PHYSICS

ELECTROSTATICS

INTRODUCTION TO ELECTROSTATICS

OBYJuU'S
Classes

g@ What you already know ggl What you will learn

- Reflection by plane and spherical mirrors « Charge and its origin
« Refraction through spherical surfaces + Measurement of charge
and prism

« Properties of charge

+ Methods of charging a body

« Charge is an intrinsic property of matter.

« A charged body exerts a force on other charged bodies near it.
« There are two types of forces: attraction and repulsion.

« There are two types of charges: positive and negative.

« Sl unit of charge: Coulomb

« Standard symbol: C é l

. Charge of an electron, e =-1e=-1.6 x 107 C

. Charge of a proton, p*=+1le=1.6 x 107 C

Opposite charges attract one another, while similar charges repel.

Attraction Repulsion

¢ — e ¢« e
¢ — — e

q When we rub a glass rod with a cloth, the glass rod gets a positive charge. However, if we
rub a plastic rod with the cloth, the plastic rod acquires a negative charge.
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Atoms are the basic building blocks of matter. We know Atoms
that the atom consists of three subatomic particles:
electrons, protons, and neutrons. The protons and . 'f /,4— Electrons

neutrons are present in the nucleus of an atom, while the ('\
electrons revolve around the nucleus in a defined path.
The electrons and protons are negatively charged and
positively charged, respectively. However, the neutrons
have no charge, and they are neutral.

Protons

Neutrons

Electrons
Electrons have the smallest unit of negative charge in them. They are represented by e".

Protons
Protons have the smallest unit of positive charge in them. They are represented by p*.

{BOARDS
Properties of Charge

(i) Quantisation of charge

« The charge on one e is —1.6 x 107 C. It is the
smallest charge that can exist independently.
« The charge on e is also known as the elementary
charge or fundamental charge. l l
« Charge on any object is an integral multiple of the

Protons Electrons
fundamental charge, i.e., charge of an electron. A
body cannot have a charge in fractions. 3 ‘
q = tne le, 2e, 3e ... 1p*, 2p*, 3p"...

(ii) Charge is additive in nature (Measuring charge)
For measuring the charge, let us consider the following two objects:

In the first object, there are three protons and five
electrons as shown in the figure.

We have, y &
n = 3 P
n,=5 ®

Net charge, g = Charge of protons + Charge of electrons

q=n(+e) + n—e)

q=3e+(-5¢)
q=—2e
Here, n and n_ are the number of protons and number of Object 1

electrons, respectively. Also, (+e) and (—e) are the charges
of a proton and an electron, respectively.
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In the second object, there are three protons and one electron as shown in the figure.

We have,
n =3

p
n,= 1

Net charge, g = Charge of protons + Charge of electrons
q=n,(+e) + n,(-e)

q=3e+(-e)

q=+2e

In general, the net charge of a body is given by,

Qo= (n, =)

Or, q,= (np -n)1.6*x10"C

This shows that charge is additive in nature.

Object 2

+ In general, atoms are electrically neutral, i.e., atoms contain equal numbers of protons
and electrons. On the other hand, if an atom has an unequal number of protons and
electrons, then the atom is known as electrically charged.

+ Objects with an excess of electrons are known as negatively charged objects. Those
with a deficiency of electrons are known as positively charged objects.

Negatively Neutral body Positively
charged body charged body

:.‘h[.z] A body acquires a charge of 8 mC after it was struck by lightning during a thunderstorm. What

is the difference between the number of protons and electrons on the body?

(A) 5 x 1016 (B) 10 x 106 (C) 10 x 106 (D) 5 x 1016

Given,
Net charge on the body,q =8 mC=8x103C

net
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Also, the net charge on the body is given by,

q,.~ (np— n)e

q,.. = (ne

Where,

n = Difference between number of protons and electrons

Qe
e

—> n=

8x10°
n=———
1.6 x 107"

=n=5x10"

Thus, option (D) is the correct answer.

(iii) Conservation of charge

A charge can neither be created nor destroyed but can only be transferred from one body to
another.

Consider two bodies with some charges which are isolated and separated from each other.

(=]
P

y

e
®

Isolated system

From the figure, we can observe that the charge on the first body is given by,

il e

The charge on the second body is given by,

q,= +2e

Initially, the net charge of the system is given by,

q,.,.-49,7q,=—2e+2e=0

When the objects are made to interact (touch each other), then the electrons from the first body
move to the second body.
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Interactive system Isolated system

Therefore, the net charge of the system is given by,
q =(3e—3e)+(3e—3e)=0

net

(iv) Charge is always associated with mass; Charge cannot exist without mass

Some similarities between charge and mass:

1. Both are intrinsic properties of matter, i.e., without mass, Matter Charge Mass
a charge cannot exist. However, mass can exist without a e o o
charge. ®

2. Both of them exerts force on other bodies/chagres. g g

3. Both of them are scalar quantities

Differences between charge and mass

' ™\
Charge Mass

Charges are of two kinds: positive and

g Masses are always positive.
negative.

They can attract and repel each other. They always attract.

Charge does not vary with velocity. It is | Mass can vary when the velocity is very very

relativistically invariant. high (comparable to the velocity of light).
Charge is always conserved. Mass can be converted into energy.
Charge cannot exist without mass. Mass can exist with zero net charge.

\ Y,
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Dimension of Electric Charge

We know that the electric current is the amount of charge flowing per unit time.

-2

t
Q=Ixt
Therefore,

Coulomb = Ampere x Second

[Q] — ':AlTl]

{BOARDS m

Suppose that there are two substances with different charge affinity. For example, let us take a silk
cloth and a glass object. We know that the silk cloth has a good affinity towards negative charge,
and the glass does not. It means that the silk cloth can attract more and more negative charges,
whereas the glass objects lose their electrons very easily.

Therefore, when we rub the silk cloth with the glass, the silk cloth attracts the negative charge from
the glass and becomes negatively charged. At the same time, by losing the negative charges, the
glass becomes positively charged.

=<y -

Negatively charged Positively charged
Silk (High affinity to negative charge) Glass (Low affinity to negative charge)

In this case, let us consider two objects, one is a positively charged object, and the other is a
neutral object. These objects are placed very close to each other but not in contact. Let us assume
that a glass rod is positively charged. When the glass rod is brought near the neutral object, due to
electrostatic attraction and repulsion from the neutral object, the glass rod attracts all the negative
charge towards itself and pushes all the positive charges in the opposite direction as shown in the
figure on the next page.
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Due to this separation of the charges, the polarisation -
of the charges takes place. After this, the positive side & <
¢)

e
¢

is connected to the ground. The ground is the infinite
source, i.e., it can take or give any amount of charge.
So, the positive charges of the body are neutralised
by the negative charges. On removing the ground and
the source (glass rod), the body now only contains
excess negative charges that spread on the object and
become negatively charged.

Positively charged
source

Neutral body
(conducting)

Induced negative charge.
4~ Body's charge is opposite to
¢ that of source.

%
¢

f\t .
)

Positively charged
source

f\t .
t"‘)

Gro_und

By this method, we can charge a body in the opposite nature to that of the source.

Unlike charging by induction, the charged source is f\t . ' g
brought in contact to the neutral object. When the source tt t t
is brought in contact with the neutral object, it attracts all t

the opposite charges and takes away the charges from  Positively charged
the body. Due to this, when the source is taken away, it source
makes the object deficient in the charge opposite to that

of the source. Now, the object gets charged in the same

charge as that of the source. This method of charging is In contact
known as charging by conduction.

Neutral body
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:.“V:[.Z] Which of the following methods of charging a body can lead to a charge of +2.4 x 107'° C on

a body?
(A) Charging by induction (B) Charging by conduction
(C) Charging by friction (D) None of the above

The net charge on a body is given by,

Q:(np—ne)e
= Q=ne
~n=2
e
24x107"
n=— —————
1.6x107"
=>n=1.5

Since the value of n cannot be a decimal or fraction, the transfer of charge is not possible.

Thus, option (D) is the correct answer.

© 2020, BYJU'S. All rights reserved



8 [YALVES

COULOMPB’S

g@ What you already know What you will learn
« Charge and its origin « Coulomb’s torsion balance
« Properties of charge « Coulomb’s law
+ Method of charging a body « Vector form of Coulomb’s law

Coulomb’s Torsion Balance and Coulomb’s Law

Charles-Augustin de Coulomb invented an instrument known as the Coulomb’s torsion balance.
Using this instrument, he measured the charge on a body.

Concept

« The torsion balance experiment helps to measure small forces.

« Itis based on the principle that a wire or thread resists twisting with a force that is proportional
to the stress applied on it.

« Torsion balances are used to measure small electric, magnetic, and gravitational forces.

Torsion

head
Torsion
fibre

Cylindrical
glass case

Methodology

Torsion balance consists of a cylindrical glass case. A glass

tube is attached to it and the tube ends with a piece of Glass
metal. A torsion fibre (metal or thread) runs through this tube
metal that ends with a metal rod at one end and a sphere

at the other. The ends of the metal rod are connected with Lid
two spheres. It can swing freely due to its suspended state
by the torsional string . A scale encircling the glass case is
shown in the figure. Another fixed sphere is present in the
glass case.

Procedure and working
The fixed sphere and the spheres connected with a straight

Scale

Force scale

rod, which can swing, are given the same nature of charge.
Thus, they repel each other and start to rotate. On rotating,

the torsional string gets twisted and the twisting shows )

reading on the force scale. Hence, we can measure the Fixed ‘f‘
force exerted by one charged sphere on another charged

sphere. Movable
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Experimentally, let two charges be placed at distance D from each other. Let the charges be g,
and q, and the force exerted by them be F. Now, on changing the magnitude of charges g, and q,
or on changing the distance between the charges, we observe some changes. The changes are
summarised in the following table:

. N
D q, q, Force Relation
4r -1 4 /8 Fuxgq,
4r -2 4 ZIF Focq,
4r -2 2 & Fxgq,q,
1
2r -1 4 4F Fo o2
\. J

From the table, we can observe that the magnitude of force acting on the charge is proportional
to the magnitude of product of charges g, and q,. Also, the force is inversely proportional to the
square of the distance between the charges.

If two point charges are present at distance r from each other, then by Coulomb’s law, the force is
given by,

F o q;?z

= F =gk
r

Where,
K =9 x10° Nm*C*
It is the proportionality constant.

We know that if the first charge applies an attractive force |F | — |F |
on the second charge, i.e, 17"21, then the second charge
applies an attractive force on the first charge, i.e., F,. S ) ‘

Where, 17"12 and 1321 are equal in magnitude but opposite F, Fyy
in direction.

An experiment is done in which there are FA
two charged bodies. One is fixed and the 64F
other is brought near it. A graph of Fvs ris

shown.

If the charges are separated by a distance 16K
of 4r, then the force is F. When we bring

the charge from 4r to 2r, then by applying 4F
Coulomb’s law, the force is 4F. Similarly, F

when the charge is brought to a distance of
0.5r, then the force increases to 64F.

=)
©
e B
<
~
SV
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Coulomb’s Law in Vector Form

Let us consider that two charges of opposite nature are
placed somewhere in space. The position vector of the
first charge is r; . The position vector of the second charge A et >,
is I,. According to Coulomb’s law, the forces actalongthe | o Ti > :
direction of line joining the two charges. Since we have , “— &
taken the charges of the opposite nature, there must be ;
an attractive force acting between them.

VA

There is a force on the first charge due to the second /
charge, i.e., Flz. Similarly, there is a force on the second /’
charge due to the first charge, i.e., F,,. The displacement .

oY

B /

vector between the two charges is r,,. Let the distance ¢
between the two charges be |7].

By applying Coulomb’s law, we get the following:

F =KL
r

Also, the displacement vector is given by,

Iy, =L —TI :|r|r

|

N

Therefore, force acting on the first charge due

to the second charge is given by,

Also, the force on the second charge due

to the first charge is given by,

|7l
The direction vector is given by, —F, = ququ EN
. A
hy= —4
| 21| :>F'21:_I|(glc|l32 FZl
21

By substituting ,, in equation (i), we get,

5 Kad, _ P Comparing this with equation (if ), we get,

127 . 12 —
| 7] |7

Py w10

__F

F21 12

Kq,q,
|’

Thus, Coulomb’s law agrees with Newton’s
third law of motion.

=>F,=
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=-47=[-3‘] Two point charges A and B have charges +Q and -0, respectively. They are placed at a
certain distance. The force acting between them is F. If 25% of charge A4 is transferred to B,
then find the force between the charges.

16F 4F 9F
(BISeS B) = (C)F 0) 7

( Soiution B 3
In the first case, the force due to the charges is given by,

KQ* ,
F=Kq;‘2’2=—rZ ..... (i)

Now, 25% of charge A is transferred to charge B.

Q_,3Q

The charge Abecomes=+Q — Z =+

4
The charge Bbecomes=—-Q + % = _¥

By applying Coulomb's law, the new force is given by,

e )

r2

2
=F'= —ig
16 r

From equation (i), we get,

:>F'=1F
16

Thus, option (D) is the correct answer.

=“‘7=l-z] Two pith balls carry equal charges. They are suspended from a common point by strings
of equal lengths. The equilibrium separation between them is r. Now, the strings are rigidly
clamped at half the height. Find the equilibrium separation between the balls.
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In the first case,

The distance between the two pith balls is . The distance from the point of suspension is y.

: 0
y
; B i C
‘ )
hoooood booooc > T
r I I
2
The FBD of the first charge is given, where,
F = Electrostatic force
T = Tension force
In the equilibrium condition, we get, T cos 6

Tsin0=F, ..(i)

T cos 8 = mg ...(ii)

On dividing equation (i) by equation (ii), we get,
KQ?

F
tanf=——2=——“-_— ...(ii)
mg r°xmg

Also, in triangle ABD, we get,

tan @ = — ...(iv)

2y
From equations (iii) and (iv), we get,
r__K¢
2y r’xmg

5=

=y=ar [Where, oé 2’;‘9 = Constantj (V)

Similarly, when y = % the relation changes to the following:

§=agfm@0

By dividing equation (v) by equation (vi), we get the following:

y ar’

EﬁzaQT
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Thus, option (B) is the correct answer.

ﬁ@@ Two identical charged spheres are suspended from a common point by two massless strings,
each of length L. Initially, they are apart at a distance of d (d << l) because of their mutual

repulsion. The charges begin to leak from both the spheres at a constant rate. As a result,
the spheres approach each other with velocity v. How does velocity v vary as a function of
distance x between the spheres?

(B) vec x* (C) v oc x? (D) voc x

At some instant of time t,

Consider that two spheres are present at distance x from each

other. The charge is leaking at a constant rate. 0 i o

The FBD of the first (left) sphere at time t is given below, where, ! i !
F = Electrostatic force i

T = Tension force &N _ ______ i _______
In the equilibrium condition, we get the following: % %

Tsin@=F, ...
T cos 6 = mg .....(ii)
On dividing equation (i) by equation (ii), we get,

2
tan 0 = Te = K& i)
mg X’ xmg

From the triangle, we get,

tan 0 =
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Since x << [, the term changes to,

tan 0 =

2P

From equations (iii) and (iv), we get the following:

o _x
mg 21
KQ? _X
x’mg 2l
2 3
_ A X
mg 21

Therefore, we get the following,

0? = Ax* | Where, 4="9
2KI

3
= Q o« x?

Also, it is given that the charge is leaking at a constant rate.

dq

— = (C = Constant
dt

Also,

3

Q = Ax?

By differentiating both the sides with respect to time, we get,

3
d_Q:Ai XE
dt dt

3_
:C:Aé(xz 1}d_x

2 dt
1
:C'—xzv(Where, C'=—= Constantj
Cl
:>V:—1
XZ
_1
= Vo Xx 2

Thus, option (A) is the correct answer.
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» Origin of charge « Permittivity of free space

« Coulomb’s torsion balance + Permittivity of medium

« Coulomb’s law + Relative permittivity

» Vector form of Coulomb’s law + Limitations of Coulomb’s law

« Principle of superposition

Permittivity of Free Space (&)

Let us consider that a positively charged plate and Free space or Vacuum
a negatively charged plate are separated by some = >
distance and placed in a vacuum, i.e., there is no
medium in between the charges.

When there are charges that are present close to
each other, they have their influence (they apply force >
on other charges) up to a certain distance. The region
where they have the influence is known as the field of

>

the charge. We also know that when two charges are
present close to each other, they apply force on each >
other. The force given by Coulomb’s law is as follows:

kaq,q
Pe
Thus, the magnitude of the force depends on the value of k. The value of constant k is given by,
k = !

4re,

Here, € is the permittivity of the free space.

g,=8.85x 10" C*N'm™

Permittivity: Permittivity is the property of a medium or a material that measures the opposition
offered by a medium or material to an external electric field.

If the permittivity of a medium or material is high, it means that the opposition offered by the
medium or material to an external electric field is high and vice versa.

Note

The permittivity of free space is minimum, i.e., the opposition to an electric field in free space is
minimum.
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Permittivity of Medium (&

Let us consider that a positively charged plate and
a negatively charged plate are separated by some
distance. Now, a medium is introduced in between
the charged plates. The medium has some positive
charges and some negative charges. Due to the
influence of the charged plates, the charged particles
of the medium get attracted to the opposite charges,
and the medium gets polarised.

As the medium gets polarised, and due to its net
dipole moment, it will generate a field (internal field)
opposite to the direction of the field produced by the
two oppositely charged plates (external field).

Note

If the medium gets highly polarised, the magnitude of the netinternal field produced by the medium
becomes high. Therefore, the opposition offered by the medium of the material to an external
electric field is high and vice versa.

Thus, the force between the actual charges (charged plates) gets influenced by the field generated
by the medium.

The equation of Coulomb’s law is given as follows:

ka,q
F = rlz -
The value of k for this case is given by,
k = 1

dre,

Here, ¢ is the permittivity of the medium.

Relative Permittivity (¢

Relative permittivity is the ratio of the permittivity of the medium to the permittivity of the free space.

So, the permittivity of any medium can be written as follows:
E =& %€
The value of k can be written as follows:

1 1

k = =
dre, Ane.c,

Relative permittivity is also known as the dielectric constant.
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=47=@ When air is replaced by a dielectric medium of dielectric constant K, what happ
maximum force of attraction between the two charges that are separated by a dis

(A) It decreases K times. (B) It remains unchanged.
(C) Itincreases K times. (D) It increases K times.

Consider that two opposite charges, +Q and -Q, are placed at a distance of r from each other.

Case I: When air is present between the charges

The force acting between the two charges is given by,

2
5
drce, r
1 Q° : .
=F= ~- (For air, value of ¢, is 1)

dre, r
Case Il: When air is replaced with a dielectric medium
The force acting between the two charges is given by,

2
oL@
drec,e, r
. 1 Q@ . : , : ,
= F'= ~ (Since ¢, is K for the dielectric medium)
dre K r
2
:>F'=£ Since F = 1 Q—2
K dre, r

Thus, option (A) is the correct answer.

Limitations of Coulomb’s Law

1. It is difficult to apply Coulomb’s law when
charges are in arbitrary shape.

2. Coulomb’s law is not valid for charges in
motion (relative motion should be zero).

3. Charges must be point charges, i.e., the
extension of the charges must be smaller “' """"" R ==mmmmms i i
than the separation between the charges. le--->!
R>>D . p !

4. The separation must be greater than the
nuclear size.

© 2020, BYJU'S. All rights reserved



Principle of Superpositio

Consider a system with n number of charges
present as shown in the figure.

Let us assume that the charges are of the same
polarity. For finding the net force on any charge,
we have to find the forces by each charge present
in the vicinity.

Let us consider charge g, and analyze all the
forces acting on it. The forces acting on g, are
shown in the figure.

The net force acting on g is given by,

—

F,=F +FE +F +..+F

net

The force applied by one charge does not affect ql‘
the force by other charges. They have their ‘ .
individual effects, but the net force acting on the q, s ;
charge changes. :
Suppose q, and q, are applying a force on charge qo :

q,, then the net force is obtained by applying the
triangle law of vector addition.

By applying the triangle law of vector addition, 2
we get,

R=A+B

The magnitude of the resultant
vector is given by,

[R| = \/4* + B* + 24B cos 0

For forces ﬁmand 17”02, the resultant vector is given
by,
Fne R ﬁ01 + Foz

t
t

F,. =\F4 + F2 + 2F,F,, cosf

Similarly, for n charges, the net force is given by,

—

F,=F +FE +F +.. +F

net

The principle of superposition states that in
a system of n charges, the resultant force on a
charge is the vector sum of forces due to all the
remaining charges.
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Three identical charged particles A, B, and C, with
a charge of +q, are present on the vertices of an
equilateral triangle having sides of length a as shown
in the figure. Find the resultant force on particle C.

) B ® “L ) 24 o) Y3k
a a a a

For the charge at C, both the charges at A and
B apply force. Since the charges are the same,
repulsion forces act in the opposite directions as
shown in the figure.

So, the magnitude of the force acting on C due to
A is given by,

= qu
|FCA| = T e (l)

a F
Similarly, the magnitude of the force on C due to &
B is given by, 60°

. kq® , F
|FCB| = ? ...... (11) FCA t

By comparing equations (i) and (ii), we get,
| = Fea] =]

The net force acting on the charge at C is given by,

F | =\F? + F? + 2F* cos 60°
- 2 2 74 1
= |F,, :\/F + PGy XE
= _’net = 3F2
:ﬁnet =\/§F
2
= [f| = V3L

Thus, option (A) is the correct answer.
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Three charged particles, A4, B, and C with respective
charges of -q, +q, and +q, are present on the
vertices of an equilateral triangle with sides of
length a as shown in the figure. Find the resultant
force on particle A.

) B ® “L ) 24 o) Y3k
a a a a

Since A has a negative q charge and the charges at B and
C are positive, there will be forces of attraction between
A and Band A and C.

So, the magnitude of the force acting on A due to B is
given by,

. qu .

F.l=—— .. i

Ful = S )

Similarly, the magnitude of the force on A due to C is
given by,

By comparing equations (i) and (ii), we get,
ful [

The net force acting on the charge at A is given by,

E . |=\F? + F? + 2F? cos 60°
r 2 72 7 1
=|F,. =\/F b/ AR XE
= |F,,|=+3F’
= _’net =\/§F
2
= Fnet :\/gkiz
a

Thus, option (A) is the correct answer.
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Four particles, 4, B, C, and D with respective
charges of +q, +q, -q, and +q, are placed on the
vertices of a square with sides of length a. Find the
resultant force acting on particle C.

(A) (\/E i 1)"—‘7: ‘/—’“1
2)a

Since the charge at Cis —-q, the acting net force becomes
an attractive force, as the charge at A4, B, and D is +q.

So, the magnitude of the force acting on C due to B is
given by,

~ kg?
Fa| = 22
Similarly, the magnitude of the force on C due to D is

5 !
. FCB
.

