answer.

(A)
2 o

qQ
Lπε

(B)
6 o

qQ
Lπε

(C)
6 o

qQ
Lπε

−
(D)

4 o

qQ
Lπε
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What you already know

•	 Null potential points due to two point 
charges

•	 Electric potential due to extended 
charges, rings, discs

•	 Electric potential energy for two and 
three charge systems

•	 Relation between electric field and 
electric potential

•	 Calculation of electric potential from 
electric field and vice versa

•	 Electric potential due to a uniformly 
charged sphere and concentric shells

What you will learn

N
O

T
E

S

ELECTROSTATICS

P H Y S I C S

ELECTRIC POTENTIAL - 3

Relation between Electric Field and Electric Potential

Let us consider a point charge +q1. Now, take a point P at a distance r from the charge.

At point P, the value of the electric field is given by,

1
3

kqE r
r

=




The direction of the electric field is away from the point charge.
Also, at point P, the value of the electric potential is given by,

1  kqV
r

=

Since it is a scalar quantity, it does not have any direction. We can observe that the electric potential 
is inversely proportional to the distance from the charges.
Let us take three points A, B, and C, where A is near to charge +q1 and C is far away from the charge 
along the line joining the charge and point P.

PE

r
A B C D

q1
1
3

kqE r
r

=


+

E


A B Cq1

r1

r2

r3

+

1 1 1

1 2 3

    kq kq kq
r r r

> >

The electric potential at the three 
points is different as they are present at 
different distances from +q1. Also, as the 
distance increases, the electric potential 
decreases.
Therefore,
VA > VB > VC
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Hence, we can conclude that the electric potential decreases along the direction of the electric 
field.

Let us consider that a point charge +q1 is placed in a 
uniform electric field. Thus, it experiences electrostatic 
force qE along the direction of the electric field. It 
is moved from point A to point B in the electric field 
very slowly without changing its speed by applying an 
external force equal in magnitude, which is opposite in 
direction as shown in the figure. While moving charge 
+q1 from point A to point B for the entire path, the 
change in kinetic energy is zero (ΔKE = 0).

The value of the external force is equal to the electrostatic force but is opposite in direction.

  extF qE= −
 

The potential difference between points A and B is given by,

1

    A Bext
B A

W
V V

q
→− =     ...…(i)

The work done by the external force is given by,

The negative sign shows that along the direction of electric field, the electric potential is decreasing. 
In other words, the electric field is directed from high potential to low potential.

In case of a non-uniform electric field, we have to divide the whole path from point A to B into small 
lengths dr. For this small length dr, the electric field is almost uniform. 

Case 1: When the electric field is uniform

Case 2: When the electric field is non-uniform

( )

( ) ( )

( ) ( )

( )

( )

From equations and ,we get,

.

.

. ......

.

.

ext A B ext

ext A B

ext A B

ext A B
B A

W F r

W q E r

W
E r ii

q
i ii

W
V V E r

q

V E r

→

→

→

→

= ∆

⇒ = − ∆

⇒ = − ∆

⇒ − = = − ∆

⇒ ∆ = − ∆





















1

1

1

∆rq1
Fext

qE AB

E


+ +
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Consider that charge q1 is placed in a uniform electric 
field. The charge is moved from A to B along an 
arbitrary path as shown in the figure. Let the separation 
between point A and point B be d.

The total path between A and B is broken into small 
lengths dr . Resolve dr  such that it is parallel and 
perpendicular to the electric field, i.e., dr cos θ is along 
the electric field and dr sin θ is perpendicular to the 
electric field.
Thus, the electric potential is given by,

Therefore, the small potential difference is given by,

The total potential difference is given by,

.

.
B B

A A

dV E dr

dV E dr

= −

= −∫ ∫









Case 3: When the electric field is uniform but charges are moving in a random path

If is along then the electric potential is given by,

If is opposite to then the electric potential is given by,

.

cos

cos

cos ,

cos ,

B

B A A
d

B A

d

B A

B A

B A

V V E dr

V V E dr

V V E dr

dr E
V V Ed

dr E
V V Ed

θ

θ

θ

θ

− = −

⇒ − = −

⇒ − = −

⇒ − = −

⇒ − =

∫
∫
∫









0

0

Calculation of Potential From Electric Field

For calculating the value of potential, we have to take E


 and dr  in a Cartesian coordinate system.

