

MATHEMATICS

INVERSE TRIGONOMETRIC FUNCTIONS

DOMAIN, RANGE AND GRAPH OF INVERSE TRIGONOMETRIC FUNCTIONS

What you already know

- · Function and classification of functions
- · Basic graph of functions

What you will learn

- · Condition for existence of inverse of a function
- Domain, range, and graph of inverse trigonometric functions

Inverse function recap

If $f:A\to B$ is a one-one and an onto function, then $f^{-1}:B\to A$ is its inverse. If f and f^{-1} are the inverse of each other, then we get the following:

- (i) Domain of $f = Range of f^{-1}$
- (ii) Range of $f = Domain of f^{-1}$
- (iii) $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$

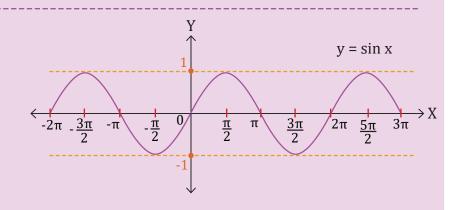
Condition for Existence of Inverse of a Function

An inverse of a function exists only if the function is one-one and onto, i.e., bijective. If a function is not bijective in the given domain, then its domain is modified to get the inverse. The modified domain is known as a restricted domain.

Example

Let us consider the following function: $f: \mathbb{R} \to \mathbb{R}: f(x) = \sin x$

From the given graph, we can see that the given function is neither one-one nor onto as a horizontal line will cut the graph at more than one point and codomain (\mathbb{R}) is not equal to the range of the function.

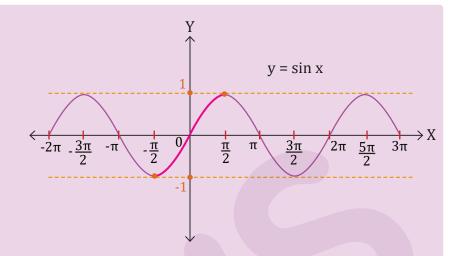


To make the function bijective domain and codomain of the given function is modified to

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$$
 as

shown in the figure.

Now, we can see that in the modified domain and codomain, the given function $f(x) = \sin x$ is both one-one and onto function, i.e., bijective.



Note

- Inverse trigonometric function gives angle in radians. For example, $\sin^{-1}x$ is the measure of the angle in radian.
- There is a difference between sin⁻¹ x (or) (arcsin x) and (sin x)⁻¹
- $(\sin x)^{-1} = \frac{1}{\sin x}$ (wherever it exists)

Domain, Range, and Graph of Inverse Trigonometric Functions

Domain, range, and graph of $f(x) = \sin^{-1} x$

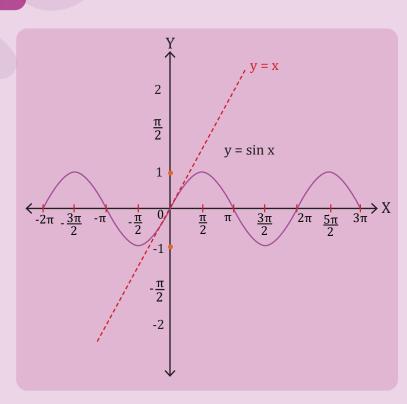
For the function $f(x) = \sin x$,

Restricted domain =
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Range = [-1, 1]

Here, we can see that the nature of the graph of f(x) is strictly increasing.

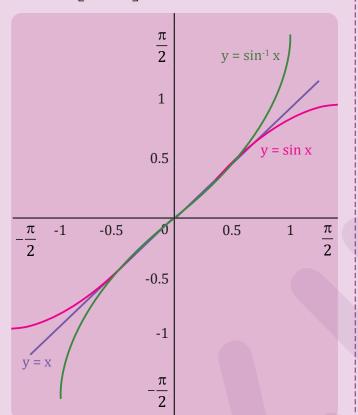
By taking the mirror image of f(x) about the line y = x, we get the graph of inverse of f(x), i.e., $\sin^{-1} x$.

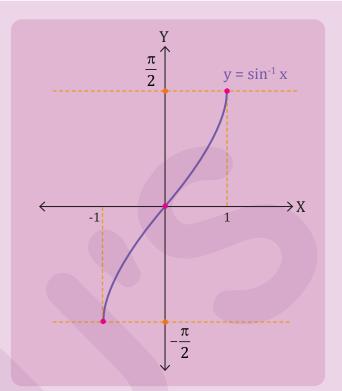


For the inverse trigonometric function $g(x) = \sin^{-1} x$, we get,

Domain = [-1, 1]

Range =
$$\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$





Note

For the inverse trigonometric function $g(x) = \sin^{-1} x$, if x is positive, then angle g(x) lies in the first quadrant, and if x is negative, then angle g(x) lies in the fourth quadrant.