IF.y| = k—qzz ...... (i)

By comparing equations (i) and (ii), we get,
L= K
Ful-[R 42

The magnitude of the force on C due to A is given by,

2
|FCA| _ _ka > (The distance between Aand C is \/Ea)
(Vaa)
- qu
=>|F,|=—
| CA| 2a2
The resultant force due to the charge at B and D is given by,

— JF% + F% + 2F,, F,, cos 90°

netBD

:ﬁnetw =VFCZB+FCZD
= kqg*
:>Fnet :\/Eiz
BD a
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The net force is given by,

—

=|F, ( F,, andF, areinthe same direction)

netgy,

net

2
Fol-ka | pka

= [Frer 2a° a’
= || (3 V2 AL
2 a

Alternative method
We have,

ARCARCE
And,

|17"CA| = k—qz (The distance between Aand C'is \/Ea)

(]

= || 22

2a*

Now, by resolving the force on C due to 4 into its two components, we get,
The net force along the x-axis is given by,

F,=—F, i —(F,cos 45°)i

X

2 2
:ﬁxz_ki,-_[kixiji

2 242 \/E

a
2 2
:>FX=—qui— ka1
2\2a°

a
Similarly, along the y-axis, the net force is given by, F_ cos 45°

A

Fy —+F j+ (F"CA sin 45°) J

2 2
=F =+kij+ kizxi j
2a \/E

2 n qZ n
=F =+ gt j
Toa (zﬁazJ
The net force is given by,
)=
2
(-4
2)a

Thus, option (A) is the correct answer.

= - |2 - |2 = || =
F_|=|F F| +|F,[ +2|F.||F,| cos 90°

Fnet

=
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Three equal charges of +q are placed at the
corners of a regular hexagon of side a as shown
in the figure. Find the force on +q, which is placed
at centroid 0.

CE-S ) T 0 22 ) 3
a a a

€ Y

Since all the charges are of the same polarity,

there will be repulsion between all the charges. F,. sin 60° 6:p°
The angle between the forces is given by, i . fOB .
o =359 _ 600 0 | X
n PN 60 F,. cos 60° + F,, cos 60°
Therefore, the magnitude of all three forces is the F,, sin 60 l

same, as they are at the same distance from 0. Y

~

£

f___>

= = = qu
|I%A|=|FLB|=|FbC|=-_?r
a
The resultant force due to the charge at A and C is given by,

FnetAC 2 \/FOZA + FOZC + 2F0A FOC cos 120°

-

= |F ::\/Fg; +'F32 _'FBAI%C

net -

2 2 2
A qu qu qu
= FnetAc =\/( aZ ] +( aZ a aZ
2
= |F _ Mg

net ¢ 2

a

The direction of the vector will be along the direction of F"OB.
The resultant of the forces FOB and F,, is given by,

P'net = FOB| + net .
. qu qu
= F'net = 2 + 2
a a
~ qu
= Fnet = 2
a

Thus, option (C) is the correct answer.
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Five equal charges of +q are placed at the corners

of a regular pentagon of side a. Find the force on
+q, which is placed at centroid 0.

All the charges are of the same polarity and are placed at the vertices of a regular pentagon, i.e.,
the charges are placed in a symmetrical manner.

Therefore, the net force applied by all the charges on a charge that is placed at the center of the
symmetric figure is zero.

Thus, option (A) is the correct answer.
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PHYSICS
ELECTROSTATICS

EQUILIBRIUM OF CHARGES

OBYJU'S
Classes

f
Eé What you already know ggj What you will learn
«  Permittivity « Analysis of equilibrium
 Limitations of Coulomb’s law « Third charge in equilibrium

« Principle of superposition

For n-sided polygon

The net force at the centre of a regular
n-sided polygon due to n similar charge
placed symmetrically at its vertices is zero.
The angle subtended by the force due to
the charges on the charge present at the
centre of the polygon is given by,

360°

n

If one charge is removed from a regular n-sided polygon
On removal of a charge from the vertex of the n-sided polygon, the resultant force becomes the
same as the charge but in the opposite direction.

0 =

+)
&)

Five charges of equal charge +q are placed at corners
of a regular hexagon of side a. What is the force on +q,
at centroid 07
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Let us introduce a similar charge +q in the empty place at D. By
doing this, the charges in the system become symmetrical, and the
net force on +q, becomes zero. We can see that the force applied
on charge +q, by the charges at B and E are equal in magnitude /oc E

but opposite in direction. Thus, they cancel each other. Similarly, the

force applied on charge +q, by the charges at € and F are equal in q
magnitude but opposite in direction. Thus, they cancel each other. F fos
However, in reality, there is no charge at D. So, the repulsive force

due to charge at A is not canceled by the charge at D. Thus, this
unbalanced force acting on charge +q, is the net resultant force
acting on it.
The force acting on g, is given by,
kqq,

aZ
Thus, option (D) is the correct answer.

Yoo =

A charge is said to be in equilibrium if the net electrostatic force acting on that charge is zero.
Based on the magnitude and location of the charges, there are two different types of equilibriums:
(a) Stable equilibrium
(b) Unstable equilibrium
Here, we will discuss stable equilibrium and unstable equilibrium in detail.

When a particle is displaced slightly from an equilibrium position and the net force acting on it
brings it back to the initial position, it is said to be in stable equilibrium.

For example, let us consider three positive charges namely 1, 2, and 3 of magnitudes q, g, and Q,
respectively. Charges 1 and 2 are placed at a finite distance and they are fixed. The third charge Q
is placed at the midpoint of the two charges along the line joining charges 1 and 2. It is not fixed.
Thus, it can move from its position.

F =

1 E, 3 F, 2
-------- ressss= =] + e S
q: > < :q
r Q r

Let the repulswe force applied by charges 1 and 2 on the third charge be F and F32, respectively.
F and F are opposite in direction. So, from Coulomb’s law, the magnltude is given by,
MQ_MQzea

re re

Case 1: In this case, if we shift the charge at the middle (third charge) towards the right by dx, then
the repulswe force F , acting on @ due to charge 2 increases as the distance decreases, and the
force F , acting on Q due to charge 1 decreases as the distance increases.
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Due to this, the net force on 3

Q acts towards the left (initial 1 1 dx | dx 2
position of Q). Thus, we can _______ . ______ P N P S
say that charge 3 is in a stable ' ! IQ !

equilibrium. q ! !
-------------------- T2, F,>F,
Case 2: In this case, if the dx dx

charge at the middle (third |<—>: :

charge) is displaced towards < N % >
the left by dx, then the E, ; ' F, Bl L E
repulsive force F;l acting on Q E: 7’;

due to charge 1 increases as

the distance decreases, and force Ez acting on Q due to charge 2 decreases as the distance
increases. Due to this, the net force on Q acts towards the right (initial position of Q). Thus, we can
say that charge 3 is in a stable equilibrium.

When a particle is displaced slightly from an equilibrium
position and the net force acting on it tries to displace the
particle further away from the equilibrium position, it is said
to be in an unstable equilibrium.

In the same example (discussed above), the third charge Q
placed at the middle along the line joining charges 1 and
2 is displaced by a small distance dx either upwards or
downwards from the equilibrium position in the direction
perpendicular to the line joining the two fixed charges.
In both cases, the separation distance of charge 3 from
charges 1 and 2 varies in the same proportion. Thus,
the magnitude of the repulsive forces acting on charge
3 by charges 1 and 2 are 1731 and 1732. They are equal in
magnitude and along the line joining the charges as shown in the figure. Hence, the net force acts
in the direction of displacement of charge 3. Due to the net force, charge 3 moves further away
from the initial position. Therefore, it can be said that charge 3 is in an unstable equilibrium.

Stable and Unstable Eq

Consider the same system we discussed above (three positive charges namely 1, 2, and 3 of
magnitudes g, q, and Q, respectively). However, in this case, the third charge Q is replaced by —Q,
and other than that everything is the same. Charges 1 and 2 are placed at a finite distance and
are fixed. The third charge (-Q) is placed at the midpoint of the two charges along the line joining
charges 1 and 2, and it is not fixed. Thus, it can move from its position as shown in the figure.

Free

1 F, 3 F,, 2
-------- LrEsess s e - Sesss==sc jooosooo
q -Q q

Eet the attractive forces applied by charges 1 and 2 on the third charge be 1731 and EZ, respectively.
F,, and F_, are opposite in direction and equal in magnitude.
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In this case, the third charge (—Q) placed at the middle along the line joining charges 1 and 2 is
displaced by a small distance dx either upwards or downwards from the equilibrium position in
the direction perpendicular to the line joining the two fixed charges. In both cases, the separation
distance of charge 3 from charges 1 and 2 varies in the same proportion. Thus, the magnitude
of the attractive force acting on charge 3 by charges 1 and 2 are F,, and F,,. They are equal in
magnitude and along the line joining the charges as shown in the figure. Hence, the net force
acts in the opposite direction of displacement of charge 3. Due to the net force, charge 3 moves
towards the initial position. Therefore, it can be said that charge 3 is in a stable equilibrium.

In the same example (discussed above), the third charge (-Q) placed at the middle along the line
joining charges 1 and 2 is displaced by a small distance dx either towards the left or right from the
equilibrium position along the line joining the two fixed charges. Two cases are possible where the
third charge (-Q) can move towards the left or right, depending upon the direction of the net force.

Case 1:

In this case, if the charge at the middle (third charge) is displaced towards the left by a small
distance dx, then the attractive force_F31 acting on —Q due to charge 1 increases as the distance
decreases, and the attractive force F,, acting on —Q due to charge 2 decreases as the distance
increases. Due to this, the net force on —Q acts towards the left (away from the initial position of Q).
Therefore, we can say that charge 3 is in an unstable equilibrium.

Case 2:

In this case, if the charge at the
middle (third charge) is displaced 3
towards the right by a small distance 1 E, m 5 2
dx, then the attractive force F,, acting e @ -~ — &+ 3 —————- P - - -
on -Q due to charge 2 increases q : |—Q :
as the distance decreases, and the '
attractive force ﬁ:ﬂ acting on -Q E,>E, E,>F,
due to charge 1 decreases as the dx dx
distance increases. Due to this, the
net force on -Q acts towards the
right (away from the initial position of
Q). Therefore, we can say that charge F,
3 is in an unstable equilibrium.
The conditions for the equilibrium of the system (with no charge fixed) of all the three charged
particles (discussed above) are as follows:

(1) The three charges must be collinear.

(2) The three charges must not be of the same sign.
(3) The three charges must not be of the same magnitude.
(4) On obeying the mentioned conditions, the equilibrium of the system will always be unstable

in nature.
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Case 1: Like charges

Let us consider three positive charges namely 1, 2, and 3 of magnitudes g, 4q, and Q, respectively.
Charges 1 and 2 or charges g and 4q are fixed at distance L from each other. Let us divide the
vicinity of space near charges q and 4q into three regions A, B, and C as shown in the figure. If a
third charge Q has to be placed in this system such that it should be in equilibrium, then to find the
equilibrium of the third charge Q in the given system, we have to draw the force diagram for charge
Q in all three regions A4, B, and C.

E, F, 1 E, 3 E, 2 F, E,
G Fo-ooooo EFoosoos < + P = = = === - D S +—>—
Q q X Q L-x 4q Q
Fee# 0 Fee=0 Foee# 0
Region 4 Region B Region C
Region A

If the third charge Q is placed in region 4, the repulsive forces acting on charge 3 by charges 1 and
2 are 1731 and 1732. They have different magnitudes and are in the same direction (towards the left)
along the line joining as shown in the figure. Hence, the net force cannot be zero in this region and
it acts towards the left. Due to the net force, charge 3 moves towards the left. Therefore, there is
no possibility for the third charge Q to attain equilibrium in this region.

Region C
Similar to region 4, if we place the third charge Q in region C, the repulsive forces acting on charge

3 by charges 1 and 2 are le and F,,. They have different magnitudes and are in the same direction
(towards the right) along the line joining as shown in the figure. Hence, the net force cannot be zero
in this region and it acts towards the right. Due to the net force, charge 3 moves towards the right.

Therefore, there is no possibility for the third charge Q to attain equilibrium in this region.

Region B

If we place the third charge Q in region B, the repulsive forces acting on charge 3 by charges 1 and
2 are F;l and F32. They have different magnitudes and are in the opposite direction of the line joining
as shovﬁvn in thg figure. Since F,, and F,, act in the opposite directions, there is a possibility that
forces F,, and F,, can cancel each other. It is possible if the third charge is placed near the smaller
charge q. Let the distance be x. Thus, the distance between 4q and the third charge becomes L - x.

e N
Possibility of the equilibrium

Region Direction of F';l Direction of F';Z position

Not possible as both the forces

Region A Acting towards left Acting towards left e actialinihelsameldirection

Possible as the forces are in the

Region B Acting towards right Acting towards left opposite direction

Not possible as both the forces

Region C Acting towards right Acting towards right are acting in the same direction)

-

— — —

ForF =0,F,=F

net 31 32
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=x=-L or x:£
3
. L
Since x cannot be — L, we get, x = =

Shortcut method
The distance of the third charge from the smaller charge is given by,

NG .
N1 ] (1)

NN

Where,

L = Distance of separation between the charges

q, = Smaller charge

q, = Bigger charge

For the given example, if we substitute the charges in equation (i), we get,

()

:x{_ii%

X =

NN IE

=X =—
3

This is similar to what we have obtained by the previous method.

Case 2: Unlike charges

Similar to the above case (like charges), let us consider three charges namely 1, 2, and 3 of
magnitudes g, —9q, and @, respectively. Charges 1 and 2 or charges q and -9q are fixed at distance
L from each other. Let us divide the vicinity of space near charges g and -9q into three regions A, B,
and C as shown in the figure. If a third charge Q has to be placed in this system such that it should
be in equilibrium, then to find the equilibrium of the third charge Q in the given system, we have to
draw the force diagram for charge Q in all three regions 4, B, and C.

Eee=0 Eee# 0 Eee#0
F31 3 P;‘,Z 1 3 F31 F;Z 2 FBZ 3 F31
-———— > - - - - - - - - = - - - - - - -t - - -
Q q Q —9q Q
= . > < T =
Region A Region B Region C

© 2021, BYJU'S. All rights reserved



Region B

If the third charge Q is placed in region B, the forces acting on charge 3 by charges 1 and 2 are
F and F . They have different magnitudes and are in the same direction along the line joining as
shown in the figure. F is a repulsive force and F32 is an attractive force. Thus, both act in the same
direction. Hence, the net force cannot be zero in this region and it acts towards the right. Due to the
net force, charge 3 moves towards the right. Therefore, there is no possibility for the third charge
Q to attain equilibrium in this region.

Region C

If we place the third charge Q in region C, the forces acting on charge 3 by charges 1 and 2 are F31
and F,,. They have different magnitudes and are in the opposite direction along the line joining
as shown in the figure. The separation between charges 1 and 3 is higher than the separation
between charges 2 and 3. The magnitude of charge 2 is greater than charge 1. Thus, F is greater
in magnitude when compared with F Hence, the net force cannot be zero in this reglon and it
acts towards the left. Due to the net force, charge 3 moves towards the left. Therefore, there is no
possibility for the third charge Q to attain equilibrium in this region.

Region A

If we place the third charge Q in region 4, the forces acting on charge 3 by charges 1 and 2 are F
and F . They have different magnltudes and are in the opposite direction along the I|neJO|n|ng as
shown in the figure. Since F ,and F act in opposite directions, there is a possibility that forces F
and F cancel each other. It is p055|ble if the third charge is placed near the smaller charge q. Let
the dlstance be x. Thus, the distance between -9q and the third charge becomes L + x.

-
Possibility of the

Region Direction of F, Direction of F, equilibrium position

Possible as the forces are

Region A Acting towards left Acting towards right inlopposite direction,

Not possible as both are

Region B Acting towards right Acting towards right along the same direction

Not possible as the
Region C Acting towards right Acting towards left negative charge is bigger

L and distance is less. )

Since x cannot be —%, we get, x = é
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Shortcut method
The distance of the third charge from the smaller charge is given by,

\/ q1
N1 | (1)
NSNS
Where,
L = Distance of separation between the charges
q, = Smaller charge
q, = Bigger charge

We will get the same value of x if we substitute the values of charge and distance as we did in the
case of like charges.

X =

ﬁ.@ A charge q is placed at the center of the line joining two equal positive charges Q. For the

system of the three charges to be in equilibrium, what is the value of g7

(A) -Q B) += € —— D) @

= e

We have two positive charges (Q) and a charge q is placed

in between the two positive charges and the system is 27

required to be in equilibrium. We know that for a system = i

of charges to be in equilibrium, the charges must notbe ~ ~~"F-------0------%----
of the same sign. Thus, charge g should be negative in Q r q Q
nature.

For the first charge to be in equilibrium, the net force
acting on it will be 0.
Therefore,

F12+F23:0

2
N kQ N kQq

(2]" )2 rZ

=0

Q

=>q=-=
q 4

Thus, option (C) is the correct answer.
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:,47:@ If point charges +4q, —q, and +4q are kept on the x—axis at points x = 0, x = g, and x = 2aq,
respectively, then which of the following statements is correct?

(A) Only —q is in a stable equilibrium. (B) None of the charges are in equilibrium.
(C) Allthe charges are in an unstable equilibrium. (D) All the charges are in a stable equilibrium.

€ !
A
The net force acting on —q charge is given as follows: +4q —-q +4q
k(q)(4q) k(q)(4 - = - &
— > >
r,—-Kale)  ka)lta) _, 0 p
a a

Also, the net force acting on both the charges +4q is given by,
__Kk(q)(4aq) , k(4q)(4q)

4q — aZ (Za)z
4kq*  4kq®
= F4q =— 7 7 =0

Hence, we can clearly conclude that the system is in equilibrium as the net force on all the charges
is 0. However, the charge in the middle is a negative charge and the other two charges are positive.
So, on the slight movement of —q charge, the system will no longer be in a state of equilibrium.
Therefore, all three particles are in an unstable equilibrium.

Thus, option (C) is the correct answer.

q To find the equilibrium, draw the force diagram in each possible region and check the
regions in which the forces can cancel each other.
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PHYSICS

ELECTROSTATICS

ELECTRIC FIELD INTENSITY

® JeALVES
Classes

f

« Coulomb's law Electric field

« Third charge in equilibrium « Electric field intensity

*’ARDS
Electric Field

Electric field exists in a region where an electric charge experiences an electrostatic force.

When a charge is placed in an electric field, it experiences an electrostatic force. In the electric
field of a positive charge, if another unit positive charge (test charge) is placed, then it experiences
a repulsive force in that field. On the other hand, if a unit positive charge is placed in the electric
field of a negative charge, then the unit positive charge experiences an attractive force towards
the negative charge.

A f

¢

\

Radially outwards Radially inwards

To visualize the electric field geometrically, Michael
Faraday introduced electric field lines or electric
lines of force. From a positive charge, the electric
field lines emerge radially outward. However, in a
negative charge, the electric field lines goes radially
inward.

If one positive and one negative charge are placed
closer to each other, then the electric field lines
appear to be coming out from the positive charge
and going into the negative charge.
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At a point, the electric field intensity is the force experienced by a unit positive charge placed in
the electric field.

= _ 14
|E|: +qo

q,
Let us consider a positive charge that is the source \ LTest charge

charge, and a positive charge +q, which is so small that — <& —

it cannot produce its own electric field. This small charge

is known as the test charge. When the positive test

charge is brought to the region of the electric field of

the source charge, it experiences an electrostatic force. Source charge

The direction of force experienced by the positive test
charge gives the direction of the electric field.

Let us consider a positive test charge g, that is placed in the electric field of charge g at distance r
as shown in the figure.

As the source charge is positive, the direction of the electric field is radially outward.
The intensity of the electric field is given by,
|F:3 I (l)

9o

|E|=

Where, F, is the electrostatic force.

-k
|F,|==Fk
_ *q tq,
By substituting | F, | in equation (i), we get, E
t ---------------- ©—
quo < >
|El=-L '
g,
=k
= |E|=—
r
=F= k_c2]
r

From the equation, we can observe that the electric field intensity is inversely proportional to the
square of the distance between them.

1
E oc —
2
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The electric field is independent of the test charge but depends on the source charge.
Exgq

If we plot a graph between the electric field intensity and distance r for a point charge, then the
obtained graph is as shown.

E A
4 ™\
r E
0 0
0 Undefined
\_ Y,
0 >

Let us consider a positive test charge +q_, which is placed at distance of r from the source charge
_q.

The electric field intensity is given by,

|B|=] e'...(i)

—q *q,
% t'"""""‘:i:
Where, F, is the electrostatic force.
~ quo "
|F, |=—
r
By substituting |Fe |in equation (1) we get, The electric field intensity in the vector form is
given by,
kqq,
|E|= r’ Foka, (We use g with proper sign)
q, rt
Where, ¥ =|r|r
=k
—|E|= r—‘j )
E = I ‘13 F
k r
=>E= —g
r

gl A
q, C
F=[MLT?]

qozlxtz[AlTl]

Dimensional formula for E = [MTA*T*]
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Principle of Superposition

The principle of superposition states that every
charge in space creates an electric field at a point
independent of the presence of other charges in that
medium. The resultant electric field is a vector sum of
the electric field due to individual charges.

E=E +E,+E, +.+E,

Consider that n number of charges are present in a
system and a positive test charge is brought to the
field as shown in the figure. The charges in the body
are positive and the test charge is also positive.

The electric field intensity at point P in space due to
two point charges g, and q, is E, and E,, respectively
(as shown in the figure).

To obtain the resultant electric field intensity, we have
to apply the triangle law of vector addition.

E.|=E? + E* + 2E,E, cos 0

net

Similarly, the net electric field at point P in space due
to a system of n charges is given by,

E=E +E,+E,+.+E

Therefore, in a system of n charges, the resultant
electric field at a point in space is the vector sum of
the electric field due to all individual charges.
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Analysis of electric field

Regular polygon arrangement

Due to the symmetrical arrangement of charges, the
net electric field is zero at the centre of an n-sided

polygon.

The angle subtended by an n-sided polygon

The value of the angle subtended is given by,

0:2_72.
n

Where, n is the number of sides.

Example:
For a triangle,n =3

So, at the center of the triangle, the angle between
the electric field vector is,

9=l 8
n

=120°

For a square, n = 4

So, at the center of the square, the angle between the
electric field vector is,
_ex 2z

0 — =90°
n 4
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For a pentagon,n=5

So, at the center of the pentagon, the angle between
the electric field vector is,
2z 27

0 =22 =720
n 5

Two identical charged particles A and B with charge +q
are present on the vertices of an equilateral triangle
having sides of length a as shown in the figure. Find
the magnitude of the resultant electric field at point C.

(A) ﬁfq (B) k_le (@) @ (D) \3kq
a a a a

The electric field at point € due to the charges at A and B is given by E, and E, , respectively, as
shown in the figure.