Let,

( ) ( )

And,

The potential difference is given by,

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

.
ˆ ˆˆ ˆ ˆ ˆ.

x y z

x y z

x y z

E E i E j E k

r xi yj zk

dr dxi dyj dzk

dV E dr

dV E i E j E k dxi dyj dzk

dV E dx E dy E dz

= + +

= + +

= + +

= −

 ⇒ = − + + + + 
⇒ = − − −











dr cos θ
dr sin θ

d
dr

A

B

θ
E


dr

AB

E

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The electric potential at a point (x, y, z) is given by, V = –x2y – xz3 + 4. At that point, what is the 
electric field?

Given,

Solution

Calculation of Electric Field From Potential

The potential is given in the following form:

The electric field is the negative gradient of the electric potential.

( )

( )

( )

On partially differentiating with respect to we get,

and

Similarly, on partially differentiating with respect to and we get,

and

and

The electric fie

,

,

x y z

x

y

z

dV E dx E dy E dz

x
V E dy dz
x

y z
V E dx dz
y
V E dx dy
z

= − − −

∂
= − = =

∂

∂
= − = =

∂
∂

= − = =
∂







0 0

0 0

0 0

ld is given by,

Therefore,

ˆˆ ˆ

ˆˆ ˆ

x y zE E i E j E k

V V VE i j k
x y z

V V VdV E
x y z

= + +

 ∂ ∂ ∂   ⇒ = − + − + −    ∂ ∂ ∂    

 ∂ ∂ ∂   = = − + − + −    ∂ ∂ ∂    







22 2

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

(A) (B)

(C) (D)

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ
E i xy j x y k xz y E i z j xyz k z

E i xy z j xy k z x E i xy z j x k xz

= + + + − = + +

= + + + = + + +

 

 

2 2 2 3 2

3 2 2 3 2 2

2 3

2 3 2 3

On partially differentiating with respect to and we get,

The electric field is given by,

By s

, , ,

ˆˆ ˆ

ˆˆ ˆ

x y z

V x y xz
x y z

V xy z xy z
x
V x x
y
V xz xz
z

E E i E j E k

V V VE i j k
x y z

= − − +

∂
= − − + = − −

∂
∂

= − + + = −
∂
∂

= − + = −
∂

= + +

 ∂ ∂ ∂
⇒ = − + + ∂ ∂ ∂ 





2 3

3 3

2 2

2 2

4

2 0 2

0 0

0 3 0 3

( ) ( ) ( )( )
( ) ( ) ( )

ubstituting the values of and in the given equation, we get,, ,

ˆˆ ˆ

ˆˆ ˆ

V V V
x y z

E xy z i x j xz k

E i xy z j x k xz

∂ ∂ ∂
∂ ∂ ∂

⇒ = − − − + − + −

⇒ = + + +





3 2 2

3 2 2

2 3

2 3

NEET
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On partially differentiating with respect to and we get,

The electric field is given by,

By s

, , ,

ˆˆ ˆ

ˆˆ ˆ

x y z

V x y xz
x y z

V xy z xy z
x
V x x
y
V xz xz
z

E E i E j E k

V V VE i j k
x y z

= − − +

∂
= − − + = − −

∂
∂

= − + + = −
∂
∂

= − + = −
∂

= + +

 ∂ ∂ ∂
⇒ = − + + ∂ ∂ ∂ 





2 3

3 3

2 2

2 2

4

2 0 2

0 0

0 3 0 3

( ) ( ) ( )( )
( ) ( ) ( )

ubstituting the values of and in the given equation, we get,, ,

ˆˆ ˆ

ˆˆ ˆ

V V V
x y z

E xy z i x j xz k

E i xy z j x k xz

∂ ∂ ∂
∂ ∂ ∂

⇒ = − − − + − + −

⇒ = + + +





3 2 2

3 2 2

2 3

2 3

Thus, option (D) is the correct answer.

In a region, the potential is represented by, V (x, y, z) = 6x – 8xy – 8y + 6yz, where, V is in volts 
and x, y, and z are in meters. What is the electric force experienced by a charge of 2 coulombs 
situated at point (1, 1, 1)?

Given,

Thus, option (D) is the correct answer.