Example

(i)
$$\sin^{-1} 1 = \theta \implies \sin \theta = 1 \implies \theta = \frac{\pi}{2}$$

(ii)
$$\sin^{-1}\left(-\frac{1}{2}\right) = \alpha \implies \sin\alpha = -\frac{1}{2} \implies \alpha = -\frac{\pi}{6}$$

(iii)
$$sin^{-1}\!\left(\pi\right)\!=\!\text{Not defined as }\pi\not\in\left[-1\text{, }1\right]$$

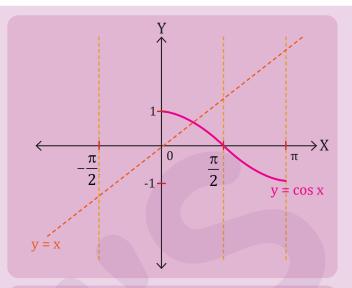
Domain, range, and graph of $f(x) = \cos^{-1} x$

For the cosine function $f(x) = \cos x$,

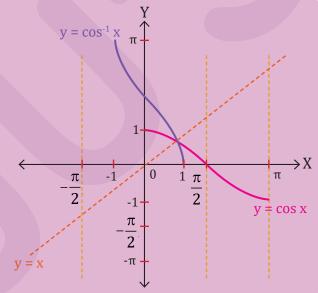
Restricted domain = $[0, \pi]$

Range = [-1, 1]

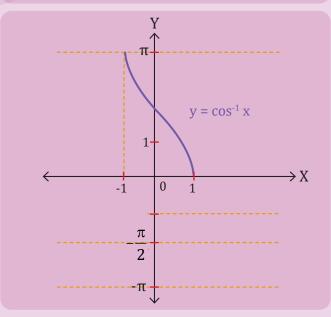
Here, we can see that the nature of the graph of f(x) is strictly decreasing.



By taking the mirror image of f(x) about the line y = x, we get the graph of inverse of f(x), i.e., $\cos^{-1} x$.



For the inverse trigonometric function, $g(x) = \cos^{-1} x$, we get, Domain = [-1, 1] Range = $[0, \pi]$



Note

For the inverse trigonometric function $g(x) = \cos^{-1} x$, if x is positive, then angle g(x) lies in the first quadrant, and if x is negative, then angle g(x) lies in the second quadrant.

Example

$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \theta \implies \cos\theta = \frac{\sqrt{3}}{2} \implies \theta = \frac{\pi}{6}$$

If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 3\pi$, then find the value of $x^{50} + y^{50} + z^{50}$.

Solution

We know, $0 \le \cos^{-1} x \le \pi$

Given, $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 3\pi$

It is only possible if

$$\cos^{-1}x = \cos^{-1}y = \cos^{-1}z = \pi$$

$$\Rightarrow$$
 x = y = z = cos π = -1

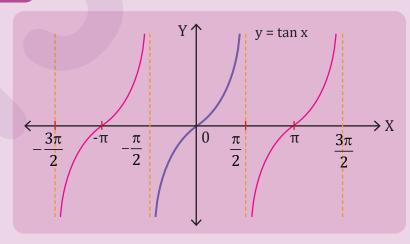
Domain, range, and graph of $f(x) = tan^{-1}x$

For the tangent function $f(x) = \tan x$,

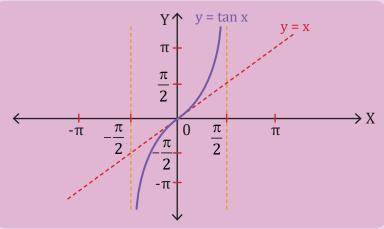
Restricted domain = $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

 $\mathsf{Range} = \mathbb{R}$

Here, we can see that the nature of the graph of f(x) is strictly increasing.



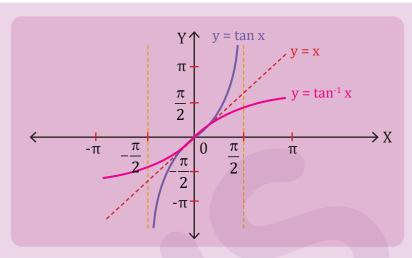
By taking the mirror image of f(x) about the line y = x, we get the graph of the inverse of f(x), i.e., $tan^{-1} x$.