-4 |-

The magnitude of the resultant electric field is given by,

E.|=+E? + E + 2E,E, cos 6

= |E.| = JE? + E? + 2E? cos 60°
, k

= Enet = \/§ _?

a
Thus, option (A) is the correct answer.
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For the given arrangement of charges, what will
be the net electric field at point 0?

11kq;_&"

\®)

(o) 1kap, %%a;

The electric fields at point O due to the charges at A4, B, and C are given by EA, E‘B, and EC respectively,
as shown in the figure.
By applying the Pythagoras theorem in the right angled ABOC, we get,

BO=5m
Also, in ABOC,
sin 0= E

5
0=37°

To obtain the net electric field at point O, we have to calculate the individual electric field intensities
due to the charges at 4, B, and C.

The magnitude of the electric field at point O by the charges at A, B, and C are given as follows:

4 9 < > B

= -2k A i

1 ,’ 1
Similarly, I P I

: g s a [ 3m
o k(16 53° B. 7 1
|EB|= (16q)=kq o : 337° _________ J_I_‘w
= |_ k(259) 0 Ee _16g°
il=5 =t

E
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In the question, the net electric field is given in terms of unit vectors. Thus, we have to resolve the
electric field along the x-axis and y-axis.

Along the x-axis, the component of the electric field is given by,

E =E;cos37°+E,

=1" =§kq+kq

9
=FE ==k
X 5 q

Along y-axis, the component of net electric field is given by,

E, =E,sin37°-E,

3
=E, =§kq—2kq

y

7
=E =——k
s q

Therefore, the net electric field is given by,
E,=Ei+E,j

_9kqp _7kq;

E'net
5 5

Thus, option (B) is the correct answer.

:.47@ Five charges with equal magnitudes of +q are placed at the corners of a regular hexago
side a. What is the magnitude of the electric field at centroid 0?

() 3Ka ) (1+3) 2 © 2ka o) ¥

a2

In such problems, where a charge is omitted
from an n-sided polygon, we first assume that the
empty space has a charge similar to the other
vertices of the polygon.

Due to this, the net electric field will be zero at
the centroid. Now, if we remove the charge at D,
which was our original arrangement, then the net
electric field will be along the direction of OD due
to the charge at A.
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Thus, option (D) is the correct answer.

Analysis of Electric Field
Case: Like charges

Consider two fixed like charges, —q, and —q,, which are present at distance L from each other. Now,
we divide the whole region into three parts, A, B, and C, to search for the neutral point (where the

net electric field is zero).

El El
—_— _q1 E E _qz -
1
©e------- t—»— -- —LH—> - - <1—~ ------- ©
S EZ EZ -
EZ EZ
< p >
A B AN
( i N
Both charges are negative
Direction of E, Direction of E, PO'S.SII?Ith of t.h.e
equilibrium position
Region 4 Acting towards right | Acting towards right | Not possible as both the fields
are acting in the same direction
Region B Acting towards left | Acting towards right Pos§|b|e =B Ui e'Iectr‘lc f|g|ds
are in the opposite direction
Region C Acting towards left | Acting towards left N pgssm?le S 2ein th? f|el_ds
L are acting in the same dlrectlon)

For both positive charges:

El El
+ +
i q, 51 q, E —
O--~—------ N &—--o
-— E, % —
EZ EZ
- - >
4 o B R I
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. R
Both charges are positive
Direction of E| Direction of E, PO.S.SIt.)I“ty e t.h.e
equilibrium position
Region 4 Acting towards left | Acting towards left Not pgssit?le as both th? f‘e'FjS
are acting in the same direction
Region B Acting towards right | Acting towards left Possjible asithe e'lectr'ic figlds
are in the opposite direction
Region C Acting towards right | Acting towards right g pgssu?le as both th? f'el,ds
L are acting in the same dlrectlon)

Let the test charge be at distance x from charge +q,. The distance from charge +q, becomes L — x.
We also assumed the following:

l+q,l < l+q,|

For the net electric field to be zero,

=\ |z +q1 +q2
E,|=|E,| @ B o B G-
= kq .

E, :X_Zl(l) < " > < — >

E |- (i) L

(L-x)

By substituting the values in equations (i) and (ii), we get,

kq, _ kq,

XZ (L—X)z

-2

9 _ X
q, (L-x)

==

We know, L >1(x<L)
X

Where,
\/a L x = Distance from the smaller charge
x=|—1
\/g+ a, q, = Smaller charge

q, = Bigger charge
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Find the distance ofthe pointfrom A where the net ™
electric field is zero for the given configuration. )

(A) 1.5 m towards the left (B) 1.33 m towards the left
(C) 1.5 m towards the right (D) 1.33 m towards the right

Let us assume the point where the net field is zero is at distance x from the smaller charge.

By applying the shortcut method, we get,

2C 8C
Xz[LJL --+ '_EB b . .Jr‘__
Ja, +a,

) X 4-x
:>x=£ 2 J4=£=1.33m <

\/
A
\/

\

J8+/2 3 4m

The electric field is zero at 1.33 m towards the right from A.

Thus, option (D) is the correct answer.

(2]

\9); Find the distance ofthe pointfrom A where the net ‘

electric field is zero for the given configuration.

(A) 4.2 m towards the left (B) 2.2 m towards the left
(C) 2.2 m towards the right (D) 4.2 m towards the right

Let us assume the point where the net field is zero is at distance x from the smaller charge.
In this case, I-3¢gl < -9l

By applying the shortcut method, we get,
_3q
E E
X = \/a L - ‘ - _<A_°_>_B _________ ‘- - -
V&, +a,

\/5 6 X 6-x
= 6= ~2.2 >
=X [@4@ 13 e

The electric field is zero at 2.2 m towards the right from A.

A

Thus, option (C) is the correct answer.
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Classes

ggl What you will learn

g@ What you already know

+ Electric field « Analysis of electric field
+ Electric field intensity « Electric field vs position curve
+ Principle of superposition « Electric field due to continuous charge

distribution

Analysis of Electric Field
Case: Unlike charges

Consider that two fixed unlike charges +q, and -q, are present at distance L from each other. Now,
divide the whole region into three regions 4, B, and C to find the neutral point (the net electric field
is zero). Let the electric fields due to charges q, and —q,be E, and E, respectively. We know that
the electric field due to positive charge is away from it and due to negative charge is towards itself.
Directions of electric fields in the three regions is shown in the figure.

e A
. . . . . Possibility of the equilibrium
Region Direction of fl Direction of E; position
Region A Acting towards left Acting towards right Pos§|ble as the e'lectr.lc flglds
are in the opposite direction
. . . . . Not Possible as the electric
Region B Acting towards right | Acting towards right fields are in the same direction
Region C Acting towards right Acting towards left Poss.lble as the e‘lectr.lc flglds
S are in the opposite direction )
E'1 +q1 El _q2 E1
O------==---- ®*—------- P mm e —>r-------- J
—_ — -
E, E, E,
I
Region A Region B Region C
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The net electric field becomes zero in a position that is near the charge with less magnitude because
it has to compensate for the electric field of a bigger charge.

E, E, *q, —q,
----- S e Ty e
< - > < - >
(L +X)

Let us assume that |+q,| < |-q,|. Let the test charge be at distance x from charge +q, so that the

distance from charge -q, becomes L + x.
For the net electric field to be zero,

E =E,

kq,  kq,

X (L+x)
u ()

4 _[_x
q, L+x

==t

L L
=>—= L _ 1 ( — cannot be negativej
X q, b's

Ji

x=|—1 |

NN

Where,

x = Distance from the smaller charge
q, = Smaller charge

q, = Bigger charge

Find the distance of the point from A
where the net electric field is zero for
the given configuration.

(A) 6 m towards the left
(C) 6 m towards the right

© 2021, BYJU'S. All rights reserved

+2q -8q
_______ R ____®-------
A B
9m

(B) 9 m towards the left
(D) 9 m towards the right



lHHI

Solution

In this case, |+2q| < |-8¢|. So, the neutral point lies near charge +2q.

E, E, +2q -8q
-————— —— - - - - - - = ®-------—— - R
A B
< " > < 5 >
(9 +x)
Let x be the distance from A where electric field will be zero.
We have,
N
x=|—> 1 L

NN
-t}

= xXx=9m

Thus, option (B) is the correct answer.

NEET
{ Electric Field vs Position Curve

To draw an electric field vs position (E-x) curve, we have to follow the following sign conventions:

Sign convention

The electric field (E) is taken along the y-axis, whereas the position (x) is taken along the x-axis.

N
Positive electric field Negative electric field 2}
A
At a point, the electric field At a point, the electric field )
towards the positive x-axis towards the negative x-axis
is considered as the positive is considered as the negative < ) () > x
electric field. electric field. 0
The positive electric field is The negative electric field is )
plotted above the x-axis. plotted below the x-axis. \/
. J

For a positive point charge

We know that E oc i
XZ
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N
X E
o0 0
0 Undefined
Approaches to zero 00 |

For a positive charge, if we find the electric fields on the right and the left of the charge by placing
a test charge, then we get the following:

Ve

Electric field of a positive charge

Direction of electric field

Nature of electric field

Graph

On the right side

Towards the

Plotted above the

of the charge positive x-axis PO X-axis
On the left side Towards the . Plotted below the
. . Negative .
of the charge negative x-axis X-axis
Hence, the E-x graph is given as follows:
*q, *q *q,
«—Y------ ®------ N
E A E
E
< » X
0

For a negative point charge

For a negative charge, if we find the electric fields on the right and the left of the charge by placing
a test charge, then we get the following:

/

Electric field of a negative charge

Direction of electric field

Nature of electric field

Graph

On the right side
of the charge

Towards the
negative x-axis

Negative

Plotted below
the x-axis

On the left side
of the charge

Towards the
positive x-axis

Positive

Plotted above
the x-axis
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Hence, the E-x graph is given as follows:

*q, -q *q,
e T -
18 18
A
E]
< > X
0]

For two positive point charges
Here, the two like charges of the same magnitude are separated by some distance. So, there is a
1
neutral point at the midpoint between the two charges (the net electric field is zero). Since E o —
X
the electric field intensity of a charge is maximum near the vicinity of the charge. As the distance
increases, the electric field intensity decreases. Here, let us consider two positive point charges A
and B of the same magnitude separated by some distance. Now, identify the electric field near the
vicinity of charges A and B as follows:

( A
Electric field near the vicinity of charge A4
Direction of electric field | Nature of electric field Graph
On the right side Towards the Positive Plotted above
of the charge A positive x-axis the x-axis
On the left side Towards the . Plotted below
. . Negative :
of the charge A negative x-axis the x-axis )
( A
Electric field near the vicinity of charge B
Direction of electric field | Nature of electric field Graph
On the right side Towards the Positive Plotted above
of the charge B positive x-axis the x-axis
On the left side Towards the . Plotted below
. . Negative .
of the charge B negative x-axis the x-axis

In between A and B, there is a point where the net electric field is zero.
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Hence, the E-x graph is given as follows:

E E E
-—QP------ @----- «—g—>r----- ®------ —>
tq *q
EA EA
A B
X - ) &

For two negative point charges

Similar to two positive charges, in this case also, let us consider two negative point charges 4 and
B of the same magnitude separated by some distance. Now, identify the electric field near the

vicinity of charges A and B.

p
Electric field near the vicinity of charge 4

of the charge B

positive x-axis

Direction of electric field | Nature of electric field Graph
On the right side Towards the . Plotted below
. . Negative :
of the charge A negative x-axis the x-axis
On the left side Towards the - Plotted above
P . Positive .
of the charge 4 positive x-axis the x-axis
p
Electric field near the vicinity of charge B
Direction of electric field | Nature of electric field Graph
On the right side Towards the Negative Plotted below
of the charge B negative x-axis 9 the x-axis
On the left side Towards the - Plotted above
Positive

the x-axis

In between A and B, there is a point where the net electric field is zero.
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Hence, the E-x graph is given as follows:

E A E E B E
L e ~— - - ——— - -«—y---
a, -q d, -q a,
AE AE
A B

<

A
|
|

For two unlike charges

Here, the two unlike charges of the same magnitude are separated by some distance. There is
no possibility of a neutral point (the net electric field is zero) between two unlike charges. Since

1
E « — the electric field intensity of a charge is maximum near the vicinity of the charge. As the

X

distance increases, the electric field intensity decreases. Therefore, the net electric field is not
zero at the midpoint between unlike charges. Here, let us consider two point charges A (negative
charge) and B (positive charge) of the same magnitude separated by some distance. Now, identify

the electric field near the vicinity of charges A and B.

p
Electric field near the vicinity of charge A

Direction of electric field | Nature of electric field

Graph

On the right side Towards the Negative Plotted below
of the charge A negative x-axis 9 the x-axis
On the left side Towards the " Plotted above

o . Positive .
of the charge 4 positive x-axis the x-axis
p
Electric field near the vicinity of charge B
Direction of electric field | Nature of electric field Graph
On the right side Towards the - Plotted above
o . Positive .
of the charge B positive x-axis the x-axis
On the left side Towards the . Plotted below
. . Negative .
of the charge B negative x-axis the x-axis

In between A4 and B, there is a point where the value of the electric field is minimum.
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Hence, the E-x graph is given as follows:

<—
E A E B E
i R -~ ------- ®------- —
q, -q q, *tq q,
AE E A
A B
- — + s>

Consider a continuous charge Q distributed uniformly throughout area A to obtain the electric field
at some point P, which is at distance r from the body.

Consider a small elemental charge dq of area da. Due to this small elemental charge, the field is dE.
The distance between dq and point P is x.

The electric field due to charge dgq is given by,

dq
aE =Sk (i) ;
X da ~ X
The electric field for the whole body is given by, T

~ rkdq .
dE = |—x
JdE = |3
The charge per unit area (o) is given by,

Q

o=—

A

So, the small elemental charge dq is given by,

5o =M
da

= dq = o da
Q

= dq = —da
1 A

By substituting the value of dq in equation (i), we get,
_ kdq

XZ

_ kQ da
A X
On integrating the equation with proper limits, we can find the net electric field acting at point P.

dE

dE
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The amount of charge per unit length is known as linear charge density (A).

Charge Q is distributed across the wire

< »
< >

=~ | Q

Electric Field at an Axial Point

Consider a charged rod of length L and point P, which is at distance r from the rod. Consider a small
charge dq of length dx that is at distance x from point P. Due to the small charge dq, the electric
field dE is generated.

dq X 0E
------ B - e —
® © © © © © | ©o|o® o o p
<€ L > < -
dx

The electric field due to the small charge dq is given by,

kdq .
dE = (1

a )
We know, A = Q

L
dq = Adx
Q
=dq =—dx
g L

By substituting the value of dq in equation (i), we get,
T

L x

By integrating dE from x =r to x =r + L, we get,

[aE = rILk—Qd—X
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kQ— X_2+1 r+1L
= '[dE =—
L

-2+1

r

r r+1L
:>IdE :k—Q 1
L X

r

_kQi1_ 1
CLlr r+lL

The direction of the net electric field can be determined by the nature of the charge on the rod.

= |E

net

E
net
------ I - - - - - -~ ~——>
® © © © © © © © © © © © P
L r
E
net
___________ ——— - = = =
5 & & & @& @ & & &8 & & e p
L r
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Classes

ELECTRIC FIELD DUE T(

A

Analysis of an electric field « Uniformly distributed line charge

 Electrified position curve « Special cases for uniformly distributed

+ Electric field due to continuous charge charges

distribution

T *’ARDS
*E Uniformly Distributed Line Charge
Electric field at a non-axial point

Consider a wire of length L and charge Q is uniformly distributed along the length of the rod. Let us
consider a non-axial point P that is at a distance of r from the wire. Now, let us drop a perpendicular
to the wire from point P that meets the wire at point 0. Since charge is uniformly distributed along
the length, to find the electric field at point P, consider an element having a charge of dq with
thickness dx at a distance of x from point 0. Let the distance between the field point P and the
element dx be a, and the angle subtended by element dq with the perpendicular dropped from the
field point P be 6. For the extremes of the rod, the angle subtended by the left and right ends of
the rod with the field point is a and f5, respectively. Let us take the clockwise direction as positive
and the anticlockwise as negative. So, the range of 8 is from +a to -f. Let dE be the electric field at
point P by the element charge dq. Thus, it is resolved into perpendicular and parallel component of
the electric field as dE cos 0 and dE sin 6, respectively, as shown in the figure.

Electric field (dE) at point P by the element charge (dgq) is given by,

a
From APOR,
dE cos 6 Ag
r 4
cos 0 = - A\ dEsin 6
r a g P \\\
=a= 5 \
cos 6 /" dq,"R X N

E==dH=== (L-i

+++++i Attt
dx

2 = >

r <
=>a’=—; L
cos“ @

By squaring both sides, we get,
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By substituting the value of a” in equation (i), we get,

kdq cos*0

dE=——— ... ii
: (i
The linear charge density of the wire is given by,
2=9
L

The elemental charge dq can be written as follows:

dq =7 dx
Q
=dq =-—dx
g L
By substituting the value of dq in equation (ii ), we get,
P
2
dp = KQAxCos'0 i)
L r 0
a
In APOR, g
x=rtanéd R x 0

By differentiating both sides, we get,
dx =r sec’6 do

By substituting dx in equation (iii ),we get,

2 2
dE =k_Qrsec 0c§)s 0 do
L r
dE = O (iv) rsec’l = 12
Lr cos“ @

The electric field at point P can be resolved into two components: one parallel to the length of the
wire E, and one perpendicular to the length of the wire E .

E, :J‘dE sin@ = JM
i Lr

= E, =k—QI sin@ d@

Lr i

kQ .
=E, :E[—cosa]iﬂ
=E, = IZ—Q[COS,B T2 [ (v)

r
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Also,

EL=J.dECOSH= J‘IZ—SCOS 0do

=E = ]l{l—g[siné’]aﬂ

kQ

:Elzﬁ

Note

[sin & + sin B3]

Equations (v) and (vi) are the generalised relations for the parallel and perpendicular components
of the electric field at any arbitrary non-axial point due to linear charge distribution.

Special cases

1. The electric field at a point on the perpendicular bisector (equatorial):

In this case, let us find the electric field at point P, which lies along the perpendicular bisector at
a distance of r from the wire as shown in the figure. Thus, the angle subtended by the left and
right ends of the rod with the field point P is,

a=£=0

The parallel component of the electric field at any non-axial point is given by,
k

9 = L—g[cosﬂ —cosa|

=E = lz—Q[cose —cosf]=0
r

The perpendicular component of the electric field is given by, E y
T——> E
kQ L N I
E, =—=[sina + sin AN
€L Lr[ ﬂ] ',,' 0 0 \\\
k // r ‘\\
=E = —Q[siné’ +sind)] P A
Lr L \4 s
[ =

++++++++HE
1

< » »

< P '

=E, zzl]f—rQ[sinH]

L L
The net electric field is given by, 2 2
E‘net = \/EHZ +EJ2_
— E;net _ ZkQ siné
Lr
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2. Electric field due to an infinite wire:

Consider an infinite wire with charge Q distributed uniformly along the length of the wire. Let us
find the electric field at a non-axial point P, which is at a distance of r from the rod as shown in
the figure.

The linear charge density of the wire is given by,

i:Q

L

Since the wire is of infinite length, the angle subtended by the left and right ends of the wire with
the field point P is, a=f = 90°.

The parallel component of the electric field at any non-axial point is given by,

k
9 = —Q[cos/i’ —cosa]
Lr E+oo .
k T |
=E = —Q[cos 90° — cos 90°] =0 M H :
Lr it i
+ i
The perpendicular component of the electric field is given by, ! :
+ 90°—
kQ; . _ + r 1P E
E, =—%[sin 90° + sin 90°] + .
Lr A 90°
kQ T EEII
=E = ﬁ[l +1] * i
o 1
+ B i
E = 2l ) E
r \/
The net electric field is given by,
E.|=\E:+E*
= 2kA
= Enet S
r
3. Electric field due to a semi-infinite wire:
In a semi-infinite and long wire, one endisfiniteandthe E = E|
other end is infinite. Charge Q is distributed uniformly fP
along the length of the wire. Let us find the electric = <--%----------------------oomommo
field at a non-axial point P, which is at a distance of r E"
from the wire as shown in the figure. r
The linear charge density of the wire is given by, Y >
Q ++++++++++++++++++ 00

=
L

Since the wire is semi-infinitely long, the angle subtended by the left and right ends of the wire
with the field point Pis, a =0, § =90°.
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The parallel component of the electric field at any non-axial point is given by,

9 = Il(l—g[cosﬂ — cosa]

— = IZ—Q[cos 90° — cos 0°]
r

5

If r

Negative sign shows that the direction of the field is opposite to the conventional positive
direction

The perpendicular component of the electric field is given by,

E = ll{l—g[sin 0° + sin 90°]

:EL:]Z—(‘:[O+1]

ke
r

=E

The net electric field is given by,

Enet = \/Ellz +EJ2.
= [Fu| =22
r

4. The electric field at the centre of a uniformly charged ring:

Consideraring ofradius Rand charge Qis uniformly distributed
along the length of a wire as shown in the figure.

Let us consider a small element of charge dq on the ring
and an electric field dE on the centre due to this charge. On
the contrary, to the small element of charge dq, there exists
another element of charge dq on the diametrically opposite
side. It creates an equal and opposite electric field at the
centre. Similarly, for every element, there will be a counter
element in the ring. Thus, the net electric field at the centre of
the ring is zero.

=
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ELECTRIC FIELD DUE TO CONTINUO
CHARGE: 3

=@ you already know Eﬂ at you will learn

« Uniformly distributed line charges « Electric field due to:
« Special cases for uniformly distributed 1. Uniformly charged ring
charges

2. Uniformly charged semicircular ring

3. Uniformly charged quarter ring

Yeoreos  eer
Uniformly Charged Ring

Electric field intensity at an axial point

Consider a circular ring of radius R. Charge Q is distributed uniformly along the circumference of
the ring. To find the net electric field due to the uniformly charged ring at an axial point P which
is at a distance r from the center of the ring, consider a small elemental charge dq on the ring. At
point P, the electric field due to small elemental charge dq will be dE as shown in the figure. This
field dE can be resolved into two components,
one along the axis of the ring and the other
one perpendicular to the axis of the ring. Thus,
the component of the electric field along the
x-axis is given by dE cos 6 and the component
of the electric field along the y-axis is given by
dE sin 6.

Let us consider another small elemental charge gy~ p dEcos6

dq on the ring which is diametrically opposite N x
to the small elemental charge dq considered '" dE
earlier. Thus, at point P, the electric field due dE sin 6

to small elemental charge dq will be dE and
this electric field dE can be resolved into two
components.The component along the x-axis
is given by dE cos 6 and the component along
the y-axis is given by dE sin 6.