(A) 6 5 N 	 (B) 30 N	 (C) 24 N 	 (D) 4 35 N

Solution

( )

( )

( )

( )

( )

( )

( )

On partially differentiating with respect to and we get,

The magnitude of the electric field is given by

| , ,

| , ,

| , ,

, ,
, , ,

,

x

x

y

y

z

z

x

V x y z x xy y yz
x y z

VE y
x

E

VE x z
y

E

VE y
z

E

E E

= − − +

∂
= − = − −

∂
⇒ =

∂
= − = − − − +

∂
⇒ =

∂
= − = −

∂
⇒ = −

=


1 1 1

1 1 1

1 1 1

2

6 8 8 6

6 8

2

0 8 8 6

10

6

6

The electric force is given by,

y zE E

E

E NC

F q E

F N

−

+ +

⇒ = + +

⇒ =

= = ×

⇒ =





 



2 2

1

4 100 36

2 35

2 2 35

4 35

NEET
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Electric Potential Due to Uniformly Charged Spheres

In the last session, we discussed four kinds of charged spheres such as a solid conducting sphere; 
a thin, hollow conducting sphere; a solid non-conducting sphere; and a thin, hollow non-conducting 
sphere. Out of these four spheres, only in the solid non-conducting sphere, the charge is distributed 
throughout the sphere. However, for the other three types, the charge is distributed uniformly only 
over the surface so that we can treat them as a single case. Due to similar charge distribution, they 
will have the same electric fields and electric potentials at equal distances.

Let us consider a thin, hollow conducting sphere 
of radius R, having a charge Q uniformly distributed 
on it. Now, consider point P outside the sphere at a 
distance r from the sphere.
We know that an electric field at any point outside 
the uniform spherical symmetric charge distribution 
behaves as if all its charge is concentrated at its 
centre.
Therefore, the electric field at P is given by,

2  P
kQE
r

=

The electric potential difference is given by,

The potential difference at the surface of the sphere 
is given by,

Here, we can take any of the three types of spheres, i.e., solid conducting, hollow conducting, or 
hollow non-conducting. For our study, we are taking a thin, hollow conducting sphere.

Case 1: Outside the sphere (r > R)

Case 2: On the surface of the sphere (r = R)

.
r

P

r

P

P

V V E dr

kQV dr
r

kQV
r

∞ ∞

∞

− = −

⇒ − = −

⇒ =

∫

∫





20

.
R

P

R

P

P

V V E dr

kQV dr
r

kQV
R

∞ ∞

∞

− = −

⇒ − = −

⇒ =

∫

∫





20

Q

 ∞
R

r

Q

 ∞
R

Pr

Potential due to solid conducting sphere; thin, hollow conducting sphere; thin, hollow 
non-conducting sphere

+ +  + + + + + + + + + + + + + + + + + + + + + + + +
 +

 +
 +

 +
 +

 +
 +   

+ +  + + + + + + + + + + + + + + + + + + + + + + +
 +

 +
 +

 +
 +

 +
 + +   
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The electric field inside the sphere due to uniform 
distribution is given by,
EP = 0
The electric field is zero inside as well as on the 
surface of the sphere, i.e., the potential is constant 
inside as well on the surface of the sphere.
Therefore, the electric potential difference at any 
point inside the sphere is given by,

  P
kQV
R

=

For a solid non-conducting sphere, the charge is distributed throughout the material so that the 
potential inside the conductor does not become zero.

Case 1: Outside the sphere (r > R)

Let us consider a solid non-conducting sphere of radius R, having a charge Q uniformly distributed 
throughout the material. Consider point P outside the sphere at a distance r from the sphere.
We know that the electric field at any point outside the uniform spherical symmetric charge 
distribution behaves as if all its charge is concentrated at its centre.

Therefore, the electric field at P is given by,

2  P
kQE
r

=

The electric potential difference is given by,

Case 3: Inside the sphere (r < R)

Electric potential (V) vs distance (r) graph

Potential due to a solid non-conducting sphere

.
R

P

R

P

P

V V E dr

kQV dr
r

kQV
R

∞ ∞

∞

− = −

⇒ − = −

⇒ =

∫

∫





20

+ +

+

+ +
+

+ +

+++

++

+
+

+

+
+ +

+

+

Q

r P
∞

Q

 ∞

Inside

O

Constant

V

rOutsideR

1
P

kQV V
r r

∝ =

kQ
R

R

r

R

+ +  + + + + + + + + + + + + + + + + + + + + + + +
 +

 +
 +

 +
 +

 +
 + +   
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Case 2: On the surface of the sphere (r = R)
The potential difference at the surface of the sphere is given by,

Case 3: Inside the sphere (r < R)
Since the charge is distributed throughout the sphere, i.e., inside the sphere as well, the electric 
field inside the sphere is non-zero.