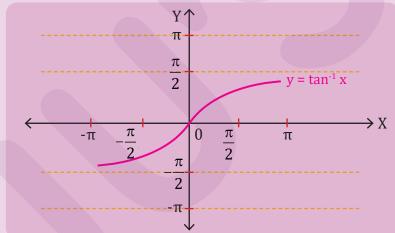


For the inverse trigonometric function $g(x) = tan^{-1} x$, we get,

Domain = \mathbb{R}

Range =
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$





Note

For the inverse trigonometric function $g(x) = \tan^{-1} x$, if x is positive, then g(x) lies in the first quadrant, and if x is negative, then g(x) lies in the fourth quadrant.

What is the value of $tan^{-1}(1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)$?

Solution

$$tan^{-1}(1) = \frac{\pi}{4}$$

$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

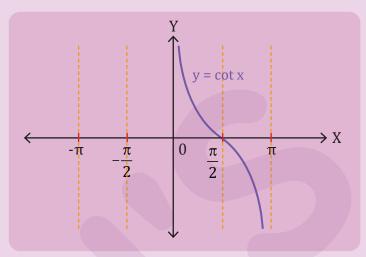
$$\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$\therefore \tan^{-1}\left(1\right) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{4} + \frac{2\pi}{3} + \left(-\frac{\pi}{6}\right) = \frac{3\pi}{4}$$

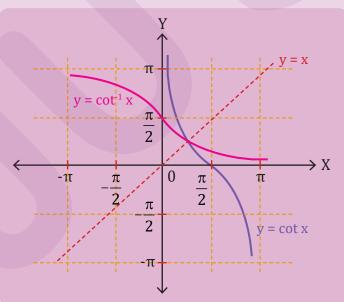
Domain, range, and graph of $f(x) = \cot^{-1} x$

For the cotangent function $f(x) = \cot x$, Restricted domain = $(0, \pi)$ Range = \mathbb{R}

Here, we can see that the nature of the graph of f(x) is strictly decreasing.

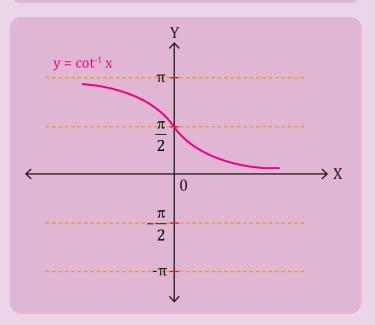


By taking the mirror image of f(x) about the line y = x, we get the graph of the inverse of f(x), i.e., $\cot^{-1} x$.



For the inverse trigonometric function $g(x) = \cot^{-1} x$, we get,

Domain = \mathbb{R} Range = $(0, \pi)$



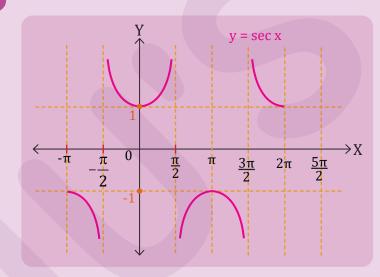
Note

For the inverse trigonometric function $g(x) = \cot^{-1} x$, if x is positive, then g(x) lies in the first quadrant, and if x is negative, then g(x) lies in the second quadrant.

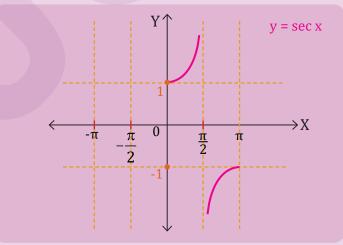
Domain, range, and graph of $f(x) = sec^{-1}x$

For the secant function $f(x) = \sec x$,

Restricted domain =
$$[0, \pi]$$
 - $\left\{\frac{\pi}{2}\right\}$
Range = $(-\infty, -1]$ U $[1, \infty)$



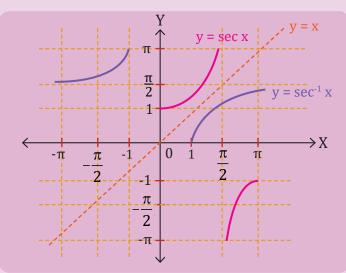
By taking the mirror image of f(x) about the line y = x, we get the graph of the inverse of f(x), i.e., $sec^{-1}x$.