We can observe that due to the diametrically opposite element charge, the components of the
electric field along the y-axis cancel each other. Because of the circular symmetry of the ring, the
net electric field along the y-axis is zero. Thus, the net electric field due to all the elemental charges
will be along the axis of the ring only (x-axis).



The small elemental electric field dE due to small elemental charge dq at point P is given by,
kd
XZ

The net electric field along the x-axis is given by,

E = .[dEcos 0

k dq
XZ

We know that for aring about an axial point, k, x, and @ is same for every elements of the ring.

dE =

:>EX=.[ cos &

k 0
Therefore, xcosy is constant.

XZ
k cos 6
=E, = 7 qu
=g =9SO )
b's

From the figure on the previous page, we get,

r r
cos @ =—=

X Jr*+FR
By substituting the value of cos @ in equation (i), we get,
kQr kQr
EX = —2— = 3
X“x X
kQr
3
(r2 + R2)2
Also, the electric field along y-axis is given by,
E =0

=F =

X

The net electric field is given by,

E.|=\E:+E
__ RO (i)
(r2 + R? )E
Now, the linear charge density of the ring is given by,

9

" 7R
= Q=2AnR

By substituting @ in equation (ii), we get,
27k ARr

3

(r2 + R? )E

net

E net

=

—

net
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Case 1: Whenr >>R Case 2: Whenr<<R

r’+R =r? r’ + R* ~ R?

The net electric field is given by,

. kQr
=IE . |=
ne - er
Enet :—3
kQr (Rz)E
= Enet :_3
r — k
_ kQ = Enet :g
= Enet =2 R
r

(rz)i i -

The ring acts as a point charge when r >> R.

To get the location of the maximum value of the net electric field of the ring,

o
dr
d kQr _0o
I (2 4 )
d r
kQ —| ————|=0
T ey

3
Letu=randv= (r2 + RZ)2 and we know that,

i(gj _vu'—uv'
dr\v V2

Now,
_du_dr_
dr dr
. dv d 303 =
V:E:E(FZ-FRZ)Z:E(T'Z-FRZ)Z(ZT')

v = ((r2 + R )sz = (r* + )

By substituting all the values, we get,

dE d r
—=kQ—| ———1|=0
dr dr (r* + RZ);
JE (r2 +R2);(1)—r3(r2 +R2);(2r)
u& 2 _
:>dr_kQ (r2+R2)3 =0
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The net electric field is given by,



3 1
= (P +R) -3r(r* +R)? =0 Iy
2 2\' (.2 2\ 2(..2 2\3 + o+
=>(r'+R)(r"+R )2 =3r"(r"+R")? + A +
(F+R) (4 B ) =3r(r + FY) i X
=r’+R* =3r" 'R +
+ — |R +
2 =2r? +i V2 +
=R =2r -l ¥, "
R N+ + M .
=>S>r=ft— +10 C + g
\/E ar — X
R + R [+
.. E willbe maximum whenr = i—z. In the figure, "'+ E +"'
+ +
M and N are these two points where the electric field +3 o +F

due to the ring is maximum.

By substituting the magnitude of r in equation (ii), we get,
R
kQ| = E A
_ (ﬁ j
- 3 =
2 2 E
(R X RZJ B,
2

ke[ )
557
22

2kQ e B

33R?
Uniformly Charged Semicircular R

Consider a semicircular ring of radius R. Charge Q is

uniformly distributed along the circumference of the 134
semicircular ring. To find the net electric field due to
the uniformly charged semicircular ring at its center, o +£q
let us consider a small elemental charge dq on the ++ +
ring that subtends an angle 8 with the x-axis and the +
angular width of the elemental charge dq is d6. At the
center, the electric field due to small elemental charge +
dq will be dE as shown in the figure. This field dE can _+ dE cos 6 0 \ >
be resolved into two components, the component of P X
the electric field along the x-axis is given by dE cos 6
and the component of the electric field along the dE vdEsin 0
y-axis is given by dE sin 6.

max

|E

\

U

| max

| max

Similarly, let's consider another elemental charge dq on the semicircular ring that resides at
symmetrically opposite side to the small elemental charge dq considered earlier. Thus, at point P,
the electric field due to the new small elemental charge dq will be dE and this electric field dE can
also be resolved into two components along the x and y axes as dE cos 0 and dE sin 0, respectively.
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Since for every elemental charge in the ring, there is a similar elemental charge in symmetrically
opposite side of the ring. Hence, the net electric field along the x-axis is zero. Thus, the net electric
field due to all the elemental charges of the semicircular ring will be along the y-axis only.

Let the small elemental charge of the semicircular ring be,

dg=Adx ..(i)
Here, dx is the small arc subtending angle dé.
dx=RdO

By substituting the value of dx in equation (i), we get,
dq=ARdO ...(ii)

Also, the linear charge density of the semicircular ring (4) is given by,

_ 9

7R
The small elemental electric field due to small elemental charge dq is given by,

RZ
kAR d6
R2
=dE = sz deo ( A= ij
7R 7R
The net electric field along the x-axis is given by,

= dE = (- dgq = AR d6)

JE =IdEc059:0
0
The net electric field along the y-axis is given by,

E, = [dE sin 6
0

:>Ey = szjsinGdH
R 0
kQ »
=2 — [cos 6’]0
— 8 = kgz [—cos 7T + COS O]
I
2kQ
:>Ey = —

The net electric field is given by,

7| |- 22 2% (._.ﬂ_ij

R

net | — -

7R* R
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Consider a quarter ring of radius R. Let us take a small charge

dq at an angle 0 from the x-axis. The angular width of the ry
elemental ring is dO. Due to the elemental charge dgq, there "+
will be a small electric field dE at the centre of the ring and t+,dq
this field dE can be resolved into components along the x Ves
and y axes as dE cos 6 and dE sin 6, respectively. de ++
+
Let the small elemental charge of the quarter ring be, R ++
dq=2dx ..(0) dE cos 6 |8 |
and, dx = R d6 P X
A= 2 dE 1dE sin 6
7R
The small electric field due to charge dgq is given by,
dE = chﬁq
=dE = k2Q ?0 ( dq = Qdé’j
7R V4
The net electric field along the x-axis i The net electric field along the y-axis
is given by, : is given by,
V4 V.4 | 4 T
2 E ! 2 E
E = j I s A - _[dE sin I d@ sin @
0 0 : 0 0
2kQ ! 2kQ
=SE, = — [sin 9]0 - =E, = — [-cos 49]
|
|
=F =2kQ sin 2= — sin 0 ' :Ey:Zkg[—cos£+cosO}
R 2 : 7R 2
: 2k
=E, = Zsz : = Ey - _QZ
7R | 7R

The net electric field is given by,

E,. =E,(-)+E,(-])

= By = 2or()+ =2(-])
. 2kQ (»y  2kQ [~
= E,. =_7Z'R2( )_ R? (])
So,
= - |2 - |2
E.|= +|E|
5 |- 22kQ _ 2ka
“l” zR* R
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B BYJU'S

ELECTROSTATICS

MOTION OF CHARGED PAR

Classes

gﬂ What you will learn

g@ What you already know

« Electric field due to a: « Electric field due to a sector ring
1. Uniformly charged ring « Motion of a charged particle in an external
2. Uniformly charged semicircular ring electric field

3. Uniformly charged quarter ring

Uniformly Charged Ring Sector

Electric field at the centre of a sector ring

Consider a sector of a ring of radius R and charge Q is distributed uniformly along the circumference
of the ring. The ring subtends an angle a at the centre P, and the y-axis divides the ring into two
halves. To find the net electric field by a sector of a uniformly charged ring at its centre P, let us
consider a small elemental charge dq of thickness dx at an angle 0 from the vertical. The angular
width of the small elemental charge is df8 and the electric field at point P due to the small elemental
charge dq is dE as shown in the figure. The components of the electric field along the x-axis and
y-axis are dE sin 6 and dE cos 6, respectively.

Similarly, consider another small elemental charge dq that is symmetrically opposite to the small
elemental charge considered earlier. Thus, at point P, the electric field due to the small elemental
charge dqis dE, and this electric field dE can be resolved

into two components as shown in the figure. Y

We can observe that due to the symmetrically opposite 1

charge element dq, the components of electric field ..0__. (L

along the x-axis of both the charges cancel each other. Q. i ..
Similarly, for every element, there is a symmetrically ®
opposite element. Thus, the net electric field due to all .. ..

the elemental charges is along the y-axis of the ring.
The linear charge density of the ring is given by,

A= Q _ i < = > X
"N L - Ra dE sin 6
The small charge is given by,
dq = Adx I
0 dE v dE
=dq = %dx dE cos 6
=dq= iR déo
Ra
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The small elemental electric field dE due to small elemental charge dq at point P is given by,
kd

RZ

_ kQRdo

LR

_kQdo

" LR

The component of the electric field along the x-axis is given by,

dE =

= dE

= dE

N | R

E, = [ dEsing=0
B
The component of the electric field along the y-axis is given by,

E =

y

dE cos@

N‘Q"'—;N\Q

a

2
=F = k—QICOSQdQ
Y LRj

=E = k—Q[sin 6]?,
Y LR -

=F —k—Q sin——smi
’ LR 2
E = 2k—Qsing
7 LR 2

The net electric field at the centre of the sector of theringis given by,
_2kQ . a 2kA . «

y|_ IR E:T nz ..... (1)

Equation (i) is the general relation for finding the electric field at the centre of an arc. Using this
result, we can find the net electric field at the centre of a quarter ring, semicircular ring, etc. by
substituting the proper value of a.

8

net

:|E

Case 2: Electric field at the centre of a
semicircular ring

Case 1: Electric field at the centre of a quarter
ring
For a quarter ring, a = 90°

The net electric field is given by,

For a semicircular ring, a = 180°
The net electric field is given by,

. 2kA .« = 2kA .«
net| =~ S or| = ———sin —
R R 2
E_|= 2ka sin 90° _ 2ka sin 45° E_|= 2ka sin 1807 _ 2kA sin 90°
R 2 R 2 R
S 2kA 1 2ka 5 o|_2kA 4 _2K2
net| R \/E - R net R R
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Find the electric field at the centre of the ring shown in
the figure (where A is the linear charge density).

The linear charge density of the upper ring is +A and that of the lower part is —A. To solve this kind
of a problem, let us divide the ring into two semicircular rings.

+A

For the upper half of the ring, the electric field is acting away from the ring along vertically downward

direction, and the magnitude of the electric field is given by,
E, = % [Since the ring is semicircular]

For the lower half of the ring, the electric field is also acting vertically downwards as the ring has
negative linear charge density, and the magnitude of the electric field is given by,

2kA
TR
The net electric field at point P is given by,
Bs| = [E.| £
. 2kA 2kA
SE | =—+t——
R R
= |E, a4
R

Thus, option (A) is the correct answer.
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Find the electric field at the centre of the ring shown in
the figure (where A is the linear charge density).

kA 4k 6kA
A) — B) —~ Q) — (D) Zero

For quadrant A, the electric field will be towards C (since the charge is positive in quadrant 4), and
the magnitude of the electric field is given by,

J2k
A= "R
For quadrant B, the electric field is towards quadrant D (since the charge is positive in quadrant B),
and the magnitude of the electric field is given by,

22k
B = R
For quadrant C, the electric field is towards C itself as it is negatively charged, and the magnitude
of the electric field is given by,

_ 22k2
R

For quadrant D, the electric field is towards D itself, and the magnitude of the electric field is given
by,

E

EC

N2ka
R

The net electric field along quadrant D is given by,

E

[+

1 32kA
= |E,|=

R

The net electric field along quadrant C is given by,
[+

1 32k
= |E,|= R
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The net electric field is given by,

|F? — JE? + E? + 2E,E, cos 90°

P

L [5|- J[gmjg(gm]z ) ﬁ[gmj

R R R

6k2
R

Thus, option (C) is the correct answer. I

:>E,,|=

Find the electric field due to the

combination at point P (where A is the
linear charge density).

(A) —— (B) —— € — (D) Zero

From the figure, it is clear that the given system is a combination of two semi-infinite wires and a
semicircular ring. First, let us take the two semi-infinite wires. Due to wire A4, the electric field at
point P will have two components, one parallel to the rod and the other one perpendicular to the
rod. Recall that the angle subtended by a semi infinite wire at the field point is given by,

a=0°and g =90°
The parallel component is given by,

kQ kQ kA
E =—|cosf—-cosa|=——=——
I Lr[ p ] Lr -
The perpendicular component is given by,
kQ; . . kQ kA
E =—|sina +sin f|=—=—
- L"[ ] Lr r

The net electric field is given by,

|E"A| = JE? +Ei=@
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Similarly, due to wire C, the net electric field is given by,

1

» 4 :

|- _ Y2k .

C |

r 1

Asthe net electric fields due to both the rods are in the opposite B E :
directions, they cancel each other. The net electric field in this a P E,

configuration is only due to the semicircular ring. |

1

The net electric field due to the semicircular ring at its centre

= 2kA
is given by, |EB| = R and it is directed away from the ring.

This is the net electric field due to the whole configuration.
Thus, option (B) is the correct answer.

Two parallel infinite line charges with linear charge
densities +A and -A are placed at a distance of 2R

in free space. What is the electric field midway
between the two line charges?

D TR

A A 22

B C D
7R (B) 27 R (©) zero (D) 2R

+00 +00
[ souion MR
A A

The electric field due to both the infinite line charges is
along the same direction as they are oppositely charged.
The electric field due to wire having line charge density
+A is given by,

2kA
“"TR
The electric field due to wire having line charge density
-\ is given by,

2kA
"R

(A)

+A A | =

E

A
\ 4
T
I

A
\

E 2R ©

'
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The net electric field is given by,

Enet :E+/‘L +E—/1 :ﬂ
=I|E |= 44 et
4re R 4re,
= |E,|= =2
g, R

Thus, option (A) is the correct answer.

Motion of a Charged Particle

Consider a uniform electric field E in
space (gravity-free space). Consider 2
that two charges (+q and -q) are placed
in the electric field. The positively
charged particle (+q) will experience
an electrostatic force in the direction
of the electric field, and the negatively
charged particle (-q) will experience

\

\

+q ®—> F=gE

Y

Y

an electrostatic force opposite to the F=qF <——=—
direction of the electric field as shown >
in the figure.
The magnitude of the electrostatic force >
is, F=qE.
Iv
y =
@ ® ® ® ® ® ® ® 1%
1 /\6
/ v,
L= y
/
q’ m : /_/
, "
Y \/ \/ \/ \/ \/ \ / \ / \
< " >

To create a uniform electric field, let us take two oppositely charged plates of length x and place
them parallelly with a small separation between them. One plate is positively charged and the
other is negatively charged.
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A constant electric field is generated in the region between the two plates and it is directed from
the positively charged plate to the negatively charged plate. Now, let us consider that a charged
particle of mass m having charge —q enters perpendicularly into the uniform electric field with
a velocity v_as shown. As we know, when a charged particle moves through an electric field,
it experiences an electrostatic force. Thus, charge —q experiences an electrostatic force in the
upward direction (Since unlike charges attract and like charges repel). Therefore, charge -q gets
deviated from its original path and let at a certain instant, the deviation is y. Let us assume that the
velocity of the particle just before leaving the region of the uniform electric field is v.

Along the x-axis, the force acting on the particle is 0. Hence, the acceleration along the x-axis is 0.
F=0anda =0

Force along the y-axis is, Fy =qE.

J3
The acceleration along the y-axis is, a, = q_.
m
. . qE
Therefore, the net acceleration of the particle is givenby, a,,, =a, = —.
m

Along the x-axis,
u =v,
S, =x

Hence, by applying the second equation of motion in 1D, we get,

1
S, =ut+=at’
2

=>x=v;t
X .
se=X ()

o

Where, tis the time taken by the charge to travel through the electric field.
Along the y-axis,

u,=0

S, =Yy

Again, by applying the second equation of motion in 1D, we get,

1,
.S'y =uyt +ant

_149E,
—rs 2 m ‘
1¢E x* o
Sy=or [ From equation (i) ]

o

This is the net deviation of the charged particle after passing through the electric field.

Velocity of the charged particle

The velocity of the particle along the x-axis is given by,
v.=u+at

SV =V,

The velocity of the particle along the y-axis is given by,
v,=u +at
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E x
s, X
m Vo A Vy
The net velocity of the particle can be written as,
V., =VI+ v, J v
= ~  qEx +
=V, =Vi+—]
myv,
The angle subtended by the net velocity v is given by, 0 v
(qu] g
1% my, Ex
tan 0 = L = -4 :
v, v, mv;

:.47@ An electron falls from rest through a vertical distance h in a uniform and vertically upward
directed electric field E. The direction of the electric field is now reversed, keeping its

magnitude the same. A proton is allowed to fall from rest in it through the same vertical
distance h. Find the time of fall of the electron in comparison to the time of fall of the proton.

(A) Smaller (B) 5times greater (C) 10 times greater (D) Equal

e v

In the first case, the electron falls a distance of h and the initial velocity of the electron is 0.

Force acting on the electron is given by, F = qE.
i
The acceleration of the particle is given by, a = q_.
m

€]

The time taken by the electron to fall is given by,

h=ut +latf
2

2h
=>t,=,—
a
2hm,
=t =,—
qE

Where, t_is the time taken by the electron to travel h distance.
For the second case, the proton travels a distance of h under the influence of the electric field. The
time taken by the proton to travel distance h is given by,

. 2hmp

p CIE

We know that,
mp > me
Time of fall of electron (t)) < Time of fall of the proton (tp)

Thus, option (A) is the correct answer.
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PHYSIC

ELECTROST/

ELECTRICFIELD LINE
PROPERT

OBYJU's

Classes

f
Eé,) What you already know What you will learn
« Electric field intensity at the centre of ring « Electric field lines and their representation
sector

« Electric dipole
« Charged particle in an electric field
and its parameters like acceleration,
displacement, velocity, and angle of

- Electric field at an axial point on a line
joining a dipole

deflection
*’ARDS - .
Electric Field Lines
Michael Faraday first developed the idea of E

visualising electric field lines. They are also
known as electric lines of force (ELOF), and they
are imaginary lines.

For an electric charge ¢, the electric field at a

distance ris given by,
kq

E=—
r2

For a positive charge, the electric field lines will
be radially outwards (just like a bulb emits light).
Whereas, for a negative charge, the electric field
lines will be radially inwards.

Radially outwards Radially inwards
The following diagram shows the intensity of
electric field lines of a positive charge; as the +q‘ E| _ E, _ E, _
distance increases, the intensity of the electric
field decreases (In the diagram the length of the E >E,>E,

arrow suggests the intensity of the field).

Properties of electric field lines

« Electric lines of forces originate at a positive charge and terminate at a negative charge.
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« Iftwo charges are close to each other, then the electric
field lines will be as shown in the figure.

« For an isolated charge, the electric field lines terminate at infinity ().

« Atangent at any point on the electric line of force gives the direction of the net electric field. It is
shown in the following diagram (Fig. 1) more precisely.
So, if we take tangents at various points along an electric field line, they denote the direction of
the electric field at each of those points, as shown in the figure (Fig. 2).

Fig. 1 Fig. 2

» Electric field lines do not form a closed loop. The
reason is that the points of origination and termination
should be different, as an electric field line originates
from a positive charge and ends at a negative charge.

« For a system of two charges having equal magnitude
and opposite nature, electric field lines are always
symmetric about the line joining the two charges.

» Electric field lines are always perpendicular to
the surface of the charged body.

« For anindividual charge, the number of electric
lines of force is an independent choice. It means
that for a given magnitude of the charge, the
electric lines of forces can vary.

« The magnitude of the charge is directly
proportional to the number of electric lines of
force originating or terminating at the charge.
It means that if for a ‘+q" charge, we take four
lines, then for a +2q’ charge, the lines of forces
should be double, i.e., eight.
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« No two electric field lines intersect, because the electric field is a
vector quantity and it cannot have two different directions at the
same point.

3

« The electric lines of force for two positive charges
are pictorially depicted in the figure,

« The strength of the electric field (or electric
field intensity) is represented as electric
lines of force per unit area. For the given
diagram, four equal surfaces A, B, C and D
are considered, and the electric lines of force
passing through them are also shown in the
figure. The descending order of the number
of electric lines of force passing through the
surfaces (line density) is A > B > C > D. Thus,
the the descending order of the electric field
intensity is E, > E, > E_ > E,. In other words,
denser the electric lines of force, higher is
the electric field intensity. Similarly, rarer the
electric lines of force, lesser is the electric

field intensity. y

« The electric lines of force deviate from a

positive charge and converge towards a \
negative charge.

Y Y

Y Y

/

Y VYY
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Uniform and Non-Uniform Electric Field

For a uniform electric field, all the electric field lines are equi-spaced and parallel to each other.
This means that the intensity of the electric field at every point in the region is the same. While in
a non-uniform electric field, the electric field lines are not equally spaced, i.e., they are converging
or diverging, which means that the intensity of the electric field at each point in the region is not
the same.

> > O =
» » EC - EC
i@ = -»—Gz ;
_ EBK\ /@/
> N\ EB
‘EA‘ - ‘EB‘ - |EC‘ |EA| < ‘EB‘ < ‘EC|
Uniform Non-Uniform

Far and Near Fields'

As we know that the number of electric field lines emerges or terminates from a point charge
is directly proportional to the magnitude of the charge, i.e., for the given system of +2qg and —-q
charges, if there are eight electric lines of forces emerging from +2q charge, then, four electric
lines of force terminate at the —q charge. For a near point of view, the electric field lines for the
combination of +2q and -q charges look as given in the figure.

. ~
. N
/, \

’ \
1 \
1 1
\ 1

[y ’

\ ’
S L

Near point of V|ew Far point of view

For a far point of view, the charges +2q and -q look like a point charge and its magnitude is the sum
of the two charges, i.e., from the +q charge, four electric field lines should emerge and they look
as shown in the figure.
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Electrostatic Shi

Electric field lines of force never enter inside a conductor, Prm——— g
i.e., when a conductoris placed in a uniform electric field, the
free charges in the conductor move to the outer surface (net
charge inside the conductor is zero), which ensures that the
e e . . electrlc
net electric field inside the conductor is zero. Whereas in an field
1 ie

> Y

insulator, the charges cannot move freely. If the net charge

density inside an insulator is non-zero, then the net electric

field inside the insulator is non-zero. Thus, the electric field

lines do exist inside an insulator. The given diagram explains how electrostatic shielding works in a
conductor, i.e., how the charges inside a conductor oppose the external electric field.

The figure shows the electric lines of force emerging from
a charged body. If the electric fields at points A and B are

E"A and Eﬂ, respectively, and the separation between A
and B is r, then which of the following is correct?

w [E,| =22 ® |E| -2 ©) |Es| > |E.| EAR A

Let P be the charged body of charge g from which the electric field lines are emerging. Then,

k
‘EA‘—G—? and |E,|= a+qr)2
Therefore @: (a+r)2
EB‘ a*
E| > [Es|

Thus, option (D) is the correct answer.
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ﬁ@@ If electric field is uniform, then the electric lines of force are:

(A) Divergent (B) Convergent (C) Circular (D) Parallel

For a uniform electric field, the lines of forces are always equi-spaced and parallel to each other.