The electric field inside the sphere is given by,

3    inside
kQrE
R

=

The electric potential difference is given by,

.
R

P

R

P

P

V V E dr

kQV dr
r

kQV
R

∞ ∞

∞

− = −

⇒ − = −

⇒ =

∫

∫





20

P

s

V r

inside
V R

r

P s
oR

r

P s
o R

r

P s
o R

P s
o

P s
o o o o

P
o

P

dV E dr

QrV V dr
R

QV V r dr
R

Q rV V
R

Q r RV V
R

Q Q r Q QV V
R R R R

Q rV
R R

V

πε

πε

πε

πε

πε πε πε πε

πε

= −

⇒ − = −

⇒ − = −

 
⇒ − = −  

 

 
⇒ − = − − 

 
  

⇒ − = − + =  
   

 
⇒ = − 

 

⇒ =

∫ ∫

∫

∫



3

3

2

3

2 2

3

2

3

2

2

4

4

4 2

4 2 2

1
4 4 2 2 4 4

3 1
4 2 2

1

At centre, ,
o

C S
o

Q r
R R

r
QV V

R

πε

πε

 
− 

 
=

∴ = =

2

23
2 4

0
3 3
2 2 4

Therefore, potential difference inside the sphere is given by,
2

2  3 
2P
kQ rV

R R
 

= −  

Q

 ∞
R P S

r

+ +
++

+

+

+ +
+

+
+

++

+
+

+
+

+
+

+
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We know that the charge is conserved. The net charge in the system remains the same. If the two 
charged conductors are made to come in contact, the charges transfer from one conductor to 
another until they reach a common potential. Once their potential becomes equal, no more charge 
transfer happens.
Qnet = Q1 + Q2 = (–1 × 10–2 C) + (5 × 10–2 C) = 4 × 10–2 C   …..(i)
Given, the spheres are charged and are connected by a conducting wire. Hence, they will attain a 
common potential. Thus, the potential of both spheres will become equal.

Solution

Electric potential (V) vs distance (r) graph

A  conducting sphere of radius R is given charge Q. Find the electric potential and the electric 
field at the centre of the sphere, respectively.

Two metallic spheres of radii 1 cm and 3 cm are given charge of –1 × 10–2 C and 5 × 10–2 C, 
respectively. If these spheres are connected by a conducting wire, then what is the final 
charge on the bigger sphere?

For a conducting sphere, the charge is distributed uniformly only on the surface of the sphere. Due 
to symmetric and uniform charge distribution, the net electric field at any point inside the sphere is 
zero.
Therefore, the electric field at centre is given by,
E = 0
Since it is a solid conducting sphere, we know that a conductor is an equipotential surface. Thus, 
the electric potential is the same inside as well as on the surface of the conductor.
Therefore, the electric potential at the centre is given by,

    
4P

o

kQ QV
R Rπε

= =

Thus, option (B) is the correct answer.

(A) Zero and 24 o

Q
Rπε

      (B) 4 o

Q
Rπε

and Zero      (C) 4 o

Q
Rπε

and 24 o

Q
Rπε

   (D) Both are zero

(A) 2 × 10-2 C      (B) 3 × 10-2 C      (C) 4 × 10-2 C   (D) 1 × 10-2 C

Solution

V

Inside Outside
r

3
2
kQ
R

kQ
R

3
2
kQ
R

kQ
R

NEET

NEET

O R
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Thus, option (B) is the correct answer.

( )By substituting the value of in equation we get,,

V V
kQ kQ
R R

Q R
Q R

QQ

Q i
Q Q

Q

Q C

−

−

−

=

⇒ =

⇒ = =

⇒ =

+ = ×

⇒ = × ×

⇒ = ×

1 2

1 2

1 2

1 1

2 2

2
1

1

22
2

2
2

2
2

1
3

3

4 10
3

4 3 4 10
3 10

Potential Due to Concentric Shells

Consider three concentric hollow spheres, A, B, and C, with 
charges Q, 2Q, and 4Q, respectively. The electric potential at any 
point on the surface of any sphere will be the sum of all the 
potential that occurs due to all the shells.