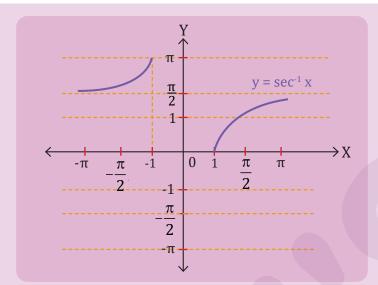


For the inverse trigonometric function $g(x) = sec^{-1} x$, we get,

Domain =
$$(-\infty, -1] \cup [1, \infty)$$

Range =
$$[0, \pi]$$
 - $\left\{\frac{\pi}{2}\right\}$





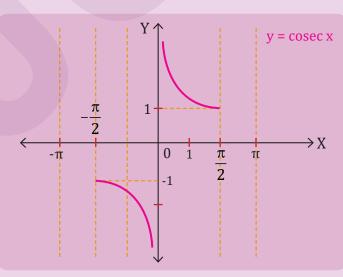
Note

For the inverse trigonometric function $g(x) = sec^{-1}x$, if x is positive, then g(x) lies in the first quadrant, and if x is negative, then g(x) lies in the second quadrant.

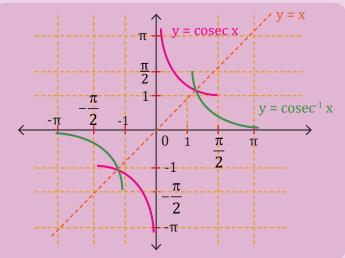
Domain, range, and graph of $f(x) = \csc^{-1} x$

For the cosecant function $f(x) = \csc x$, Restricted domain = $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \{0\}$

Range = $(-\infty, -1] \cup [1, \infty)$



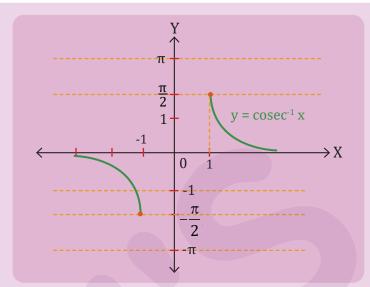
By taking the mirror image of f(x) about the line y = x, we get the graph of the inverse of f(x), i.e., $cosec^{-1} x$.



For the inverse trigonometric function $g(x) = \csc^{-1} x$,

Domain =
$$(-\infty, -1]$$
 U $[1, \infty)$

Range =
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$



Note

For the inverse trigonometric function $g(x) = \csc^{-1} x$, if x is positive, then g(x) lies in the first quadrant, and if x is negative, then g(x) lies in the fourth quadrant.

Example

(i)
$$\csc^{-1}(1) = \frac{\pi}{2}$$

(ii)
$$\operatorname{cosec}^{-1}\left(\frac{1}{2}\right) = \operatorname{Not} \operatorname{defined} \operatorname{as} \frac{1}{2} \notin \left(-\infty, -1\right] \cup \left[1, \infty\right)$$

Find domain and range of $\cos^{-1}[x]$, where [.] represents the greatest integer function.

Solution

Step 1

Given function, $y = cos^{-1}[x]$ for the function $y = cos^{-1}x$, $-1 \le x \le 1$

$$\Rightarrow -1 \le \lceil x \rceil \le 1$$

$$\Rightarrow$$
 -1 \leq x \leq 2

Step 2

$$-1 \le [x] \le 1 \Rightarrow [x] = -1, 0, 1$$

$$[x] = -1 \Rightarrow \cos^{-1}(-1) = \pi$$

$$[x] = 0 \Rightarrow \cos^{-1}(0) = \frac{\pi}{2}$$

$$[x] = 1 \Rightarrow \cos^{-1}(1) = 0$$

The range of the function is $\{0, \frac{\pi}{2}, \pi\}$.