Thus, option (D) is the correct answer.

ﬁg] If the number of electric lines of force emerging from the charge +4q are 28, then find out the

number of electric lines of force emerging from the charge +q.

(A) 4 (B) 7 uc:) 14 (D) 28

We know that the number of electric lines of force is proportional to the magnitude of the charge

LG x
q, X,
_,4q_28
q X,

Therefore, x, =7

Thus, option (B) is the correct answer.

42
9

=

The given figure gives electric lines of force due to

charges?

two charges, q, and gq,. What are the signs of the two 9’ q, qz.t

(A) q,=+ve,q,=-ve (B) q,=-ve, q, = +ve (C) q,=-ve,q,=-ve (D) q,= +ve, q, = +ve
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From the given figure, we can see the direction of the electric field lines that are converging at both
the charges. Therefore, it is clear that both the charges carry a negative charge.

Thus, option (C) is the correct answer.

4[?]
U

Determine the relation between the magnitude
of the electric field at points A4, B, and C.

WIE| =B = [E] @ [E|=[E|=[E]  @[E[=|E[#[E] @ ]| [E|=|E]

We know that the closer the electric field lines (line density is high), the stronger will be the electric
field. At points A and C, the electric field strength is equal in magnitude, while at point B, the field
lines are far from each other, i.e., the line density at point B is less.

Thus, option (C) is the correct answer.

Electric Dipole

An electric dipole is a system consisting of two point
charges that are equal in magnitude but opposite in
nature, separated by an infinitesimally small distance.

The centre of a dipole is considered to be the origin for
all the measurements. Both the charges are at equal
distance ‘I' from the centre.

The dipole moment p is a vector and it is given by,

p= qZT

The direction of the dipole moment vector will be from
-q to +q. Thus, we define the dipole moment as the
magnitude of the charge times the separation between

the two charges. The Sl unit of the dipole moment
vector is Cm.
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\9)

Find the magnitude of the net dipole moment for the given
system.

(A) \2qa (B) qa (C) 2qa (D) V3qa

Suppose that the charge -2q is made up of two charges of magnitude -q as shown in the figure.
Therefore, there will be two dipoles: one made up with —q at B and q at A4, and the other made up
with —q at B and q at C.

For the combination of two dipoles, the net dipole moment is
given by,

—12 —12
=Bl +|

I_jnet = \/E‘l_ﬂ = \/Eqa

Thus, option (A) is the correct answer.

*ARDS ]

Consider that an electric dipole is placed in such a way that its midpoint is at the origin as shown
in the figure. The length of the dipole is 21, and the magnitude of the charges is q. Therefore, the
magnitude of the dipole moment is, p = 2gl and the direction of the dipole moment vector is along
the positive x-axis (from negative charge to positive charge). Suppose that we want to find the
electric field at point S, which is x distance away from the origin.

pnet

=

1 L 2
: E E E
D DT ‘- ----- ? p P - - - -‘- ------------ -41—@ﬂ>—>2
Axial line q- I T i >q S
< " >
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Flo—X_ |5|-_Nd
' (x+l)2 ? (x—l)2
E,|=[E,|-E,
~IF |- kq  kq g 2x1 + 2x1
“ (x—l)2 (x+l)2 (XZ_IZ)2
Therefore, |E,, =2k(q21))§= 2k‘p|x2 [Since,f): qzﬂ
(Xz_lz) (Xz_lz)
For x>> 1,
2kpx 2k
Eaw = xl: :x—3p

In vector notation,
= 2kp
E =2%

ax 3
X
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Classes

ELECTRIC FIELD D

g@ What you already know What you will learn
« Electric field lines and their « Electric field at an equatorial point of a
representation dipole
« Electric dipole « Electric field at any point due to a
. Electric field at an axial point on a line dipole
joining a dipole - Dipole in a uniform electric field

Electric Field at an Equatorial point of a Dipole

An equatorial line is the perpendicular bisector of y

the axial line joining the charges of a dipole. Any E 4 Equatorial line
point on the equatorial line is known as an equatorial
point.

Consider an equatorial point s which is at distance
x from the axis of the dipole. Let the length of the E
dipole be 2L e
The electric field (E,) due to charge -gq at point /
s is towards itself and the electric field (E,) due to 1 J
charge +q at point s is away from itself as shown in .'\9
the figure. Since the point s is on the equatorial line, “‘
let us assume the distance of point s from both the ,"q: i
charges to be r. ’

By using Pythagoras’s theorem on any of the right-angled triangles formed, we get the following:

r=yx*+F ..(3)

Since the charges of the dipole are same in magnitude and equidistant from the equatorial point,
the magnitude of the electric field of both the charges will also be the same.

Therefore,
-l e

2E cos 6

»
>

\

Let us divide the electric field vectors into their components along the x-axis and y-axis.
The net electric field along the x-axis is given by,

|E’X|:Ecost9+Ecost9=2Ecosa9

Along the y-axis, the components of the electric field cancel each other. Therefore,
|Ey| =(
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The net electric field due to the dipole on the equatorial point is given as follows:
E,|=|E|=2Ecoso i)

The magnitude of the electric field due to each charge of dipole at the equatorial point is given by,
= kq
El=—
Bl=

By substituting the value of E in equation (ii), we get,

E,|= Zk—? cos @
r
= E',_,q =2k—?><i ( cosezij
r’or r
~ k|p
= |E,, =% ( |f)|=2ql) ...... (i)

By substituting the value of r in equation (iii ), we get,
__ Kl

= 3

(xz + I )E

—

= |E

eq

If x>>1I:

For any equatorial point which is far away from dipole, [ becomes much smaller than x, and hence,
[ can be neglected. Therefore, the equation of the net electric field changes, which is given as
follows:

klp| _ k|p

(erf X

In this case, the dipole moment is in the opposite direction of the net electric field. So, the equation
of the electric field at a far equatorial point can be written as follows:

€q

_—kp

eq x3

E

Electric Field at Any General Point in Space Due to a Dipole

Consider point S to be at a distance of x from the
centre of the dipole, which subtends an angle 6 with
the dipole axis atthe centre ofthe dipole. In this case,
we can observe that point S is neither an equatorial
point nor an axial point of the dipole. But we know
the value of the electric field at an axial point and
an equatorial point of a dipole. Now, we resolve the
dipole moment vector into two components, one is
along the line joining the centre of the dipole and
field point S and the other one is perpendicular to
the line joining the centre of the dipole and the field
point S.
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Since the dipole moment vector is resolved into its components, the components can be taken as
two independent dipole moments, p cos 8 and p sin 6, respectively. Also, the field point S is an axial
point for the dipole moment p cos 8 and an equatorial point for the dipole moment p sin 6.
Therefore, there are two electric fields acting on point S: one is the axial field and the other one is
the equatorial field.

The electric field due to p cos 6 at an axial point is given by,

Bl 2kp cos 6

X3

ax

The electric field due to p sin 8 at an equatorial point is given by,
_ kpsin 0

X3

eq

The net electric field is given by,

2 2

- —

Enet = Eax + Eeq
2kp cos 6’ kp sin @\’
:Enet:\/( p3 j+(p3 j
X X

=E,, =k—l3)\/4coszt9+sin29

X
=IE., =k—€\/1+3c0526’ ( c0520+sin29=1)

X

The angle subtended by the net electric field is given by,

RS

eq

tan o =

oy

ax

sin @

= tan a =
2 cos @

tan 0
= tan a =

Dipole in a Uniform Electric Field

Consider a dipole placed in a uniform electric
field. The dipole moment subtends an angle of

Y
4

with the electric field. The charges of the dipole . _‘ qE
experience a force equal in magnitude and _ i / _
opposite in direction due to the electric field as - Isin 6} g
shown in the diagram. i E

¥ N VA E |

Although the net force on the dipole is zero, since

there are two equal and opposite forces with [ E
different lines of action, they form a couple. The > [ sin 6

\

couple generates a torque about the centre (O) o~ .
of the dipole, which gives the tendency to rotate qE k
in the electric field until the dipole comes to an > >

equilibrium state.
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The net torque acting on the dipole is given by,
7 |=

net

B+ 7|
The torque due to charge +q is given by,
=qEl sin 6

T
+q
The torque due to charge —q is given by,

|f_q| =qEl sin 6

Therefore, the net torque acting is given by,

T..| = 2qElsin 0
Tooe| = |[3||E'|sin 0
fnet = l_j X E

Maximum torque acting on a dipole

For to be maximum,

fnet
|13||E"|sin 6 needs to be maximum.
. sinfd=1

= 0=90°

Therefore,

Zoeloe = |BE]

net

max

.

Minimum torque acting on the dipole

For

7T,..| 1o be minimum,

|ﬁ||177|sin 0 needs to be minimum.
. sind=0

= ¢ =0°and 180°

Therefore,

_
7 .
min

net

Y

©

»

G

»
>

Y

Y

"B —90°
o]

Y

',.B
Y

\

P B _|90°

o v

A
Y

. p

& N .

Y

p
" 0 =180°

Y

@

> >

The magnitude of torque is the maximum
when the direction of the dipole moment is
perpendicular to the direction of the electric
field.

The magnitude of torque is minimum (i.e., zero)

when the direction of the dipole moment is
opposite to or along the electric field.

For a dipole in a uniform electric field, the value of the torque is, T,

= pE sin 6.

t

Hence, this expression of the torque can only be achieved if we use the cross product of p and E.

Therefore, the correct equation for finding the torque is given by,

T=pxE

Thus, option (B) is the correct answer.
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'Iysis of the Equilibrium Position

When an electric dipole is placed in a uniform electric field, the net force on the dipole is zero and
the net torque acting on the dipole can be zero or minimum at only two positions, i.e., 0°and 180°.
Hence, it can be said that at 8 = 0° and 6 = 180°, the dipole is in equilibrium.

.Stable equilibrium

When the dipole moment makes an angle of 0° with the electric field, the net torque (t, , = pE sin 6)
on the dipole becomes zero (t, . = 0) and the net force on the dipole is already zero. Therefore, at
0 = 0° the dipole is in equilibrium.

On slightly rotating the dipole from its position, there will be equal and opposite forces with different
lines of action on the charges of the dipole, which will generate a torque about the centre (0) of the
dipole. This torque will make sure that the dipole moment vector gets aligned along the direction
of E and comes back to its initial state. Thus, at 8 = 0°, the dipole will be in a stable equilibrium.

» »
> >

qE ‘ /;\ 5 ‘ qE

0

\

Y

\
Y

~E

\
\

Stable equilibrium

.Unstable equilibrium

When the dipole moment makes an angle of 180° with the electric field, the net torque (T _, = pE sin 6)
on the dipole becomes zero (t, . = 0) and the net force on the dipole is already zero. Therefore, at
60 = 180°, the dipole is in equilibrium.

On slight rotation of the dipole from this position, there will be equal and opposite forces with
different lines of action on the charges of the dipole, which will generate a torque about the centre
(0) of the dipole. This torque will try to rotate the dipole even further away. It will not return to its
initial state. Thus, at 8 = 180°, the dipole will be in an unstable equilibrium.

»
> o

Y

Y

Y

qE & R ) 9E
p p

0

~E

Y
Y

Unstable equilibrium

ﬁg_] An electric dipole is placed at an angle of 30° with an electric field intensity of 2 x 10°

experiences a torque equal to 4 Nm. Find the charge on the dipole if its length is 2 cm.

(A) 7 mC (B)8 mC (C)5mC (D)2 mC
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Given,

Angle subtended by the dipole, 8 = 30°

Electric field intensity, |E| —2x10° NC*

Torque experienced by the dipole, |f| =4 Nm
Length of the dipole, 2I=2 cm

The torque experienced by the dipole is given by,
7| = |ﬁ||l§'|sin 0

= 7| = 2q1|E|sin 0

N
21|E‘| sin @
g 4
1= 5 10° x 0.5%0.02
=q=2mC

Thus, option (D) is the correct answer.

A molecule having a dipole moment p and moment
of inertia I about an axis passing through its centre is
suddenly subjected to a uniform electric field E at a right
angle to the direction of the molecule's dipole moment.
Find the magnitude of the initial angular acceleration of

the molecule.

Also, torque can be written as,
7| =1la| (i)

Comparing equations (i) and (ii ), we get,

Given,
Angle subtended by the dipole, 8 =90°

Torque is given by, Ila|= |f7||E'|
7| = |[5||E"|sin 0 # |13||E"|
= [7| =|p|E]sin 90° 2 T

= 7] = |13||E'| (1) Thus, option (A) is the correct answer.
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PHYSICS

ELECTROSTATICS

INTRODUCTION TO ELECTRIC FLUX

' JeALVES
Classes

f

- Electric field at an equatorial point of a « Electric flux

dipole + Measurement of electric flux
- Electric field at any point due to a dipole « Electric flux through a cube and a cylinder
« Dipole in a uniform electric field due to a uniform electric field

« Electric flux in a non-uniform electric field
« Electric flux through a sphere

Electric Flux (¢)

The number of the electric field lines that intersect a given area normally is known as the electric
flux. It is denoted by ¢.

Area vector

1. Areais generally considered as a scalar quantity; however, for many cases, the area of a surface
is taken as a vector.

2. The direction of the area vector is taken in the direction normal to the surface.

As 2D objects do not enclose a volume, their A=A
surfaces are known as open surfaces, ( E.g., plane '
surfaces) . Consider a disc having two surfaces. For
open surfaces, the unit normal or area vector can
be drawn in either direction as shown in the figure.

Surface 1

Surface 2
As 3D objects enclose a volume, their surfaces are

known as closed surfaces, (E.g., spheres) . Consider
a part of a sphere as shown in the figure. For closed
surfaces, the unit normal or area vector is drawn
radially outward and normal to the surface.

The value of the area is given by,
dS=dSF
S=Jds
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Electric flux is measured in terms of electric field strength.
The electric field strength at a particular point is defined
as the electric flux passing through a unit normal area
at that point.

In a uniform electric field, let us consider that a plane
surface is placed normally to the field. The area vector is
also along the direction of the electric field as shown in
the figure.

A A%

YYYVYVYYYVYYDy

If ¢ is the flux passing through the surface area S, then
the electric field intensity in terms of electric flux at any
point in the area is given by,

g ?

S

Now, if the plane surface is placed in the uniform electric field at some angle 8 with the electric
field, then the area vector also subtends an angle 8 with the electric field as shown in the diagram.
By resolving the area into its two components, we get S cos 6 and S sin 6.

Area

S cos @O

YYVYVIYyYyy &

< ol

S sin 6

The component of the area S sin 6 is parallel to the electric field. Therefore, no electric field lines
pass through it normally. Hence, the electric flux through the surface S sin 6 is zero. The component
of the area S cos 60 is perpendicular to the electric field. Therefore, the electric field lines pass
through it normally. Thus, the flux through the surface S cos 6 is non-zero.

The electric field intensity in terms of electric flux at any point in the area is given by,

E =
Scosd
= ¢=E.Scosf

—=¢=E.S

Where 6 is the angle between the area and the electric field.

Therefore, electric flux is the dot product of the electric field and the area vector and hence, is a
scalar quantity.
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Consider a 3D object placed in a uniform electric field. . Closed surface
We know that the surface of a 3D object is considered
as a closed surface and the area vector is taken along
the radially outward normal as shown in the figure. Let
us consider that there are two surfaces for the given
closed surface, and the electric field lines are entering
into the surface S, and coming out from the surface S..
The area vector of surface 1, §,, subtends an angle 6
with the electric field. The electric flux through surface 1
is given by,

¢ =E.S cos @

YVY

As @ is an acute angle, cos 8 = Positive
. ¢, = Positive

Therefore, when the electric field lines are coming out from a 3D object or a closed surface, it is
considered as positive flux.

Now, for surface 2, the electric field lines enter into the closed surface and the area vector §2
subtends an angle m — 0 with the electric field as shown in the figure. The electric flux through
surface 2 is given by,

¢, =E.S, cos (7 - 0)
As 7 — @ is an obtuse angle, cos & = Negative
. ¢, = Negative

Therefore, when the electric field lines enter into a 3D object or a closed surface, it is considered
as negative flux.

Let us find the area vector for the following surfaces:

1. A plane surface is placed in the xy-plane. For this plane
surface, the area vector will be either along k or —k as
shown in the figure.
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2. A plane surface is placed in the yz-plane. For this
plane surface, the area vector will be either along i or
—I as shown in the figure.

3. Aplane surfaceis placed in the xz-plane. For this plane
surface, the area vector will be either along j or —j as
shown in the figure.

4. Adiscis placed in the xz-plane. For this plane surface,
the area vector will be either along j or —j as shown
in the figure.

© 2020, BYJU'S. All rights reserved
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A square surface of side L (m) is placed in a uniform electric
field E (volt m™) acting along the same plane at an angle 6
with the horizontal side of the square. Find the electric flux
linked to the surface in volt m.

(A) EL? (B) EL cos 6 (C) EL*cos 6 (D) Zero

In this case, let us consider the square surface to be in the xy-plane.
So, the area vector § is along the z-axis. It is also given that the
electric field is acting along the xy-plane only. Thus, the area vector
and the electric field are perpendicular to each other.

The flux through the square surface is given by,
¢ =E.Scos 90°

- c0s90°=0 X

. $=0

Thus, option (D) is the correct answer.

mmary sheet

For a 3D object or a closed surface
1. Only the outward normal is considered as an area vector.

2. The flux entering the surface is taken as negative and the flux leaving the surface is taken
as positive.

3. If a 3D object or a closed object is placed in a uniform electric field, the net flux through the
closed object will be zero, given that no net charge is enclosed by it. In other words, if a
closed object does not enclose any charge, then the net electric flux through the closed
object will be zero.
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Electric Flux through a Cube Due to a Uniform Electric Field

Consider that a cube of side a is placed in a uniform
electric field. The area of all the surfaces are named
Al, AZ, A3, A4, As, and A6 as shown in the figure. (A6 is
the surface parallel to A)

The electric flux through surface area A, is given by,
¢, = E.A, cos 180°

=~

= ¢, = Ea’(-1) = - Ed®

by =

The electric flux through surface area 4, is given by,

¢, = E.A, cos 0°

¢A5 = ¢A6

Other than A1 and AZ, for all the other surfaces, the angle between the electric field and the area
vector is 90°. So, the flux through surface areas A3, A4, As, and A6 is zero.
Thus, the net flux is given by,

Pt =P+ P, T DD, T D D
=—FEa*+Ea*+0+0+0+0
=0
Therefore, the net flux through the cube is zero until any charge is placed inside the cube.

= ¢, = Ea’(1) = Ea®

Electric Flux through a Cylinder Due to a Uniform Electric Field

Consider that a cylinder with a cross-sectional area
of A is placed in a uniform electric field as shown in A
the figure.

The electric flux through surface A, is given by,

¢, = E.A, cos 180°

= ¢ =EA(-1)=-EA

The electric flux through surface 4, is given by,

¢, = E.A, cos 0°

W@ =

\

SRAAREA
5

= ¢, =EA(1) = EA

For the curved surface A,, the angle between the electric field and the area vector is 90°. So, the
flux through surface area A, is zero.

$,=0
The net electric flux is given by,

¢, =, tP,+¢, | Therefore, the net flux through the cylinder is zero until and unless there
=—Ea+Ea+0 , Iisacharge enclosed in it

1

1

=0
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What is the total electric flux passing through the
cube in the given situation?

(A) E,a° (B) —E,a* (C) 2E,a* (D) Zero

Given,

The electric field, E = E,xi

The cube has six faces. They are named A, 4,, 4,, A, A, and A_ as shown in the figure.
The electric flux through surface area A, is given by,

¢ =E.A

= ¢, = EA cos 0

»
>

= ¢, = EA, cos 180°
= ¢, = —E,xd’ ( E=Ex,A = az)

® (Since x = a at the location of 4))

= ¢1 = _an
The electric flux through surface area A, is given by,

¢, = EA, cos 0°

V™

= ¢, = onaz('.' E=Ex,A = az)
= ¢, = E,(2a)a’ (- x = 2a)

= ¢, = 2E,a’

Other than A, and A,, for all the other surfaces, the angle between the electric field and the area

vector is 90°. So, the flux through surface areas 4,, 4,, A;, and A, is zero.

So, the net electric flux is given by,

Pt =P TP, TPt DT O F D
=-Ea@*+2Ea*+0+0+0+0
=Ea

Thus, option (A) is the correct answer.
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Consider a 2D surface M placed in a non-uniform electric field. To find the net flux passing through
surface M, let us consider an elemental area on the given surface and the area vector of that

element dS that subtends an angle 6 with the electric field. Let the electric flux passing through the
elemental area be d¢.

The small elemental flux can be written as,
d¢ =E.dS

Total flux through the surface M is given by,
¢=[E.dS

= ¢ =jEdScos 0

’{JEET ] I
Electric Flux Through a Sphere

Let us consider that a small positive charge +q is placed at the centre of a sphere of radius R. To
find the net flux passing through the sphere, let us consider an elemental area on the concerned
sphere, and the area vector of the element dA is directed radially outward to the surface. Also, the
electric field due to the small charge +q present inside the sphere is directed radially outward to
the surface of the sphere.

The angle between the area vector and the electric field .. 0
1If‘hoe élemental flux passing through dA is given by, E R
d¢=E.dA = EdAcos 0 d,zl,E - |
d¢ = EdA !

The total flux through the sphere is given by,
Bonere = [P = [EdA ...(i)
The value of electric field at a distance R from the charge is given by,

__1 q
4re, R

By substituting the value of E in equation (i), we get,

1 4 ' 1
= —dA ! _ a 2 (.. — 47R?
Dephere I 47z, R | = Pohore = iz, B x 4R ( Surface area of sphere, A =4zR )
[}
1 ¢ !
= Psphere :4—()?]. dd | sphere -4
1

0
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PHYSICS

ELECTROSTATICS

GAUSS’S LAW

OBYJU'S
Classes

g@ What you already know

« Electric flux « Electric flux in a non-uniform electric field
« Measurement of electric flux « Electric flux through a sphere

« Electric flux through a cube and a cylinder
due to a uniform electric field

» Electric flux through the base of a cone + Gauss’s law
« Electric flux through a closed surface

Yeeer

Let us consider a charge +q placed on the vertex of a cone of radius R and height x. The charge
has its own electric field directed outwards. As we can see, the base of the cone is a disc, and a
disc is a combination of infinite coaxial thin rings. To calculate the electric flux through the base of
the cone, first divide the surface into small elementary areas, dA. Let us consider an element of the
disc which is nothing but a ring of radius r and thickness dr at the base of the cone. The area of the
elemental ring is given by,

|d;1| =2zxr dr

-
-
- -
- -
- -
- =

-2 -
T -
25

The electric field on the ring subtends an angle a with the area vector and the most outward electric
field lines intercepting the base of the cone or disc subtend an angle 26 at the vertex of the cone.
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The magnitude of the electric field on the small element of the ring at distance x from the charge
+q is given by,

. 1

] ;

4re, X* +r?