Potential on shell B is due to its charge distribution on its surface itself and due to charge distribution 
on shell A and charge distribution on shell C. 
The electric potential at any point on the surface of shell B is given by,

surface

surface

surface

B A B C

B

B

V V V V

kQ kQ kQV
R R R

kQV
R

= + +

⇒ = + +

⇒ =

2 4
2 2 4

5
2

4Q, 4R

2Q, 2R

Q, R

A B

C

Potential on shell C  is due to its charge distribution on its surface itself and due to charge distribution 
on shell A and charge distribution on shell B. 

surface

surface

surface

C A B C

C

C

V V V V

kQ kQ kQV
R R R

kQV
R

= + +

⇒ = + +

⇒ =

2 4
4 4 4

7
4



What you already know What you will learn

•  Null potential points due to two point     
     charges

•	 Electric potential due to extended charges,  
     ring, disc

•	 Electric potential energy for two charge  
     and three charge system

•	 Potential due to dipole

•   Potential due to dipole in a uniform  
     electric field

•   Equipotential surface and its properties

(A) VC = VB ≠ VA                    (B) VC ≠ VB ≠ VA                    (C) VC = VB = VA                    (D) VC = VA ≠ VB                                                 

The charge on the shell a, b, and c is,

The potential on the surface of shell A is due to all the charges in the system, and it is given by,

Three concentric spherical shells having radii a, b, and c 
(a < b < c) and have surface charge densities σ, –σ, and σ, 
respectively. If VA, VB, and VC denote the potentials of the 
three shells, then, for c = a + b, we have,

Solution

A

B
C

σ, a

–σ, b

σ, c

A

B

C

q a

q b

q c

σ π

σ π

σ π

= ×

= ×

= ×

2

2

2

4

4

4

( )

surface

surface

surface

surface

surface

surface

A A B C

CA B
A

CA B
A

o

A B C

A
o

A
o

A
o

V V V V

kqkq kqV
a b c

qq qV
a b c

q q q

a b cV
a b c

V a b c

V a b

πε

σ π σ π σ π
πε

σ
ε

σ
ε

= + +

⇒ = − +

 ⇒ = − + 
 

 × × ×
⇒ = − + 

 

⇒ = − +

⇒ = − +

By substituting the value of , , and , we get,

2 2 2

1
4

1 4 4 4
4

( ) ( )

( ) ( ).....
surfaceA

o

a b c a b

V a iσ
ε

+ = +

⇒ = 2


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( )

surface

surface

surface

surface

surface

surface

A A B C

CA B
A

CA B
A

o

A B C

A
o

A
o

A
o

V V V V

kqkq kqV
a b c

qq qV
a b c

q q q

a b cV
a b c

V a b c

V a b

πε

σ π σ π σ π
πε

σ
ε

σ
ε

= + +

⇒ = − +

 ⇒ = − + 
 

 × × ×
⇒ = − + 

 

⇒ = − +

⇒ = − +

By substituting the value of , , and , we get,

2 2 2

1
4

1 4 4 4
4

( ) ( )

( ) ( ).....
surfaceA

o

a b c a b

V a iσ
ε

+ = +

⇒ = 2



Similarly, the potential on the surface of shell B is given by,

The potential on the surface of shell C is given by,

surface

surface

surface

surface

surface

surface

B A B C

CA B
B

CA B
B

o

A B C

B
o

B
o

B

V V V V

kqkq kqV
b b c

qq qV
b b c

q q q

a b cV
b b c

aV b c
b

V

πε

σ π σ π σ π
πε

σ
ε

= + +

⇒ = − +

 ⇒ = − + 
 

 × × ×
⇒ = − + 

 

 
⇒ = − + 

 

⇒

By substituting the value of , , and , we get,

2 2 2

2

1
4

1 4 4 4
4

( )

( ).....
surface

o

B
o

a b a b c a b
b

aV a ii
b

σ
ε

σ
ε

 
= − + + = + 

 

 
⇒ = + 

 