Concept Check

- 1. Find the domain and range of $y = \sin^{-1}(e^x)$
- 2. Find the domain of $f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{6}}$

JEE ADVANCED 2003

Summary Sheet

Key Takeaways

- An inverse of a function exists only if the function is one-one and onto, i.e., bijective.
- If a function is not bijective in the given domain, then its domain is modified to get the inverse. Thus, a modified domain is known as a restricted domain.
- For $g(x) = \sin^{-1} x$,

Domain = [-1, 1]

Range =
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

- For $g(x) = \cos^{-1} x$,
 - Domain = [-1, 1]
 - Range = $[0, \pi]$
- For $g(x) = \tan^{-1} x$,

Domain = \mathbb{R}

Range =
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

- For $g(x) = \cot^{-1} x$,
 - Domain = \mathbb{R}
 - Range = $(0, \pi)$
- For $g(x) = \sec^{-1} x$,

Domain =
$$(-\infty, -1]$$
 U $[1, \infty)$

Range =
$$[0, \pi]$$
 - $\left\{\frac{\pi}{2}\right\}$

• For $g(x) = \csc^{-1} x$,

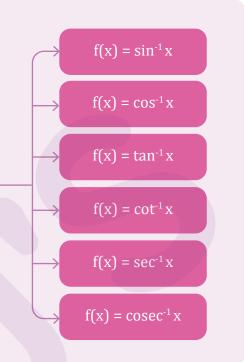
Domain =
$$(-\infty, -1] \cup [1, \infty)$$

Range =
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$

Mind Map

Condition for existence of inverse

Domain, range and graph of inverse trigonometric functions



Self-Assessment

Find the value of $\tan^{-1} \sqrt{3} - \sec^{-1}(-2)$.

Answers

Concept Check

1.

Step 1:

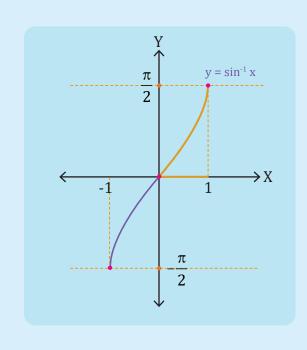
The domain of $\sin^{-1} x$ is $-1 \le x \le 1$

- \Rightarrow For $\sin^{-1} e^x$, we have $-1 \le e^x \le 1$
- \Rightarrow 0 < $e^x \le 1$ (Since exponential function
- cannot be negative)
- \Rightarrow x \leq 0 \rightarrow Domain of the function

Step 2:

$$0 < e^x \le 1$$

- $\Rightarrow \sin^{-1}(0) < \sin^{-1}(e^x) \sin^{-1}(1)$
- $\Rightarrow 0 < \sin^{-1}(e^x) \le \frac{\pi}{2}$
- \Rightarrow Range = $(0, \frac{\pi}{2}]$



2

Given,
$$y = f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{6}}$$

For the real value of y, we get,

$$\sin^{-1}\left(2x\right) + \frac{\pi}{6} \ge 0$$

$$\Rightarrow \sin^{-1}(2x) \ge -\frac{\pi}{6}$$

Step 2:

We know that the maximum value of

$$\sin^{-1}x$$
 is $\frac{\pi}{2}$.

So,

$$\Rightarrow \frac{\pi}{2} \ge \sin^{-1}(2x) \ge -\frac{\pi}{6}$$

$$\Rightarrow \sin\frac{\pi}{2} \ge 2x \ge \sin\left(-\frac{\pi}{6}\right)$$

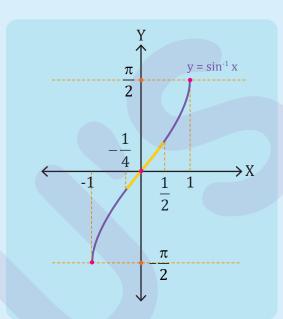
$$\Rightarrow 1 \ge 2x \ge -\frac{1}{2}$$

$$\Rightarrow \frac{1}{2} \ge x \ge -\frac{1}{4}$$

$$\Rightarrow x \in \left[-\frac{1}{4}, \frac{1}{2} \right]$$

$$\tan^{-1} \sqrt{3} - \sec^{-1} (-2)$$

$$=\frac{\pi}{3}-\frac{2\pi}{3}=-\frac{\pi}{3}$$



INVERSE TRIGONOMETRIC FUNCTIONS

PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS

What you already know

- Conditions for the existence of inverse functions
- · Domain, range, and graph of ITF

What you will learn

- Properties of inverse function f⁻¹(-x)
- Properties of inverse function f(f⁻¹(x))
- Graphs of inverse function f(f¹(x))
- Properties and graphs of inverse function $f^{-1}(f(x))$

Property 1: Properties of Inverse Trigonometric Function f¹(-x)