The electric flux through the small element of the ring is given by,
dg¢=E.dA

=dp=EdAcosa ..(i)

In AABC,

X
Jx2+r?

By substituting £ and cos « in equation (i), we get,

CoS o =

d¢ =E dA cos a
s dp=——x— 1 _x27rdrx
drne, X“+r X2 + r?
qx rdr
=d¢= X
9 2e =

© (xz + rz)2

To get the net flux through the base of the cone or disc, we have to integrate d¢ fromr=0tor=R.

¢ R gx rdr N
dp =[P T _ax 2y
jo .[0 2¢, (x2+r2)§ ¢ ZSO‘L t"at
_ax r_rdr - ax[ 1]
:>¢_250 L 2 (1) :>¢_250 tl
(x*+r?)
Let x* +r* =t —g=T]1- X J
2¢, R* + x*

1

1

l

By partially differentiating we get, :
= 2rdr=2tdt : :>¢=i(1—cosé?) ['.‘COS@=—X J

=>rdr=tdt :

1

By substituting the value in equation (i), we get,

:¢:§—ijm tdt3

&, (tz)g

_qx @R tdt
:>¢_280‘L t’
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Electric Flux through a Closed Surface

Consider a sphere (3D or closed object) placed near a point charge +q. The electric flux from the
point charge passes through the closed object.

We can observe that the flux entering the closed object is the same as the flux leaving the closed
object. In other words, if a closed object does not enclose any charge, then the net electric flux
through the closed object is zero.

So, the net flux is given by,

Pree = Pin * o = 0

The net flux, in this case, is zero.

g .
(=

1
Gauss’s law states that net flux through a closed surface is — times the net charge enclosed by

80
the surface.
This law gives the following:

1. It gives the analysis of electric flux through
a closed surface and its relation with the
enclosed charge.

2. The total electric flux associated with a closed DQonciosed
surface or a Gaussian surface is equal to the ol
product of the sum of all the charges enclosed ., 11T
by the surface and the constant gl

0

Important points about Gauss’s law:
« While using Gauss’s law, the considered closed or 3D surface is known as a Gaussian surface.

« The total electric flux through a closed surface is independent of the shape of the surface
and the position of charge inside the closed surface.
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Consider a point charge +q that is inside three Gaussian
surfaces S, S,, and S, as shown in the figure. The net flux
through each surface is the same.

« If a closed surface does not enclose any charge, then the

net electric flux through the surface is zero.

Gaussian surface

A Gaussian surface is defined as a closed surface or the periphery of a volume on which Gauss's
law is applied. Using a Gaussian surface (closed surface) or a 3D surface in a three-dimensional
space, the flux of any vector field can be determined. A Gaussian surface can be real or imaginary,
and its shape is dependent upon the type of charge or charge distribution inside the surface.

The mathematical form of Gauss’s law
From Gauss’s law, the net flux through a surface is given by,

%:qgﬂ (1)

o

Also, the net flux through a surface is given by,
b = PE.dA (i)

From equations (i) and (ii), we get,

E i = den
cﬁE.dA—g’

412
U

There are three positive charges, q,, q,, and g,, present in space, and
the Gaussian surface encloses the charges g, and g,, and the third
charge g, is outside the surface. Find the net flux using Gauss’s law.

According to Gauss’s law,

Edd = den
chE.dA_g

o

© 2020, BYJU'S. All rights reserved



05

The net flux through the Gaussian surface does not depend on the charge placed outside the
Gaussian surface. So, the net charge enclosed by the surface is given as follows:

qen = ql + q2

As we know, if a closed surface or object does not enclose any charge, then the net electric flux
through the closed object is zero. Thus, the net flux by charge g, through the given surface is zero.
So, the net electric field is given as follows:

E_ =E +E,+E,
The net flux is given by,

b =P(E, +E, +E,).dA :%

o

@ Using Gauss’s law, we can find the electric field due to some symmetric charge distributions.

Essential properties of a useful Gaussian surface

o Gauss’s law is applicable to any closed surface, i.e., a Gaussian surface must be a closed or
3D.

« The electric field must be symmetric and equal at all the points on the Gaussian surface.

« The angle between E and dA must be the same at all the points of the Gaussian surface
(preferably, 8 = 0° or 90°).

« For a point charge and line charge distribution, the Gaussian surface will be a sphere and a
cylinder, respectively.
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The net flux for different surfaces can be obtained by using symmetry. Some of the shapes are

given in the table.

A charge is placed
symmetrically at the
centre of a cube.

A charge is placed
symmetrically at the
centre of a square
surface.

-
Shape Net flux Shape Net flux
Sphere Hemisphere
_q g
Q ¢n6t 80 ¢net 280
A charge is placed A charge is placed
symmetrically at the symmetrically at the
centre of the sphere. centre of a hemisphere.
Cylinder Semi-cylinder
_q -1
- ¢n6t 80 ¢net 26‘0
A charge is placed A charge is placed
symmetrically at the symmetrically at
centre of a cylinder. the centre of a
semi-cylinder.
Cube One face of cube
_ -1
¢net 8 ¢net 68
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Itis given thatthe charge is placed at one corner of the cube.
To enclose the charge inside a closed surface or a Gaussian
surface such that the charge is symmetrical to the closed
surface, take seven more cubes of the same dimensions as
that of the original cube. All the cubes are arranged in such
a manner that the charge is at the centre of the bigger cube
as shown in the figure.

We know that the total flux due to a point charge is, ¢ -4 .
80

Therefore, the total flux through the bigger cube (closed surface) is given by,
q

¢total =
&

The flux through each cube is given by,

_ ¢tota1 _ q
¢eachcube 8 88

o

Thus, option (B) is the correct answer.
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Flux through Each Face of a Cube

Consider a charge placed at one corner of the cube. We know
that if a charge is placed at a corner of a cube, then the total flux
through the cube is given by,

9
¢net 88

In a cube, there are six faces. The flux due to the charge does not
pass through all the faces of the cube.

From the diagram, we can observe that the electric field lines are
paralleltothe three adjacentfaces thatare connected tothe charge
denoted by the white arrows. Thus, the total flux associated with
the cube passes through the three other remaining faces denoted
by the red arrows.

Therefore, the net flux through each of the surfaces is given by,

_ P __ 4

¢each face — 3 2 480

Flux through the Curved Surface of a Cylinder

Consider a charge q placed symmetrically at the middle of a cylinder of
radius R and height 21 as shown in the figure.
We know that the total flux due to a point charge is, ¢=i.

&

o

ML}

. . . q |V‘ Thi
Therefore, the total flux through the cylinder is given by, ¢,,, =— \lﬁm
g,

Also, the net flux is shared by three faces, two circular faces (I, II) and m
one curved face (IIl) as shown in the figure.

¢net = ¢I + ¢II + ¢III

From symmetry, the flux from the surface I is equal to that of surface II.

. ¢1 = ¢11

So, the net flux through the curved surface is given by,
¢111 = ¢net_ (¢1+ ¢11) (1)

From the figure, for the flux through surfaces I and II, we can assume
that the charge is over the apex of the cones so that surfaces I and II
become the base of the cones.

We know that the net flux through the base of a cone is given by,

q ! _
¢1 28 (1_WJ —¢11

By substituting the values of ¢, and ¢, in equation (1) we get,
q q !
= | 2x—| 1 - ——
iz &, ( 230( JI + R D
_af__t
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Flux through the Curved Surface of a Container

Consider a charge q placed inside a container with a mouth of radius R
and the distance of the charge from the mouth is h.

We know that the total flux due to a point charge is, ¢=i .
&

[

Therefore, the total flux through the container is given by, @,., =i.
£

Also, the net flux is shared by two faces, a circular face or the mouth of
the container (I), and the other one is the curved face of the container (I1),
as shown in the figure.

¢net = ¢I + ¢II

So, the net flux through the curved surface is given by,

¢11 = ¢net_¢1 (1)

From the figure, for the flux through surface I, we can assume that the
charge is over the apex of the cone so that surface I becomes the base
of the cone.

We know that the net flux through the base of a cone is given by,

goafy
I 280 \/h2+R2

By substituting the value of ¢, in equation (i), we get,

p=T-| {11
e 7 iy

This is the net flux through the curved surface of the container.

The flux through the curved surface is given as ¢.

We know that the total flux due to a point charge is, ¢ = o b C A %
& ¢

o

Therefore, the total flux through the cylinder is given by,
B =
&

[

Also, the net flux is shared by three faces, two circular faces (4, C) and one curved face (B), as
shown in the figure.
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¢net = ¢A i ¢B + ¢C

The flux through surface A is equal to that of surface C due to symmetry.
o ¢A = ¢C

So, the net flux through the curved surface is given by,

¢B = ¢net - (¢A + ¢c)

= ¢ = d)net - 2¢A

1
= E(¢net _¢):¢A
1fq |
= E(g_ ¢J_¢A

o

Thus, option (A) is the correct answer.

Calculation of Electric Field Using Gauss’s Law

To find the electric field at a point in the vicinity of the charge configuration using Gauss’s law, we
need the following steps: We consider a closed surface in the surrounding of the charges such that
the point is on the surface. The electric field is either parallel or perpendicular to this surface at
every point of the surface.

We apply Gauss’s law for this surface as follows:

= = D0
cﬁE.dA——gl d

o

Applications of Gauss’s Law

1. Electric field due to infinitely long uniformly charged wire
Consider an infinitely long uniformly charged wire. Let A be the linear charge density.
Let us find the electric field at a distance r from the infinitely long uniformly charged wire by
using Gauss’s law. We have derived the field at r distance from the infinitely long uniformly

charged wire as follows: A +00
1
E:ﬂ /8 _
," « >

L = [EdA, cos 0°
dA

3

Now, to obtain the electric field _ o
intensity at a distance r from the % IEdAlCOS %0
rod using Gauss’s law, we have to

take a Gaussian surface such that

the electric field at every point

on the surface is either parallel or

perpendicular to this surface. In

this case, we can take a cylinder of ¢, =_|.EdA2 cos 90°
radius r and length [ as the Gaussian < dA

surface as shown in the figure. ;_oo 2

The cylinder (Gaussian surface) can be divided into three surfaces, two circular surfaces and
one curved surface, Al, Az, and A3. Their elements are marked as dAl, dAZ, and dA3, respectively,
as shown in the figure.

The net charge enclosed by the Gaussian surface is, g, = AL

<
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Using Gauss’s law,

EdA = den
$E.dA= .
[EdA, + [E.dA, + [E.da, zg ....... (i)

0

The area vectors 01;11 and leZ are perpendicular to the electric field.
E.dA, = EdA, cos 90° =0
Similarly, E.dA, = EdA,cos 90° =0
Therefore, equation (i) becomes,
Y | .
¢3:IE.d3:— ....... (i)

&

o

Now, the flux through surface 3 is given by,
¢,= [ EdA, cos0°=[EdA,

=¢,=E2nrl

The net flux through the cylinder is given by,
[ — RN

= =0+0+E27zrl=E2zxrl .....(iii)

cylinder

From equations (ii) and (iii), we get,

AL E2nrl

80

=FE= A
2ne,r

:Ezﬁ [':k: ! J
r dre,

Electric field (E) vs distance (r) graph

EA
The electric field due to an infinitely long uniformly charged
wire is inversely proportional to r.
For an infinite line charge,
E L
r
( r — 00 E=0 ]
L r-20 E = Undefined J 0

2. Electric field due to an infinitely large uniformly charged sheet

Consider a single layer sheet in which the charge is uniformly distributed. Let o be the uniform
surface charge density of the sheet. To obtain the electric field at a point x distance away from
the sheet, we have to take a Gaussian surface such that the electric field at every point on the
surface is either parallel or perpendicular to this surface. In this case, we can take a cylinder as
the Gaussian surface as shown in the figure. The Gaussian surface (cylinder) can be divided into
three surfaces, two circular surfaces and one curved surface, A,, A, and A,. Their elements are
marked as dA,, dA,, and dA,, respectively, as shown in the figure on the next page.
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The flux through the curved surface of q
the cylinder is zero as the area vector @, = IEdAZ cos 0° A
of the curved surface is perpendicular
to the electric field.

#,=0 dA, A
Due to symmetry, the flux through
surface 1 is equal to that of surface 2.
¢ =¢, =|EdA_=EA_.(i)

Where, A _is the circular surface area.

¢, = [EdA, cos 0°

|
|
|
4, = | EdA, cos 90°

The net flux through the cylinder is given by,
¢cy1inder = ¢1 + ¢2 + ¢3

= cylinder = EAC + EAC + 0

- — 2EA,

cylinder

The net charge enclosed by the Gaussian surface is, q, = 0A .
By applying Gauss’s law, we get,
_ e

¢cy1inder -
o

By substituting the values of ¢, .. and q,, in the above equation, we get,

What is the net electric field at points A4, B, and C if two
infinitely long, oppositely charged plane sheets having the
same charge density o are placed parallel to each other?

A E,=Z E,=0,E =< B) E,=0,E, =2, E.=Z
80 80 80 80
(©) EA=0,EB=%, E, =0 (D) E, =0, EB=81, E, =0
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The electric field due to the positively charged infinite sheet is, E, :2i'
£

o

And the electric field due to the negatively charge infinite sheet is, E_ =2i.
£

At point A

The electric field due to the negatively charged sheet is
towards the sheet, whereas the electric field due to the

positively charged sheet is away from the sheet. So, the
net electric field at 4 is zero.

B.=F 4F

~E -2 9
2e, 2¢,

At point B

The electric field due to the positively charged sheet and the negatively charged sheet is directed
in the same direction. So, the net field at B is given by,

B -F+F
(o) (o) (o)

=>FE,=—+—=—
2e, 2¢, g,

o

At point C

The electric field due to the positively charged sheet is away from the sheet, whereas the electric
field due to the negatively charged sheet is towards the sheet. So, the net electric field at C is zero.
E.-E +E

O O

=3
By 2:

Thus, option (D) is the correct answer.
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Application of Gauss’s Law: Charged Cylinders

‘ : :

++ + + + + + +
+ 4+ + + + + + +
++ + + + + + +
+ + 4+ + + + + +
++ + + + + + +

+ + + 4+ + + + +

+
+
+
+
+
+
+
+

Charge resides on Charge is

surface only distributed over
the whole volume

/ + + + + + + + +

The solid conducting, hollow conducting, or hollow non-conducting cylinders have similar charge
distribution, i.e., the charge can only reside over the surface, so we can treat them as a single case.
Due to similar charge distribution, at equal distances, they have the same electric fields.
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Electric field due to solid conducting cylinder/ hollow conducting cylinder/

thin non-conducting cylinder

Here, we can take any of the three types of cylinders, i.e. solid conducting, hollow conducting, or
hollow non-conducting. For our study, we are taking a hollow cylinder.

a. The electric field at a distance r inside the cylinder (r < R)

Consider an infinitely long, uniformly charged hollow
cylinder of radius R, with surface charge density 0. Consider
a point P, which is present inside the cylinder. For this case,
the Gaussian surface will be a cylinder of radius r and
length L, as shown in the figure.

By applying Gauss’s law, we get,

@E‘inside' d;d = qﬂ
80
As the charge enclosed is 0,
Qo =0
~E . =0

inside
Since the surface area of the gaussian surface is a non-zero quantity, thus, to hold the equality,
the net electric field inside the hollow cylinder must be equal to zero. Hence, the net electric field
inside the solid conducting, hollow conducting, or hollow non-conducting infinitely long uniformly
charged cylinders is zero.

b. The electric field at a distance r outside the cylinder (r > R)

Consider an infinitely long, uniformly charged hollow cylinder of radius R, with surface charge
density 0. Consider a point Q, which is present outside the cylinder. For this case, the gaussian
surface will be a cylinder of radius r and length L. Now, the cylinder (gaussian surface) can be
divided into three surfaces, two circular surfaces, and one curved surface, 4, 4,, and 4,, and
their elements are marked as dA,, dA,, and dA,, respectively, as shown in the figure.

R !

............ @, :IE dA, cos 0°

9, = IE dA, cos 90°-------!

For surface areas, A, and 4,, the angle between area vector and the electric field is 90°, so
¢,=¢,=0.

Therefore, the net flux is given by,
d)net = ¢1 + ¢2 + ¢)3

(pnet = ¢3 = CﬁEdAS = EAS
@, =E2nrL
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The net charge enclosed by the gaussian surface is given by,

q,, =0 x 2mRL

By applying Gauss’s law, we get,

EAA - den
qSE.dA_ .

o27RL
80
o27RL

2

:>E<JSdA:

= E2nrL =

:>E:G—R
&

Electric field (E) vs distance (r) graph

+++++++++

\ 4

a.

The electric field at a distance r inside the cylinder (r < R)

Consider an infinitely
long, uniformly charged
non-conducting solid
cylinder of radius R, with
volume charge density p.
Consider a point S, which
is present inside the
cylinder. For this case, the
gaussian surface will be
a cylinder of radius r and
length L. Now, the cylinder
(gaussian surface) can

4, = [E dA, cos 90° ------ -

— qinside

............ ¢, = IE dA, cos 0°

9, = _[E dA, cos 90°-------:

be divided into three surfaces, two circular surfaces, and one curved surface as, 4,, 4,, and 4,
and their elements are marked as dA,, dA,, and dA,, respectively, as shown in the figure.
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For surface areas A, and 4, , the angle between area vector and the electric field is 90°, so
$,=,=0.

The net flux is given by,

Pree = P, + P, + &,

(bnet = ¢3 =¢E'd23 = EA,

¢, =E2nrL

The net charge enclosed by the gaussian surface is given by,

q, =pV=pnrrlkL

By applying Gauss’s law, we get,

Fodd— den
qSE.dA_ .

2
= E§aa =" L

2

prr’lL

= E2nrL =

b. The electric field at a distance r outside the cylinder (r > R)
Consider an infinitely long, uniformly charged solid cylinder of radius R, with volume charge
density p. Consider a point T, which is present outside the cylinder. For this case, the gaussian
surface will be a cylinder of radius r and length L. Now the cylinder (gaussian surface) can be
divided into three surfaces, two circular surfaces, and one curved surface, A, 4,, and A,, and their
elements are marked as dA,, dA,, and dA,, respectively, as shown in the figure.

'R !

¢, = IE dA, cos 90° --------

$, = [E dA, cos 90° .-

For surface areas A, and A,, the angle between area vector and the electric field is 90°, so
¢,=¢,=0.

The net flux is given by,

d)net = d)l + ¢2 + ¢3

b, = b, = PE.dA,= EA,

@, =E2nrL

The net charge enclosed by the gaussian surface is given by,

q, = pV=pnRL
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By applying Gauss’s law, we get,
PE.dA =

80

PrR*L
80

PrR*L
80

— EngA =

= E2nrL =

_pPR
2g,r

Electric field (E) vs distance (r) graph

=FE

s
4+ + 4+ + 4+

\

b+ o+t

Electric Field Due to an Infinitely Large, Uniformly Charged Non-Conducting Sheet

Consider a uniformly charged, non-conducting sheet of thickness d, with volume charge density p.
To find the electric field, we have to assume a gaussian surface that is symmetrical to the charge
distribution. For this case, the gaussian surface will be a cylinder whose end caps are parallel to the
sheet and the axis is perpendicular to the axis of the sheet. The length of the cylinder is 2x.

a. Electric field inside the sheet at point x < % P e
In this case, the field point lies inside the sheet at a distance of x from the
axis of the sheet. For this case, the gaussian surface will be a cylinder
of radius r and length 2x. Now the cylinder (gaussian surface) can be
divided into three surfaces, two circular surfaces, and one curved surface
as, 4, 4,, and A,, and their elements are marked as dA,, dA,, and dA3,
respectively, as shown in the figure on the next page.

For surface area A,, the angle between the area vector and the electric
field is 90°, so ¢, = 0. Also, for surface area A, and A,, the angle between
the area vector and the electric field are 0°, and they are symmetrically
located. Thus, the net flux passing through them will be equal, i.e.,

d)l:(i)z
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e pz—q""s"de
R 4
¢2=jEdA2coso° B T T ¢1=jEdA1coso°

++++++++

e S T TS

The net flux is given by,

Do = Py + &, + D, =20,

b, =2 E.dA,

},..=2EA (A, =A,=Aand cos 0°=1)

The charge enclosed by the Gaussian surface is given by,
Gon =P A(2x)

Where, pis the volume charge density.

By applying Gauss’s law, we get,

Edd = den
gSE.dA_ .

2pAx
80

= 2FEA =

:>E:ﬂ
80

d
b. Electric field outside the sheet at point x > B

In this case, the point lies outside the sheet at a distance of x from the axis of the sheet. For this
case, the gaussian surface will be a cylinder of radius r and length 2x. Now, the cylinder (gaussian
surface) can be divided into three surfaces, two circular surfaces, and one curved surface as, 4,
A,, and A, and their elements are marked as dA,, dA,, and dA,, respectively, as shown in the figure.

— qinside
¢, = IE dA, cos 90°

R ¢1:IE dA, cos 0°
¢, = J'E dA, cos 0°
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Similar to the previous case, for surface area A3, the angle between the area vector and the
electric field is 90°, so (153 = 0. Also, for surface areas A, and A,, the angle between the area
vector and the electric field are 0° and they are symmetrically located. Thus, the net flux passing
through them will be equal, i.e., ¢, = ¢,.

The net flux is given by,

Pree = Py + Py + Py =20,

}, = ZgSE.dAl

},,.=2EA (wA =A,=Aand cos 0°=1)

The charge enclosed by the Gaussian surface is given by,
q.,=pAd

Where, pis the volume charge density.

By applying Gauss’s law, we get,

E A = den
gSE.dA_ .

The electric field outside the sheet is constant.

Electric field (E) vs distance (x) graph

EA :
: pord
E 2¢,
Eoccx i
0 <d i >d ;(
) X772
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Application of Gauss’s Law: Charged Spheres

Types of charged spheres

|
‘ ! ! 3

Solid Hollow Thin Solid
conducting conducting non-conducting non-conducting
Sphere Sphere spherical shell Sphere / Dielectric
sphere

+ + + + + 4+ 4
+ i Q.+ -

+ + —
-:- ++ £ AR
ar g b ++ o &
ar b Tt
=+ + ++ i +
+ + H + ° O o 4
++ ++ S ++ i +

Y Charge is distributed

Charge resides on the surface only over the volume

As in the case of cylinders, the same charge distribution happens in the case of spheres also. In
the solid conducting, hollow conducting, and hollow/thin non-conducting spherical shell, the whole
charge is distributed only on the surface so that we can treat them as a single case, i.e., due to the
similar charge distribution, they have the same electric fields at equal distances.