2

2



surface

surface

surface

surface

surface

surfa

C A B C

CA B
C

CA B
C

o

A B C

C
o

C
o

C

V V V V

kqkq kqV
c c c

qq qV
c c c

q q q

a b cV
c c c

a bV c
c c

V

πε

σ π σ π σ π
πε

σ
ε

= + +

⇒ = − +

 ⇒ = − + 
 

 × × ×
⇒ = − + 

 

 
⇒ = − + 

 

⇒

By substituting the value of , , and , we get,

2 2 2

2 2

1
4

1 4 4 4
4

( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

.....

ce

surface

surface

surface

o

C
o

C
o

C
o

C A B

a b c
c

a bV a b c a b
a b

V a b a b

V a iii

i ii iii

V V V

σ
ε

σ
ε

σ
ε

σ
ε

 −
= + 

 

 −
⇒ = + + = +  + 

⇒ = − + +

⇒ =

= ≠

From equations , , and , we get,

2 2

2 2

2


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surface

surface

surface

surface

surface

surfa

C A B C

CA B
C

CA B
C

o

A B C

C
o

C
o

C

V V V V

kqkq kqV
c c c

qq qV
c c c

q q q

a b cV
c c c

a bV c
c c

V

πε

σ π σ π σ π
πε

σ
ε

= + +

⇒ = − +

 ⇒ = − + 
 

 × × ×
⇒ = − + 

 

 
⇒ = − + 

 

⇒

By substituting the value of , , and , we get,

2 2 2

2 2

1
4

1 4 4 4
4

( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( )

.....

ce

surface

surface

surface

o

C
o

C
o

C
o

C A B

a b c
c

a bV a b c a b
a b

V a b a b

V a iii

i ii iii

V V V

σ
ε

σ
ε

σ
ε

σ
ε

 −
= + 

 

 −
⇒ = + + = +  + 

⇒ = − + +

⇒ =

= ≠

From equations , , and , we get,

2 2

2 2

2



Thus, option (D) is the correct answer.

Potential Due to Dipole

1. On the axis of the dipole

Let us consider an electric dipole of length 
2l. On the axial line (axis) of the dipole, let us 
consider a point M at a distance x from the 
centre of the dipole, as shown in the figure.

The point M is at a distance of x – l and x + l from 
positive and negative charges, respectively.

The net potential at point M due to the dipole is given by,

– +
O

l l

M

x

– +
O

l l

M

x

(x + l)
+q–q

(x – l)

( )

( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

( ) ( )

,

net q qM

net M

net M

net M

net M

V V V

kq kqV
x l x l

kq l
V

x l

kp p q lV
x l

l x
kpV
x

+ −= +

⇒ = −
− +

⇒ =
−

⇒ = ×=
−

<<

⇒ =

If

2 2

2 2

2

2

2
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2.

3.

On the perpendicular bisector of the dipole or on the equatorial line

The potential at any general point

Let us consider an electric dipole of length 2l. On 
the perpendicular bisector of the dipole, let us 
consider a point M at a distance x from the centre of 
the dipole, as shown in the figure.

Let us consider an electric dipole of length 2l. 
Consider any general point M, neither on the axial 
line nor on the equatorial line of the dipole. Point 
M at a distance x from the centre of the dipole. The 
line joining the centre of the dipole (O) and point M 
makes an angle θ with the dipole moment vector p   
as shown in the figure. Since we know the electric 
potential on the axial point and on the equatorial 
point of a dipole, let us resolve the dipole moment 
p of the dipole into two components, one along the 
line joining the centre of the dipole and point M, 
and another one is perpendicular to the line joining 
the centre of the dipole. As a consequence, point 
M becomes the axial point of the dipole p cos θ and 
the equatorial point of the dipole p sin θ.

Since every point on the perpendicular bisector of the 
dipole (equatorial line) is equidistant from both the 
positive and negative charges. The potential at any 
point on the perpendicular bisector of the dipole will 
be zero. If we consider a plane that is perpendicular 
to the dipole axis and passes through the equatorial 
line of the dipole as shown in the figure, the net 
potential due to the dipole on the whole plane is 
zero. This plane is known as “Equatorial plane”.

The point M is at a distance of             from both 
positive and negative charges, respectively.