1.
$$\sin^{-1}(-x) = -\sin^{-1}x$$
; $|x| \le 1$

2.
$$tan^{-1}(-x) = -tan^{-1}x; x \in \mathbb{R}$$

3.
$$\csc^{-1}(-x) = -\csc^{-1}x$$
; $|x| \ge 1$

4.
$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$
; $|x| \le 1$

5.
$$\cot^{-1}(-x) = \pi - \cot^{-1}x$$
; $x \in \mathbb{R}$

6.
$$\sec^{-1}(-x) = \pi - \sec^{-1}x$$
; $|x| \ge 1$

To prove $\sin^{-1}(-x) = -\sin^{-1}x$; $|x| \le 1$

Proof

Let
$$\sin^{-1}(-x) = \theta$$
, where $\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
 $\Rightarrow -x = \sin \theta$ or $x = -\sin \theta$

We know that $sin(-\theta) = -sin \theta$

Hence, $x = -\sin \theta$ can be written as $x = \sin (-\theta)$

$$\Rightarrow \sin^{-1} x = -\theta$$

$$\Rightarrow \sin^{-1}x = -\sin^{-1}(-x) \text{ or } \sin^{-1}(-x) = -\sin^{-1}(x)$$

Hence proved.

To prove $\cot^{-1}(-x) = \pi - \cot^{-1}x$; $x \in \mathbb{R}$

Proof

Let
$$\cot^{-1}(-x) = \theta$$
, $\theta \in (0, \pi)$

$$\Rightarrow$$
 -x = cot θ or x = -cot θ

We know that
$$\cot(\pi - \theta) = -\cot \theta$$

Hence,
$$x = -\cot \theta$$
 can be written as $x = \cot (\pi - \theta)$

$$\Rightarrow$$
 cot⁻¹ x = $(\pi - \theta)$ or $\theta = \pi - \cot^{-1} x$

$$\Rightarrow$$
 cot⁻¹ (-x) = π - cot⁻¹ x

Hence proved.

Note

- 1. $\sin^{-1}(x)$, $\tan^{-1}(x)$, $\csc^{-1}(x)$ are **odd** functions (f(-x) = -f(x))
- 2. $\cos^{-1}(x)$, $\cot^{-1}(x)$, $\sec^{-1}(x)$ are neither even nor odd functions.

Evaluate: $\sin^{-1}\left(\frac{-1}{2}\right)$

Solution

$$\sin^{-1}\left(\frac{-1}{2}\right) = -\sin^{-1}\left(\frac{1}{2}\right) = -\frac{\pi}{6}$$

Property 2: Properties of Inverse Function $f(f^1(x))$

1.
$$\sin(\sin^{-1}(x)) = x; x \in [-1,1]$$

2.
$$\cos(\cos^{-1}(x)) = x$$
; $x \in [-1,1]$

3.
$$tan(tan^{-1}(x)) = x; x \in \mathbb{R}$$

4.
$$\cot(\cot^{-1}(x)) = x; x \in \mathbb{R}$$

5.
$$cosec(cosec^{-1}(x)) = x; |x| \ge 1$$

6.
$$\sec(\sec^{-1}(x)) = x; |x| \ge 1$$

Proof

To prove $\sin(\sin^{-1}(x)) = x; x \in [-1,1]$

Let
$$y = \sin(\sin^{-1}(x))$$
 and $\sin^{-1}(x) = \theta$, $\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
 $\Rightarrow x = \sin \theta$(1)

Substituting $\sin^{-1}(x) = \theta$ in y, we get,

$$y = \sin \theta ...(2)$$

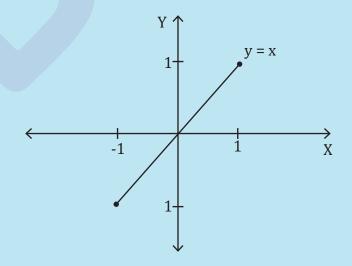
From (1) and (2), we get,

y = x

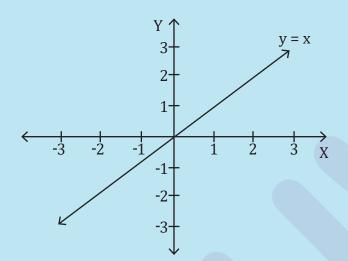
 $: \sin(\sin^{-1}(x)) = x$

Graphs of Inverse Function $f(f^1(x))$

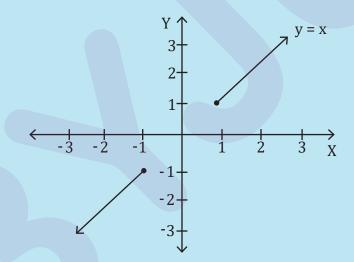
1. $y = \sin(\sin^{-1}(x))$ and $y = \cos(\cos^{-1}(x))$ for $x \in [-1, 1]$ We know that $y = \sin(\sin^{-1}(x)) = x$; $x \in [-1, 1]$ and $y = \cos(\cos^{-1}(x)) = x$; $x \in [-1, 1]$ So, the graph will be the line y = x; $x \in [-1, 1]$