Electric field due to solid conducting sphere/ hollow conducting sphere/

thin non-conducting spherical shells

Electric field due to a uniformly charged spherical shell

Let us consider a hollow sphere of radius R and charge density o. Also, charge Q is distributed
uniformly along the surface of the spherical shell.

a. Electric field inside the sphere at a distance r from the centre (r < R)

In this case, we can use a sphere of radius r as a Gaussian surface. The gaussian surface do not
enclose any charge inside it, so the net charge enclosed is 0,

Le.q,=0.
Therefore, by applying Gauss’s law, we get,
qsginside- di = den

80

As the charge enclosed is 0,
q., =0

E =0

inside
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b. Electric field outside the sphere at a distance r from the centre (r > R)

For this case as well, the Gaussian surface will be a sphere of radius r. At any given point on the
sphere, the area vector and the electric field are in the same direction.

The net flux is given by,
b = PE .dA

=@, = c]SEdAcos 0
=@, = CJSEdAcos 0°
= 4, = Edda

= =E4xr?

net

The charge enclosed by the Gaussian surface is given by,
q,,=0
By applying Gauss’s law, we get,

E dd = den
qSE.dA_ .

Q

= E4nr’ =<
80

=>E= ¢ >
drg,r

Electric field at any point outside any uniform spherical symmetric charge distribution behaves as
if all its charge is concentrated at the centre.

Electric field (E) vs distance (r) graph

E A

>

i

r>R

~
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*ET
Application of Gauss’s Law

Electric field due to a solid non-conducting uniformly charged sphere

Let us consider a uniformly charged solid non-conducting sphere of radius R with volume charge
density p. Also, the total charge Q is distributed uniformly throughout the sphere.

1. Electric field inside the sphere at a distance r from the centre (r <R)

In this case, we can assume a sphere of radius r as a Gaussian surface. The angle between the
area vector and the electric field is 0° throughout the periphery of the Gaussian surface, i.e.,
6 = 0°. Thus, the magnitude of the electric flux at every point on the periphery of the Gaussian
surface is the same.

The net flux through the Gaussian surface is given by,

.. = Sﬁﬁ.dﬁ /E, 0 =0°
=>4, = cJSEdA cos 0 ™ G;ie@

=>4, =<J5EdA cos 0° 2 .‘ ;@ @ p=%
=g, =E<ﬁdA = + ! %AQ

a K
o+ :
EXg=ge

= .. =E(47r?)

The net charge enclosed by the Gaussian surface is given by,
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By applying Gauss’s law, we get,

(ﬁE.le:qﬂ

2. Electric field outside the sphere at distance r from the centre (r > R)

Similarly, in this case, we can assume a sphere of radius r as a Gaussian surface. The angle
between the area vector and the electric field is 0° throughout the periphery of Gaussian
surface, i.e., 8 = 0°. Thus, the magnitude of the electric flux at every point on the periphery of
the Gaussian surface is the same.

The net flux through the Gaussian surface is given by,

b = PE .dA

= ¢, = EdA cos 0
= ¢, = PEdA cos 0°
= ¢, =Edda

= @, = E(4n1")

The net charge enclosed by the Gaussian surface is given by,
q,, =0
By applying Gauss’s law, we get,

PE.dA =T
80
:>E(47zr2)=2
80
=E= ¢ 5
Adrer
:E:k—? [Where,k: L j
r dre,

For the electric field at any point outside the uniform spherical symmetric charge distribution, it
behaves as if all its charge is concentrated at the centre.
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Electric field (E) vs distance (r) graph

+
+
EA + !
o @ @ o)\ '
ot e« +I
+ + & :
+ RT
+ & } !I
+
1
-+ ++ - ++ +|
+ 0 1 0
A\ R 1
+ o+ e & |E-= —
o 1 . 4re, R
| 1
EOC,' 1 E'OC—2
1 r
1
; >
Ol <R . r>R r
r=R

A region in space where every point is characterized by a physical quantity is known as a field.
Scalar field

—— - -

If the physical quantity associated with a field is a -~ S~

scalar quantity, then the field is known as the scalar 27 _ocoa s
field, i.e., a scalar field is a function that gives us ’ g s \
a single value of some variable for every point in P AN AR
space.

Example: Temperature field

Let us consider a heat source. The intensity of heat AU S y P
o . a N1 7

energy at different points around the heat source will YN T ot ;Y
be different as shown in the figure. Therefore, heat ‘. \; o
energy is a scalar quantity and the field associated N "

. . . . S ~ - T
with this is known as temperature field. Se o - 3
Vector field

If the physical quantity associated with a field is a
vector quantity, then the field is known as the vector
field.

Example: Electrostatic field

Consider a point charge +q, placed in space. The
magnitude of the electric field at different points
that are radially equidistant from the point charge
is the same, but the direction of the electric field is
different for each of them as shown in the figure.
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Conservative Force

Conse

1.

3.

The work done by a conservative force is independent
of the path taken. It only depends on the initial and
final positions.

Examples:

Gravitational force: To move a body of mass m to a
height h, many paths can be taken, but the work done
on each path will remain the same.

(W), = (W), = (W), = —mgh

m -

Electrostatic force: Electrostatic force is a conservative
force as the work done to move a charge from Ato B
is independent of the path taken to move the charge.

(Wel)l = (Wel)ll = (We

I)III

Therefore, conservative forces are path independent.

A force is conservative if the work it does around any
closed path is zero.

Examples:

Gravitational force: If a block of mass m is raised up to
a height h by following path I and is brought back to
the initial position following path II, then the net work
done in the closed cycle is zero.

(W), + (W), =0

g'l

Potential energy can only be defined for conservative force fields.

1.

The work done by a non-conservative force depends on the path ofthe object. Non-conservative

forces are path functions.
Example: Friction force

Non-conservative forces are also known as dissipative forces because they dissipate mechanical

energy into other forms.
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{BOARDS ] ]
Electric Potential (V)

The electric field in a region of space is described by assigning a vector quantity (E) at each point.
Pictorially, it is represented by electric lines of force. The same electric field can also be described
by assigning a scalar quantity (V) at each point known as electric potential.

Electric potential difference

The electric potential difference between two points is defined as the work done by an external
agent in moving a unit positive charge from one point to another.

Suppose a positive charge +q, is brought from point B to point A. Thus, the potential difference
between V, and V, is as follows:

Vl/eXtBaA
VA — VB = q— < q,
e e e ¢
If the unit charge is, +q_ = +1C, A w,., B
VA a VB = WextB_,A

If we assume that point B is at infinity and V_= 0, then the electric potential at point A can be
defined as the amount of work done by an external agent in moving a unit positive charge from
infinity to point A.

VA: ext , ,4
a, q,
If the unit charge is, +q, =+1¢, ~  ~TTTTTTTToTToososomooomooomoos 2
e unit charge is, +q, ] W =
VA:VVext

0—>A

The Sl unit of electric potential is JC! or Volt.

1. The work done by the external agent is to be considered while calculating electric

potential at a point.

The work done by the external agent is against the electric field.

3. Since electrostatic force is a conservative force, the work done by the electrostatic
force is independent of its path.

4

Electric potential due to a point charge @

Consider a point charge @ and a positive test charge g, that is brought from infinity to point A by
an external force. Let us assume that the test charge is brought very slowly without any change
in velocity, such that, at any given instant, there is no acceleration. So, the net force acting on it at
any point is zero.
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Therefore, the electrostatic force is equal to the external force but in the opposite direction.

F F'elec

ext

Since the electrostatic force is a conservative force and its magnitude is equal to the external force,
we can consider the external force as the conservative force. The work done by the external force
for moving the positive charge from A to infinity and infinity to A will be opposite to each other but
equal in magnitude.

exty s exty .,

While moving the positive charge from A to infinity, consider that the positive test charge is x
distance away from charge Q at an instant. If the charge moves a small distance dx, then the work
done by the external force is given by,

Wi, = | FpedX

ext

=W, = fo F,,|dx cos180°
oI S (5 | kea,
= VVextA%w = _Ir P;Iec dx ( F:zxt = |Fetec| = XZ j
= k
= IA/GXtA‘m = — J.r _quo dX
=>W,, = —quOIwX‘de
B 1 € ) . Xn+l
=W, =-kQq,|— Using Ix dx =
' L x|, n+1
o =-iea]-2-(1)]
k
= VVext = _ﬂ
A—xo r
kQq,
= ]/Vextw_“‘l == ext, ., = T

At point A, the electric potential is given by,

v, = ext, s . Since Vis a scalar quantity, the charge should

q, ' be substituted along with its sign. This means

1 that a positive and a negative charge will have a

=V, = % — k_Q : positive and a negative potential, respectively, at
rq, r . all points.
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Potential Due to a System of Point Charges

1
If charges q,, q,, —q,, —q,, -, q, are placed in space at distance q, s, rl:
o Uop [Pp g ocop [ respectively, then the value of the electric ro~ :
potential at point P is given by, NUp
&
k ki k(- k(- k 20
Vv, = RS (q3)+ (q4)+...+i s e I
r r, r r, r 2 T
1

" G

Four point charges, —Q, —q, 2q, and 2Q are placed at each
corner of a square. What is the relation between Q and g for

which the potential at the centre of the square will be zero?

Me=-1  @e=— (@0 CrE

In a square, all the diagonals are of the same length. Therefore,
OA=0B=0C=0D=x
The value of the electric potential at the centre is given by,

K(-0) , k(-a) , K(20) _ k(2q)

V. =
¢ X X X X
= Vozﬂ_ﬂ.FZk_Q.F&
X X X X
= VO:EQ+q
X
Since the potential at O is 0, we get,
0=0Q+q
=0=—q

Thus, option (A) is the correct answer.
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PHYSICS
ELECTROSTATICS

ELECTRIC POTENTIAL-2

OBYJU'S
Classes

% What yo

« Applications of Gauss’s law « Null potential points due to two point

. Scalar and vector field charges
« Electric potential due to extended charges,
ring, and disc

« Conservative and non-conservative forces
« Electric potential
« Electric potential energy for two-charge

« Electric potential due to a point charge and three-charge systems

« Electric potential for a system of charges

Null Potential Points Due to Two Point Charges

The point where the net potential is zero is known as a null potential point. In a system of two like
charges, at all the points in space near the vicinity of the charges, the potential is either positive or
negative. Hence, null potential points are not possible.

System of two unlike charges

Let us consider two unlike charges, +q, and —-q,, where, |q1| > |q2|. Let the distance between the
charges be d.

There are two points along the line joining the charges at which the potential will be zero. A null
potential point will be possible near the smaller charge on either side of the line joining the two
unlike charges. Let us divide the space around them into three zones, zone 1, zone 2, and zone 3,
as shown in the figure. Thus, two null potential points will be possible, one in zone 1 and the other
in zone 2.

X
1

Zone 3 Zone 1 : Zone 2

Null point (P)) in zone 1:
Let the null point be P, which is at a distance x from charge g,.

: Zone 3 \ Zone 1 \ Zone 2 \

: % e :

] ’ A 1

! ————— pot———————— !

: | d-x P, x | :
p; >
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The net potential at point P, is given by,

VP1 - V+‘I1 i V“Iz
N A k‘h +k(_q2)
A (d—x) X
ka, _kq,

74
~'n (d-x) «x

For the net potential to be zero,

kq kq
V, = 1 __ 29
~'n (d—x) X
:>CI1XZQZ(d_X)
d
=X=
&+1
q,

Null point (P,) in zone 2:
Let the null point be P,, which is at a distance x from charge q,.

Zone 1 |

q1 U q2
= B
X 2

»
>

Zone 3

1
1
1
:
1 1
: d+x |
1 1
The net potential at point P, is given by,

sz = V‘*"h v V—‘h

k k(-
=V, = I (-2.)
’ (d + x) X
k k
=V, = @ X
: (d + x) X
For the net potential to be zero,
k k
=V, =—h__Th_g
: (d + x) X
= q,x =q,(d + x)
d
=>Xx=
LI
q,
The general relation for null potential points along the line joining the two unlike charges is,
d

iq
q,

X =
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Electric Potential Due to

Let us consider an extended body of area A and charge Q is distributed uniformly over the area. Let
us consider a small element of the body having area da and charge dg.

dq
(Y XX
000000 P
200000
200000000
000000000
0000000000 ®
200000006 CY )
000000000000 000O®
000000000 NOOOOO
00000000¢ DOOOOO
Y X XXX XXX
Y Y L XLIIXY)
000000000000
00000000000
Y XX XXX
‘Y Y XXX
'Y X

The steps for obtaining the potential due to the extended charge systems are given as follows:

Step 1: Step 2: Step 3: Step 4:

Find the small
charge (charge of the
element) according to

Find the electric
potential due to the
small charge dgq.

Substitute the
value of dq in dV.

Integrate the potential
dV with proper limits to
obtain the net electric

the surface taken for
study.

potential due to the
extended charge
system.

k dq
r

dV =

Q
dg = =da
1 A

Electric Potential Due to a Uniformly Charged Rod at an Axial Point

Consider a uniformly charged rod of length L and charge Q. To find the electric potential at point P,
which is at a distance r from one end of the rod, let us consider a small element dx having a small
charge dq at a distance x from point P as shown in the figure.

L r
dq P
e £ = 1 1 F F N ¥ F N o-->
(I X X X X XXX X X X/ ( X X X
dX: >

The small charge on the elemental length can be written as follows:

Q
dg = =dx
4 L
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The potential due to the small charge dq at point P is given by,

kdq :
av =24
L
By substituting the value of dq in equation (i), we get,
dv — kQ dx
Lx

Integrating both the sides,we get,
.[dV = k_QJ'd_X
LY x
The limits of x willbe fromx=rtox=r + L.

_ kQ r-rdx
V—TL o

r+L
=

=V =1y
L
kQ

=V =T[ln(r + L) —In r]

:V:k—an(”L]

L r
Electric Potential Due to a Unifa

Consider a uniformly charged ring of radius R and charge Q. To find the electric potential along the
axis of the ring at point P, which is at a distance x from the centre of the ring, let us consider a small
element of the ring having length dx charge dq at a distance r from point P as shown in the figure.

dq

®e
Q.O C.

The potential due to the small charge dq at point P is given by,
kdq

dv =-4
r
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SdV:% ('.'r=\¢x2+R2)

Here, \/x* + R is a constant at every element of the ring.
By integrating both the sides, we get,

k
/XZ + R qu
kQ
v=_"¢
- JX*+R?

At centre, x =0,

fav =

kQ
V.=—
“ R
D
{BOAR S Electric Potential Due to a Uniformly Charged Disc

Consider a uniformly charged disc of radius R and charge Q. The disc is the combination of
infinitesimally thin coaxial rings. To find the electric potential along the axis of the disc at point P,
which is at a distance x from the centre of the disc, let us consider an element of the disc, which is
nothing but an infinitesimally thin ring of radius R, having thickness dr and charge dq at a distance
r from point P as shown in the figure.

Q

The charge of each thin infinitesimal ring is given by,

dq = QZ 27RdR
7

The potential at point P due to charge dq is given by,
_kdq

r
:dV:ﬂ ('.'r: x2+R2) (1)

Jx* + R?

dv
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By substituting the value of dqin equation (i), we get,
kQ27R dR

7R \x* + R®

By integrating both the sides, we get,

I 2RdR

Jx* + R?

The limits of R willbe fromR=0toR=R,.

=dV =

jdv =

_ kQx 2RdR )
V= J m (i)
Take (x +R)=P (i)

By differentiating partially with respect to R, we get,
2RdR = dP (V)

By substituting equations (iii) and (iv) in equation (ii), we get,

J'R dP
:V:k—? ZJF]RG
LY o
§ N
:V:I};—? 2«/x2+R2}
L 0

:>V=;—?_21/XZ TR —2Xj|
=>V= ZgZQ [sz +R? —x}

o

Recall what we have learnt about potential energy till now. We cannot define absolute potential
energy. However, what we can define is the change in potential energy.

The change in potential energy is the negative of the work done by the conservative force, as
the system changes from the initial to the final configuration. Mathematically, the change in the
potential energy is defined as, AU = U U=(-w

conservative force )1 -f

Let us consider that two charges +q, and —q, are initially separated by some distance, and are finally
brought close to each other as shown in the figure.

Initial configuration : Final configuration
® S ® S

ql qz ql qZ

i Uf
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Thus, the change in potential energy of the system is given by,
AU = Uf— U-=(-
Now, suppose that those two charges are brought close to each other because of the work done
(W ) by some external agent. According to the work-energy theorem,

W, .+ W, =AKE)

I/Vconservative force)i -f

Assuming that the charges are brought very slowly without changing their speeds, it can be said
that, A(K.E\) = 0.

Therefore,
M/ext s I/Ve'l = O
>W =-W

ext el

Thus, the change in potential energy of the system is given by,
AU=W,_,, if and only if A(K.E.) = 0

It is very important to note that potential energy can be defined only for conservative force fields.
Thus, the change in potential energy of a system in a conservative force field does not depend on
the path through which the system changes from the initial to the final configuration. It is because
the change in potential energy is not a path function but a state function, i.e., it depends only on
the initial and final states of the system.

Definition q‘
1
Electric potential energy is defined as the amount of work done
in assembling a system of charges against the electric forces of ® =
the system by bringing individual charges from infinity to their 4, 4,

respective positions in the system.

That is, initially, all these charges are at the infinite separation
between them, and finally they are brought to the required ® S
configuration shown in the figure. e 4

q1 r qZ

Let us consider two like charges +q, and +q,. Initially, they are infinitely separated and are finally
brought to the configuration as shown in the figure, i.e., charges +q, and +q, are separated by a
distance r. Let us assume that the electric potential energy at infinity is zero, i.e., U,= 0

For bringing the first charge +q, from infinity to point 4, there is no charge present near the vicinity.
So, the work done against the electrostatic force is zero.

wh, =0

o—>A

We know that due to a point charge, at all the points in space near the vicinity of the charges,
the potential is either positive or negative. Thus, at point B, the potential due to +q, is given by,

VBzﬂ.
r
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For bringing the second charge q, from infinity to point B, which is at a distance r from point 4, the
work done is given by,

Wogz—m = qsz

= qu _ kql QZ

o—>B
r

We know that the change in electric potential energy is given by,

AU=U, -U, = Wi, + W
— U, ~0=04+ 0%
r
= Uf — kqqu
r

Electric Potential Energy ¢

Let us consider three like charges tq,, tq,, and +q,. Initially, they are infinitely separated and are
finally brought to the configuration as shown in the figure. Let us assume that the electric potential
energy at infinity is zero, i.e., U, = 0.

C

For bringing the first charge +q, from infinity to point 4, there is no charge present near the vicinity.
So, the work done against the electrostatic force is zero.

we, =0

oA

We know that due to a point charge at all the points in space near the vicinity of the charges, the
potential is either positive or negative. Thus, at point B, the potential due to +q, is given by,

_ M
a

VB

For bringing the second charge +q, from infinity to point B, which is at a distance a from point 4, the
work done is given by,

W, =aqV;
kq,q
=>We, = cll 2
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For bringing the third charge +q, from infinity to point C, which is at distance b and ¢ from +q, and
+q,, respectively, the work done is given by,

Wk . =qV,
=>We =4 k4, + kg, | _ ka4, + k9,45
b c b c

The change in the electric potential energy is given by,
AU=U, -U, =Wh +W?" + W5

oA 0—B 0—>C

:>Uf —0:O+ kq1q2 + kq1q3 + quqg

a b c
kq,q, = kq,q, kqq
— Uy, =—t1tz s | T3
f a b c

From the given relation, it is clear that the potential energy of a system is the sum of the potential
energies of all the possible pairs of charges in the system (without repeating).

For a system having n charges, the number of pairs are given by,

N_n(n—l)

2

The work done in moving a charge between two points having the same potential is zero.
W = qAV = 0 (since AV = 0)

Three charges, each +q, are placed at the
corners of an isosceles triangle ABC of sides BC
and AC as 2a. D and E are the midpoints of BC

and CA. Find the work done in taking a charge
Q from D to E.

7e,a (B) 8re,a © 4dre,a (D) zero
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€ 4

*q
Due to the symmetric charge configuration,
Potential at D = Potential at E a
V,=V,
The change in the potential energy is given by, d
AU=U, U, =W ; a
:>UE_UD:Q(VE_VD):0 +q 0Q +q
= Wiepor =0 B % < » C

Thus, option (D) is the correct answer.

As per the diagram, a point charge +q is
placed at the origin 0. Find the work done

in taking another point charge -Q from
point A [coordinates (0, a)] to another point B
[coordinates (a, 0)] along the straight path AB.

(A) Zero (B) (ﬂi}/ﬁa © (ﬂl}/ﬁa D) (ﬂl}i

4re, @

Csouen B

The potential at point A is given by, V, = ﬂ
a
The potential at point B is given by, V, = ﬂ
a
=V, =V,

The change in the potential energy is given by,

AU=Uy U, =W, p
=>U,-U,=Q(V,-V,)=0
=W, 0

xt A—>B =

Thus, option (A) is the correct answer.
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Charges +q and —q are placed at points

A and B, respectively, which are at a
distance 2L from each other. C is the
midpoint between A and B. Find the work
done in moving a charge +Q along the
semicircle CRD.

qQ qQ ©) -qQ

2me,L 6re,L 6re, L

e

The potential at point C due to both the charges is given by,

(A)

The potential at point D is given by,
Vo= kq kq _ —Zﬂ

T 3L
=>V,=- q
6re,L

The net work done by the external force is given as follows:
AU=U,-U.=W,

xtC—D

= Wewesp =Up —Ug = Q(VD = Vc)

= Wieeop = Q( a OJ

- 6re, L
q@Q
= WEXtC—)D == 67 L

Thus, option (C) is the correct answer.
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What you will learn

g@ What you already know

« Null potential points due to two point - Relation between electric field and
charges electric potential

« Electric potential due to extended « Calculation of electric potential from
charges, rings, discs electric field and vice versa

« Electric potential energy for two and « Electric potential due to a uniformly
three charge systems charged sphere and concentric shells

Relation between Electric Field and Electric Potential

Let us consider a point charge +q,. Now, take a point P at a distance r from the charge.

A B C D Irl
= - =
At point P, the value of the electric field is given by,
L
Ir

The direction of the electric field is away from the point charge.
Also, at point P, the value of the electric potential is given by,
vk
r
Since it is a scalar quantity, it does not have any direction. We can observe that the electric potential
is inversely proportional to the distance from the charges.
Let us take three points 4, B, and C, where A is near to charge +q, and C'is far away from the charge
along the line joining the charge and point P.

The electric potential at the three q, A B C B
points is different as they are present at ’4—» ------- *--------- o----- >
different distances from +q,. Also, as the " >
distance increases, the electric potential
decreases. 3
Therefore,

V,>V, >V,

I}
Y

ka, _kq, _ kq,
rl I, 2 U 3
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Hence, we can conclude that the electric potential decreases along the direction of the electric
field.