2 2  x l+

– +
Ol l

M

x

+q–q

2 2  x l+ 2 2  x l+

( )

( )

net q qM

net M

V V V

kq kqV
x l x l

+ −= +

⇒ = − =
+ +2 2 2 2

0

V = 0 
(For the whole plane)

– +
Ol l

M

x

p

– +
Ol l

M (x, θ)

p sin θ

p cos θ

p

θ
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So, the potential at point M due to p cos θ is given by,

For p sin θ, the point M is an equatorial point, and we know that the electric potential at an 
equatorial point is zero.

So, the net electric potential at point M due to the dipole is given as follows:

( )if  cos 2
 cos       p

kpV l x
xθ

θ
= <<

 sin   0pV θ =

( ) ( )if sin  cos 2
 cos           net p pM

kpV V V l x
xθ θ

θ
= + = <<

Potential Energy Due to Dipole in a Uniform Electric Field

p Eτ = ×





+

–
qE

p

qE

p Eτ = ×





p Eτ = ×





θ1

Consider an electric dipole placed in a uniform 
electric field at an angle θ1 with the electric field. Due 
to the electric field, both positive and negative charge 
experience an electrostatic force equal in magnitude 
but opposite in direction. Therefore, the net force 

on the dipole is zero. But due to the two equal and 
opposite forces with different lines of action forms a 
couple. The couple generates a clockwise non-zero 
torque about the COM of the dipole, which rotates the 
dipole to align it in the direction of the electric field.

The torque acting on the dipole is given as follows:

Now, let us consider an external torque is given to the 
dipole to rotate the dipole from an angle θ1 to angle 
θ2, as shown in the figure. The external torque is given 
in such a way that there is no change in the kinetic 
energy of the system.

According to the work-energy theorem,

Wext + Wel = Δ(K.E.)

Since there is no change in kinetic energy of the 
dipole, Δ(K.E.) = 0
Wext + Wel = 0
⇒ Wext = – Wel

We know that, ΔU = –Wel 

Thus, ΔU = Wext, if and only if Δ(K.E.) = 0

Therefore, we can say,   external electricalW W=

+
+

–
–

qE

p

qE

p Eτ = ×



θ1

θ2

p Eτ = ×





ext
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The work done by the external torque is given by,

When θ = 90° , we can assume that the potential energy is zero. That means we choose θ = 90° as 
the reference point.

Case 1: 

When dipole moment    makes an angle θ = 90° with 
the electric field, the net force acting on the dipole is 
given by,

[ ]
[ ]

[ ]

sin

sin

sin

cos

cos cos

cos cos

ext ext

ele ext

ext

ext

ext

ext

f i ext

W d

pE

W pE d

W pE d

W pE

W pE

U U U W

U pE

θ

θ

θ

θ

θ

θ

θ

θ

τ θ

τ τ θ

θ θ

θ θ

θ

θ θ

θ θ

=

= =

⇒ =

⇒ =

⇒ = −

⇒ = − −

∆ = − =

⇒ ∆ = − −

∫

∫

∫

Also,

The change in potential energy is given by,

2

1

2

1

2

1

2

1

2 1

2 1

 

[ ]

[ ]

[ ]

cos cos

cos cos

cos

cos

.

U U U pE

U

U pE

U pE

U pE

U p E

θ θ

θ

θ

θ

θ

θ

θ θ

θ

θ

θ

θ

θ

∆ = − = − −

= ° =

⇒ − = − − °

⇒ = −

⇒ = −

⇒ = −

Let and

Therefore, for any general angle the potential energy is given by,

2 1

1

2

2

2 1

1

2

2

90 0

0 90





Some important cases

The net torque acting is given by,

is maximum

The potential energy is given by,

sin

cos

netF

pE pE

U pEθ

τ

τ

=

= ° =

⇒

= − ° =

0

90

90 0





+

–qE

p
90°

qE

p Eτ = ×





p Eτ = ×




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Case 2: 

When dipole moment     makes an angle θ = 0° with 
the electric field, the net force acting on the dipole is 
given by,

Case 3: 

When dipole moment      makes an angle θ = 180° with 
the electric field, the net force acting on the dipole is 
given by,

p Eτ = ×





p Eτ = ×





+–

qEqE p
0° p Eτ = ×






+ –

qEqE p
180° p Eτ = ×






The net torque acting is given by,

The potential energy is given by,

sin

cos

netF

pE

U pE pEθ

τ

=

= ° =

= − ° = −

0

0 0

0



In this case, both the net torque and the net force acting 
on the dipole are zero, therefore, we can say that the

In this case also, both the net torque and the net force 
acting on the dipole are zero. Therefore, we can say

dipole is in equilibrium. Also, the potential energy at this position is minimum, so the equilibrium 
will be a stable equilibrium.