2. $y = tan(tan^{-1}(x) \text{ and } y = cot(cot^{-1}(x)) \text{ for } x \in \mathbb{R}$ We know that $y = tan(tan^{-1}(x)) = x$; $x \in \mathbb{R}$ and $y = cot(cot^{-1}(x)) = x$; $x \in \mathbb{R}$ So, the graph will be the line y = x; $x \in \mathbb{R}$



3. $y = cosec(cosec^{-1}(x))$ and $y = sec(sec^{-1}(x))$ for $|x| \ge 1$ We know that $y = cosec(cosec^{-1}(x)) = x$; $|x| \ge 1$ and $y = sec(sec^{-1}(x)) = x$; $|x| \ge 1$ So, the graph will be the line y = x; $|x| \ge 1$



Evaluate: $\cos \left(\cos^{-1} \left(-\frac{\sqrt{3}}{2} \right) \right)$

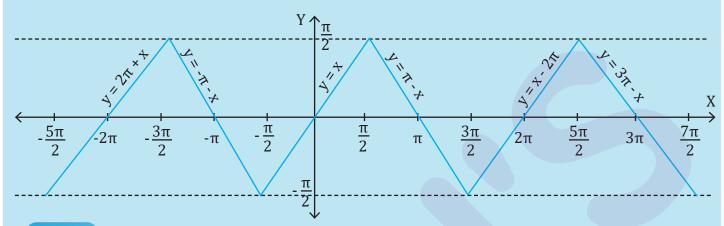
Solution

$$\cos(\cos^{-1}(x)) = x ; x \in [-1, 1]$$
$$\Rightarrow \cos\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right) = -\frac{\sqrt{3}}{2}$$

Property 3: Properties of Inverse Function $f^{-1}(f(x))$

1. $\sin^{-1}(\sin(x))$

Graph of $y = \sin^{-1}(\sin(x))$



Proof

Consider $y = \sin^{-1}(\sin(x))$

We know that
$$\sin^{-1}(\sin(x)) \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

 $\Rightarrow y \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

Also, $y = \sin^{-1}(\sin(x)) \Rightarrow \sin y = \sin x$

That is, $y = n\pi + (-1)^n x$, $n \in \mathbb{Z}$...(i)

 $\sin^{-1}(\sin(x)) = n\pi + (-1)^n x, n \in \mathbb{Z}$

The graph of $sin^{-1}(sin(x))$ will be a straight line.

We have to ensure that
$$(n\pi + (-1)^n x) \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
 as $\sin^{-1}(\sin(x)) \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

Case 1:
$$x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

If
$$x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
, then $n = 0$ in (i)

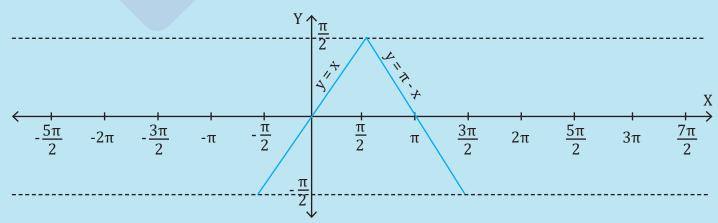
$$\Rightarrow$$
 y = x

Case 2:
$$x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$

If
$$x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$
, then $n = 1$ in (i)

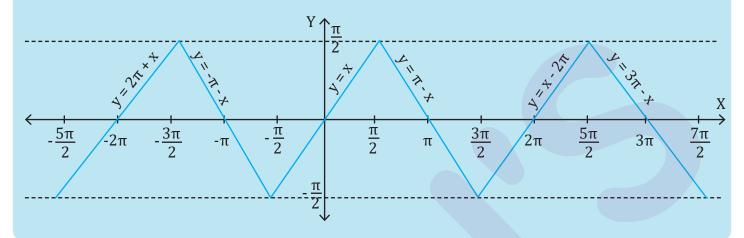
$$\Rightarrow$$
 y = π - x

Let us plot the graph of $y = \sin^{-1}(\sin(x))$ for $x \in \left[\frac{-\pi}{2}, \frac{3\pi}{2}\right]$



We also know that if g(x) is periodic with period T, then f(g(x)) is also periodic with period T. That means the period of $\sin^{-1}(\sin(x))$ is 2π , and we have already plotted the graph for 2π length. So, the graph will simply repeat itself after every 2π interval.