Case 1: When the electric field is uniform

Let us consider that a point charge +q, is placed in a
uniform electric field. Thus, it experiences electrostatic

Y
Y

force qE along the direction of the electric field. It B qE A
is moved from point A to.p0|.nt B in the eIectnF field o ¢ @ AN =
very slowly without changing its speed by applying an ot q, Ar _

T

external force equal in magnitude, which is opposite in
direction as shown in the figure. While moving charge
+q, from point A to point B for the entire path, the
change in kinetic energy is zero (AKE = 0). > >

\
Y

The value of the external force is equal to the electrostatic force but is opposite in direction.
F ,=—qE

ext =
The potential difference between points A and B is given by,

w .
v, _VA:M ...... (i)
q,

The work done by the external force is given by,
VVextA%B = ﬁext ) AF
> Weass =" (E'AF)

w _
=208 __(E.AF) ....(il)

q,
From equations (i) and (ii),we get,

I/Vext A—>B

=V, -V, = = —(E.AF)

1

= AV = —(E.AF)

The negative sign shows that along the direction of electric field, the electric potential is decreasing.
In other words, the electric field is directed from high potential to low potential.

Case 2: When the electric field is non-uniform

In case of a non-uniform electric field, we have to divide the whole path from point A to B into small
lengths dr. For this small length dr, the electric field is almost uniform.
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Therefore, the small potential difference is given by,

dv = —EdF /

The total potential difference is given by,

jde: —ij.df

Consider that charge q, is placed in a uniform electric
field. The charge is moved from A to B along an

\
Y

arbitrary path as shown in the figure. Let the separation ;A ?’ R — >
between point A and point B be d. ~ drsin 6@ g drcos 6 p ~
The total path between A and B is broken into small 7 dr~._ . op E
lengths dr. Resolve dr such that it is parallel and > d >

perpendicular to the electric field, i.e., dr cos 0 is along
the electric field and dr sin 6 is perpendicular to the
electric field.

Thus, the electric potential is given by,

B_' —
Vy =V, =—[ E.dr

\
Y

=V, -V, = —IOdEdrcos 0
d
=V, -V, :—EI0 drcos 0

If drcos 6 is along E, then the electric potential is given by,
=V,-V,=-Ed

If drcos 6 is opposite to E, then the electric potential is given by,
=V, -V, =Ed

Calculation of Potential From Electric Field

For calculating the value of potential, we have to take E and dF in a Cartesian coordinate system.
Let,

E=Ei+Ej+Ek
And,F:xf+y}+zlg

dr = dxi + dyj + dzk

The potential difference is given by,
dV = —E.dr

=dV = _[(Exf + Ey]' + EZIQ) . ( dxi + dy}' + dzl@ﬂ
=dV =-Edx-E dy—E,dz
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Calculation of Electric Field From Potential

The potential is given in the following form:
dV =—E dx —E dy - E,dz

On partially differentiating with respect to x, we get,

oV

—=—-F (~dy=0anddz=0

ox (vdy )

Similarly, on partially differentiating with respect to y and z, we get,
V__k (dx=0anddz =0)

oy 7

ov

—=—-E_(dx=0anddy=0

0z ‘ ( 4 )

The electric field is given by,
E=Ei+E j+Ek

:Ez(—a—VJf+ v ]+(—8—VJIQ
ox oy 0z

Therefore,

2 2 2
av=|g|= | -Z| +|-Z| +[-Z
ox oy 0z

The electric field is the negative gradient of the electric potential.

:.“ﬂ.@] The electric potential at a point (x, , z) is given by, V = -x* - xz* + 4. At that point, what is

U electric field?

(A E =i2xy + j(x* + y?) + k(3xz — y?) B)E =12+ jxyz + k2

() E =i(2xy + 2*) + j(xy*) + k(32%x) (D) E =i(2xy + z°) + j(x?) + k(3xz?)
| souton

Given,

V=-xy-—xz°’+4
On partially differentiating with respect to x, y, and z, we get,

a—V=—2xy—z3 +0=-2xy-z2°
ox

a—V=—x2+0+0=—x2

%y

V o 0-3xz? +0=—3x2

0z
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The electric field is given by,

E=Ei+E,j+Ek

_ B |9 Gy, OV g
ox oy 0z

By substituting the values of a—V, a—V and v in the given equation, we get,

ox oy 0z
=E= —((—ny —z3)f + (—xz)}' + (—3XZZ)I€)
=E =f(2xy+z3)+ }(x2)+12(3xzz)

Thus, option (D) is the correct answer.

47[3 In a region, the potential is represented by, V (x, y, z) = 6x - 8xy - 8y + 6yz, where, Vis in volts

and x, y, and z are in meters. What is the electric force experienced by a charge of 2 coulombs
situated at point (1, 1, 1)?

(A) 65N  (B)30N (C) 24 N (D) 4+/35N

€ e

Given,
V(x,y,2z)=6x—8xy -8y +6yz

On partially differentiating with respect to x, y, and z, we get,

oV
E =—=—-(6-8
¥ Ox ( y)
:>Ex|(1,1,1) =2
Eyz—g—}‘fz—(O—Bx—8+6z)
:>Ey|(1,1'1) =10
oV
E =—=-(6
? 0z ( y)
=F =—6

7|(1,1,1)

The magnitude of the electric field is given by,
 |E| = J#+100+36

= |F?| =235 NC™!

The electric force is given by,

F| =qfF| =2x 2435

:>|ﬁ| 435 N

Thus, option (D) is the correct answer.
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Electric Potential Due to Uniformly Charged Spheres

In the last session, we discussed four kinds of charged spheres such as a solid conducting sphere;
a thin, hollow conducting sphere; a solid non-conducting sphere; and a thin, hollow non-conducting
sphere. Out of these four spheres, only in the solid non-conducting sphere, the charge is distributed
throughout the sphere. However, for the other three types, the charge is distributed uniformly only
over the surface so that we can treat them as a single case. Due to similar charge distribution, they
will have the same electric fields and electric potentials at equal distances.

Potential due to solid conducting sphere; thin, hollow conducting sphere; thin, hollow

non-conducting sphere

Here, we can take any of the three types of spheres, i.e., solid conducting, hollow conducting, or
hollow non-conducting. For our study, we are taking a thin, hollow conducting sphere.

Case 1: Outside the sphere (r > R)

Let us consider a thin, hollow conducting sphere
of radius R, having a charge Q uniformly distributed
on it. Now, consider point P outside the sphere at a
distance r from the sphere.

We know that an electric field at any point outside
the uniform spherical symmetric charge distribution
behaves as if all its charge is concentrated at its
centre.

Therefore, the electric field at P is given by,

5= kQ

P
rZ

The electric potential difference is given by,
V,-V,=~[ E.dr

:>VP—0=—I;I;—?dr

Case 2: On the surface of the sphere (r =R)
The potential difference at the surface of the sphere
is given by,

V, -V, =~[ E.dF

:Vp—oz—ij—szr

©r
_ 4

=V, =
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Case 3: Inside the sphere (r <R)

The electric field inside the sphere due to uniform
distribution is given by,
E,=0
The electric field is zero inside as well as on the
surface of the sphere, i.e., the potential is constant
inside as well on the surface of the sphere.
Therefore, the electric potential difference at any
point inside the sphere is given by,

kQ

-y

Electric potential (V) vs distance (r) graph

VA

kQ | Constant
R

m - — e _— _— — - =
<Y

Inside Outside

Potential due to a solid non-conducting sphere

For a solid non-conducting sphere, the charge is distributed throughout the material so that the
potential inside the conductor does not become zero.

Case 1: Outside the sphere (r > R)

Let us consider a solid non-conducting sphere of radius R, having a charge Q uniformly distributed
throughout the material. Consider point P outside the sphere at a distance r from the sphere.

We know that the electric field at any point outside the uniform spherical symmetric charge
distribution behaves as if all its charge is concentrated at its centre.

Therefore, the electric field at P is given by,
g, k0

P
rZ

The electric potential difference is given by,

V, -V, =~ Edr

:>V,,—0=—j:’;—?dr

kQ

:VP:?
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Case 2: On the surface of the sphere (r = R)
The potential difference at the surface of the sphere is given by,

V, -V, =~ Edr

=V, —O:—j:I;—szr

Case 3: Inside the sphere (r <R)
Since the charge is distributed throughout the sphere, i.e., inside the sphere as well, the electric
field inside the sphere is non-zero.

The electric field inside the sphere is given by,
_kor
inside R3
The electric potential difference is given by,

Vb r

[V =—[E,.dr

V R

s

r Qr
:VP_I/S:_'[47ISR3 dr

R

=V, -V, == ¢ 3J‘rdr
4re R+

2
Ly e frlio (e
47e R 4me R | 2 24re R 47e R
2
Ly, -2 [3 17
dne, R |2 2R

2
:>VP:l ¢ 3_r_2
2 4re R R

At centre,r =0,

v, 3y 3 0
2 24re R
Therefore, potential difference inside the sphere is given by,
kQ[ re }
V,=—|3——
" 2R R’
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Electric potential (V) vs distance (r) graph

3KQ 4 v
2R

Y Inside R Outside

nzgy:@ A conducting sphere of radius R is given charge Q. Find the electric potential and the electric

@ field at the centre of the sphere, respectively.

Q Q

47e R C 4re R

(B) ¢ R and Zero € (D) Both are zero

4re,

For a conducting sphere, the charge is distributed uniformly only on the surface of the sphere. Due
to symmetric and uniform charge distribution, the net electric field at any point inside the sphere is
zero.
Therefore, the electric field at centre is given by,
E=0
Since it is a solid conducting sphere, we know that a conductor is an equipotential surface. Thus,
the electric potential is the same inside as well as on the surface of the conductor.
Therefore, the electric potential at the centre is given by,
,-*e__@

R 4ne R

Thus, option (B) is the correct answer.

47@ Two metallic spheres of radii 1 cm and 3 ¢cm are given charge of -1 x 102 C and 5 x 102 C,

respectively. If these spheres are connected by a conducting wire, then what is the final
charge on the bigger sphere?

(A)2 x 102 C (B)3 x 102C (C) 4 x 102C D)1 x 102C

 souion b

We know that the charge is conserved. The net charge in the system remains the same. If the two
charged conductors are made to come in contact, the charges transfer from one conductor to
another until they reach a common potential. Once their potential becomes equal, no more charge
transfer happens.

Q,=0,70,=(-1x1072C)+(5x102()=4x107*C ... 1))

Given, the spheres are charged and are connected by a conducting wire. Hence, they will attain a
common potential. Thus, the potential of both spheres will become equal.
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v, =V,
k0, ko,
Rl RZ
_ & _R_1
QZ RZ 3
Q
:>Q1=?2

By substituting the value of @, in equation (i), we get,
% +Q,=4x107

=4Q,=3x4x10"
=Q,=3x107°C

Thus, option (B) is the correct answer.

Potential Due to Concentric Shells

Consider three concentric hollow spheres, A, B, and C, with
charges 0, 2Q, and 40, respectively. The electric potential at any
point on the surface of any sphere will be the sum of all the
potential that occurs due to all the shells.

Potential on shell Bis due to its charge distribution on its surface itself and due to charge distribution
on shell A and charge distribution on shell C.
The electric potential at any point on the surface of shell B is given by,

surface

- _kQ 2kQ  4kQ
wis " 2R 2R 4R

_ 5kQ
Bsurface N\ 2R

Potential on shell C is due to its charge distribution on its surface itself and due to charge distribution
on shell A and charge distribution on shell B.

Vcwfm =V, +V, +V,

L Ay il

=V =
Gt 4R 4R 4R
_7kQ
Csurfute - 4_R
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PHYSICS

ELECTROSTATICS

POTENTIAL DUE TO DIPOLE AND
EQUIPOTENTIAL SURFACES

OBYJU'S
Classes

g@ What you & ggl What you wi

« Null potential points due to two point « Potential due to dipole

charges . Potential due to dipole in a uniform
« Electric potential due to extended charges, electric field

ring, disc

« Equipotential surface and its properties
« Electric potential energy for two charge
and three charge system

Three concentric spherical shells having radii a, b, and ¢
(a < b < ¢) and have surface charge densities o, -0, and o,
respectively. If V, V,, and VC denote the potentials of the
three shells, then, for ¢ = a + b, we have,

AV, =V, 2V, BV, 2V, %V, QV.=V, =V, D) V.=V, 2V,

souion J 3

The charge on the shell a, b, and cis,

q, =0 x 4rna’
q, = o x 4zb’*
q, = o x 4nc’
The potential on the surface of shell 4 is due to all the charges in the system, and it is given by,

VAWM =V, +V, +V,

ka, kqy n kq,

= VAsui_'face = a b C
Ao 4ge \a b ¢
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By substituting the value of q,, q,, and q., we get,

1 (ox4ra® o x4rb*> o x 4rc?
=V, = — +
e Agg a b c
=V, = —(a —b+ c)

=V, =(2a) ...(i)

EO
Similarly, the potential on the surface of shell B is given by,
VBWGCE =V, +V, +V,
Sy -k, _ka, | ke
surface b b I
whe 4ge (b b c

By substituting the value of q,, q,, and q., we get,

1 (ox4ra® o x4rbh*> o x 4rc?
=V, = — +
surface 472.80 b b C

2
v, =Z a——b+cj
urface b

2

:>VME=z %—b+a+bj (-c=a+b)

=V, .= gz % I a] ..... (i)

The potential on the surface of shell Cis given by,
VCWM =V, +V, +V.

kq, _ kq, n kq,

=V, =
surface C C C
~y -t (% 9% 4
Csur[ace 4 7[80 C C C

By substituting the value of q,, q,, and q,., we get,

=V =

1 (ox4na* o x4rb? N o X 4rc?
Csur[ace 4‘7[80

c Cc c

© 2021, BYJU'S. All rights reserved



2 2
>V, =— a——b—+c
2 2
>V, =— a ;b +c]
2 2
=V, =8—0 ‘(Ia; )+(a+b)J (wc=a+b)
=V :gg(a—b+a+b)
=V, = 83(261) ..... (i

From equations (i), (ii), and (iii ), we get,
V.=V, %V,

Thus, option (D) is the correct answer.

Potential Due to Dipole

1. On the axis of the dipole

Let us consider an electric dipole of length A 0 _________ 1"/1_*
21. On the axial line (axis) of the dipole, let us v 'R E
consider a point M at a distance x from the 2 >
centre of the dipole, as shown in the figure.

- (x+1 ~
The point Mis at a distance of x-land x + [ from - 0 i M
positive and negative charges, respectively. .74—["7’ """"" $->

The net potential at point M due to the dipole is given by,

(Vnet )M N V+q gl V—q

N __ka — kq
(Ve (x=1) (x+1)

v _ kq(21)

= (V) "—") (- p=qx2l)

If I << x,
_ kp
)u

= (V,

net
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2. On the perpendicular bisector of the dipole or on the equatorial line

Let us consider an electric dipole of length 2I. On
the perpendicular bisector of the dipole, let us

M
A
consider a point M at a distance x from the centre of ,"' PN
the dipole, as shown in the figure. ;'I :
The point M is at a distance of «/x2 + I* from both / Xi
positive and negative charges, respectively. '," :
(Vaee Ju =Veg + V4 A i
S (V,), =Lk _, < 0
\/x2 + I \/x2 + I

V=0
Since every pointonthe perpendicular bisector ofthe
dipole (equatorial line) is equidistant from both the
positive and negative charges. The potential at any

point on the perpendicular bisector of the dipole will

be zero. If we consider a plane that is perpendicular
to the dipole axis and passes through the equatorial
line of the dipole as shown in the figure, the net
potential due to the dipole on the whole plane is
zero. This plane is known as “Equatorial plane”.

3. The potential at any general point

Let us consider an electric dipole of length 2L
Consider any general point M, neither on the axial
line nor on the equatorial line of the dipole. Point M (x, 6)
M at a distance x from the centre of the dipole. The )
line joining the centre of the dipole (0) and point M
makes an angle 0 with the dipole moment vector p , ¥
as shown in the figure. Since we know the electric ’ .
potential on the axial point and on the equatorial d
point of a dipole, let us resolve the dipole moment y <
p of the dipole into two components, one along the
line joining the centre of the dipole and point M,
and another one is perpendicular to the line joining

J p\ ‘
the centre of the dipole. As a consequence, point

M becomes the axial point of the dipole p cos 8 and
the equatorial point of the dipole p sin 6.
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So, the potential at point M due to p cos 6 is given by,
v _ kp cos@

pcosf 2
X

(if 1 << x)

For p sin 6, the point M is an equatorial point, and we know that the electric potential at an
equatorial point is zero.

|4 =0

p sin@
So, the net electric potential at point M due to the dipole is given as follows:

(Vnet)M = Vpsing +V = M (|f [ << X)

pcos® 2
X

Potential Energy Due to Dipole in a Uniform Electric

Consider an electric dipole placed in a uniform
electric field at an angle 6, with the electric field. Due
to the electric field, both positive and negative charge
experience an electrostatic force equal in magnitude T NT
but opposite in direction. Therefore, the net force 5
on the dipole is zero. But due to the two equal and
opposite forces with different lines of action forms a
couple. The couple generates a clockwise non-zero
torque about the COM of the dipole, which rotates the
dipole to align it in the direction of the electric field.

Y
A\

Y
y

Y
vQ|

The torque acting on the dipole is given as follows:
T=pxE

Y
\

Now, let us consider an external torque is given to the
dipole to rotate the dipole from an angle 6, to angle

6,, as shown in the figure. The external torque is given =
in such a way that there is no change in the kinetic 7 _
energy of the system. ‘\Text
According to the work-energy theorem, 0 / qu:
w.  +W, =AKE.) >
Since there is no change in kinetic energy of the = ------ceomccmooeaooo - I — >
dipole, A(KK.E.) =0 /

Wext + Wel = 0 /

= ext == We[ qE - -3

We know that, AU = -W/, et g
Thus, AU=W _, if and only if A(K.E.) = 0 >

:|W

electrical

Therefore, we can say, |W,

xternal
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The work done by the external torque is given by,

- z-ext

Also,

= pEsin

Z-ele

)
= IpEsin 0do

6

=W

ext

92
= pEJsin 0do

2

=>W, = —pE[cos H]ZZ

=W

ext

ext

= W,, =—pE[cos 6, — cos 6, ]

ext
The change in potential energy is given by,
AU=U,-U =W,

ext

= AU = —pE|[cos 6, — cos 6, |

When 6 =90°, we can assume that the potential energy is zero. That means we choose 6 =90° as
the reference point.

AU=U, -U, =—-pE[cos 6, - cos 6, |

Let 6, =90°andU, =0

= U, —0=—pE[cos 6, — cos 90°]

= U, =—-pE[cos 6,]

Therefore, for any general angle 6 the potential energy is given by,
= U, =—pEcos @

=U,=-p.E

Some important cases

Case 1:

\

When dipole moment p makes an angle 6 = 90° with
the electric field, the net force acting on the dipole is >
given by, qE

F.=0

net

A o i
The net torque acting is given by, —_|90 E

T = pEsin 90° = pE

\ /

= 7 is maximum

Y

The potential energy is given by, <——o

.

U, =—-pE cos 90°=0

\/
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Case 2:

When dipole moment p makes an angle 6 = 0° with
the electric field, the net force acting on the dipole is
given by,

F.=0

net

\

\

\/

The net torque acting is given by,

0>

7 =pEsin 0°=0 qE p qE

1
I l
o
o
4
Ty

\

The potential energy is given by,

»
>

U, = —pE cos 0° = — pE

In this case, both the net torque and the net force acting
on the dipole are zero, therefore, we can say that the
dipole is in equilibrium. Also, the potential energy at this position is minimum, so the equilibrium
will be a stable equilibrium.

»
P>

Case 3:

When dipole moment p makes an angle 8 = 180° with
the electric field, the net force acting on the dipole is
given by,

F.=0

net

\

The net torque acting is given by, 180° l??
-—>‘ < —t<—->
7 = pEsin 180° =0 qE p qE

The potential energy is given by,

U, = — pE cos 180° = pE

In this case also, both the net torque and the net force
acting on the dipole are zero. Therefore, we can say
that the dipole is in equilibrium. Also, the potential energy at this position is maximum, so the
equilibrium will be an unstable equilibrium.

\ /

»
>

=47=-E] An electric dipole of the dipole moment p is lying along a

work done in rotating the dipole by 90°?

(A) PE (B) V2pE (€) — (D) 2pE

€D Ve

It is given that, initially the dipole of the moment p is lying along a uniform electric field Eie,0=
0° and it is rotated from 0° to 90°.
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Therefore,

6, =0° .E >
q

and 6, =90° >
The work done in rotating the dipole is given as _ “—_|90° E
follows: . TTTTmTmmEmmmmmmmmmmTd s \ y
= W, =—pE|cos 6, — cos 6, ] g

= W,,, =—pE[cos 90° — cos 0°] qE

ext

=W

ext

Thus, option (A) is the correct answer.

Equipotential Surfaces

Equipotential surface

Consider a positive charge +q, due to which an electric
field is generated in space. If we consider points that
are radially equidistant from the charge +q, the electric
potential at all those points will be the same, and if
we connect those all points, it forms spherical shells.
Similarly, there can be a number of shells in the electric
field of a point charge. Thus, every point on each
of the shells has equal potential i.e., these shells are
considered as surfaces with the same potential that is
also known as equipotential surfaces.

A surface on which the potential is the same at every
point is known as an equipotential surface.

The properties of equipotential surfaces

1. The work done in displacing a charge between any (" A )
two points on an equipotential surface is zero. A f
If a charge is moved from point A to B, then the work
done is given as follows:
The potential on every point on the equipotential
surface is the same. Therefore,
W=qV,-V,)
W=0

2. The equipotential surfaces are always perpendicular
to the electric field lines.

3. The two equipotential surfaces can never intersect
each other.
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4. Inthe uniform electricfield E, the equipotential Plane equipotential surfaces
surfaces will be as shown in the figure. 1 2 3 4 5 6

We know that the electric potential decreases
along the direction of the electric field or
in other words, the direction of the electric
field is from a higher potential to lower
potential. Therefore, equipotential surfaces
in the direction of the electric field will be in
descending order of electric potential. Thus,
the electric potential on surface 1 is greater
than surface 2ie, V>V, >V, >V, >V. >V,
However, individually, the potential on each
surface will be constant.

The given

diagrams show
equipotential
region.

(A) The maximum work is required to move q in figure(c).
(B) In all four cases, the work done is the same.
(C) The minimum work is required to move q in figure (a).

(D) The maximum work done is required to move q in figure (b).

NS S S
Work done for SR RS
(a) W = q(AV)
(V W Ae ®B
W =q(40 - 10)
W =30q

(a)

© 2021, BYJU'S. All rights reserved



© 2021, BYJU'S. All rights reserved