The net torque acting is given by,

The potential energy is given by,

sin

cos

netF

pE

U pE pEθ

τ

=

= ° =

= − ° =

0

180 0

180



that the dipole is in equilibrium. Also, the potential energy at this position is maximum, so the 
equilibrium will be an unstable equilibrium.

(A) pE                                (B)                                           (C)                                         (D) 2pE    

An electric dipole of the dipole moment     is lying along a uniform electric field    . What is the 
work done in rotating the dipole by 90°?

Solution NEET

E


p

2pE
2

pE

It is given that, initially the dipole of the moment     is lying along a uniform electric field     i.e., θ = 
0° and it is rotated from 0° to 90°.

p Eτ = ×



p Eτ = ×





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+

–qE

p
90°

qE

p Eτ = ×





+–

Therefore,

Thus, option (A) is the correct answer.

[ ]

[ ]

cos cos

cos cos

ext

ext

ext

W pE

W pE

W pE

θ

θ

θ θ

= °

= °

⇒ = − −

⇒ = − ° − °

⇒ =

and

The work done in rotating the dipole is given as

follows:

1

2

2 1

0

90

90 0

Equipotential Surfaces

1.

2.

3.

The work done in displacing a charge between any 
two points on an equipotential surface is zero.
If a charge is moved from point A to B, then the work 
done is given as follows:
The potential on every point on the equipotential 
surface is the same. Therefore,
W = qo(VB – VB)
W = 0
The equipotential surfaces are always perpendicular 
to the electric field lines.

The two equipotential surfaces can never intersect 
each other.

p Eτ = ×





Equipotential surface

+q

Equipotential surface

+

+
A

B

qo

Consider a positive charge +q, due to which an electric 
field is generated in space. If we consider points that 
are radially equidistant from the charge +q, the electric 
potential at all those points will be the same, and if 
we connect those all points, it forms spherical shells. 
Similarly, there can be a number of shells in the electric 
field of a point charge. Thus, every point on each 
of the shells has equal potential i.e., these shells are 
considered as surfaces with the same potential that is 
also known as equipotential surfaces.
A surface on which the potential is the same at every 
point is known as an equipotential surface.

The properties of equipotential surfaces
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We know that the electric potential decreases 
along the direction of the electric field or 
in other words, the direction of the electric 
field is from a higher potential to lower 
potential. Therefore, equipotential surfaces 
in the direction of the electric field will be in 
descending order of electric potential. Thus, 
the electric potential on surface 1 is greater 
than surface 2 i.e., V1 > V2  > V3 > V4 > V5 > V6. 
However, individually, the potential on each 
surface will be constant.

4. In the uniform electric field       , the equipotential 
surfaces will be as shown in the figure.

p Eτ = ×





41 2 3 5 6

p Eτ = ×





Plane equipotential surfaces

(A) The maximum work is required to move q in figure(c).

(B) In all four cases, the work done is the same.

(C) The minimum work is required to move q in figure (a).

(D) The maximum work done is required to move q in figure (b).      

The given 
diagrams show 
equipotential 
region.

Solution

10
 V

20
 V

A B

30
 V

40
 V

(a)

10
 V

20
 V

A B

30
 V

40
 V

(b)

10
 V

20
 V

A B

30
 V

40
 V

(c)

20 V
10 V

A
B

30 V
40 V

(d)

Work done for

(a) W = q(ΔV)
W = q(Vf – Vi)
W = q(40 – 10)
W = 30q

10
 V

20
 V

A B

30
 V

40
 V

(a)
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(b) W = q(ΔV)
W = q(Vf – Vi)
W = q(40 – 10)
W = 30q

(c) W = q(ΔV)
W = q(Vf – Vi)
W = q(40 – 10)
W = 30q

(d) W = q(ΔV)
W = q(Vf – Vi)
W = q(40 – 10)
W = 30q

Thus, option (B) is the correct answer.

10
 V

20
 V

A B

30
 V

40
 V

(b)

10
 V

20
 V

A B

30
 V

40
 V

(c)

20 V
10 V

A B

30 V
40 V

(d)
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