The graph of $y = \sin^{-1}(\sin(x))$ is as follows:

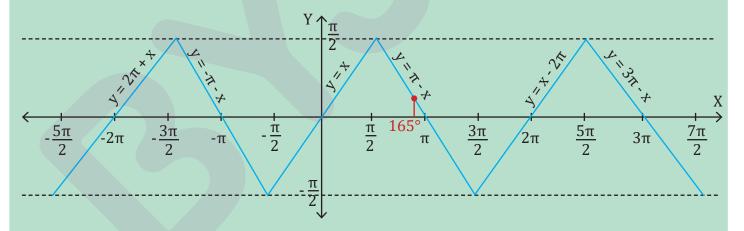


Evaluate: sin⁻¹(sin 165°).

Solution

Step 1: 165° lies between 90° and 180°.

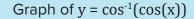
From the graph, it is clear that $y = \sin^{-1}(\sin(x))$ will follow $y = \pi - x$

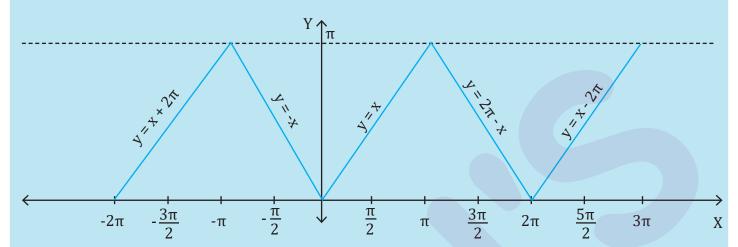


Step 2:

 $\sin^{-1}(\sin 165^\circ) = 180^\circ - 165^\circ = 15^\circ$

2. $cos^{-1}(cos(x))$





Proof

Consider $y = cos^{-1}(cos(x))$

We know that $\cos^{-1}(\cos(x)) \in [0, \pi]$

$$\Rightarrow$$
 y \in [0, π]

Also, $y = \cos^{-1}(\cos(x)) \Rightarrow \cos y = \cos x$

That is, $y = 2n\pi \pm x$, $n \in \mathbb{Z}$...(i)

 $\cos^{-1}(\cos(x)) = 2n\pi \pm x$, $n \in \mathbb{Z}$

 \Rightarrow The graph of $\cos^{-1}(\cos(x))$ will be a straight line.

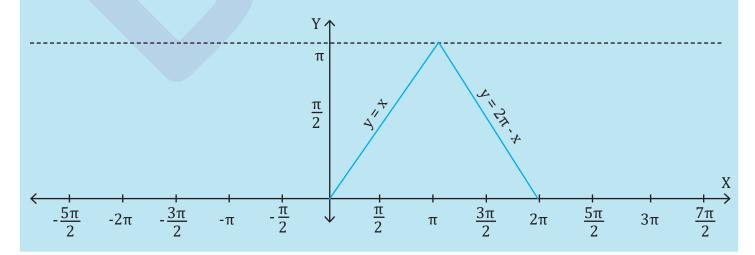
We have to ensure that $(2n\pi \pm x) \in [0, \pi]$ as $\cos^{-1}(\cos(x)) \in [0, \pi]$

Case 1: $x \in [0, \pi]$ If $x \in [0, \pi]$, then n = 0 in (i)

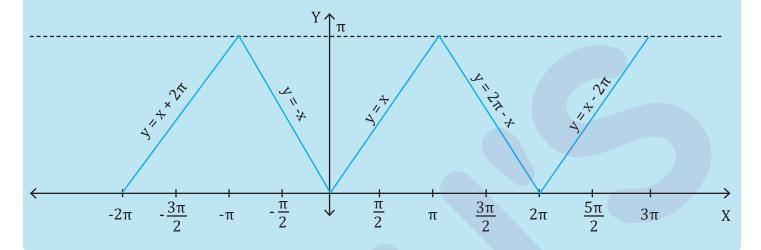
 \Rightarrow y = x

Case 2: $x \in [\pi, 2\pi]$ If $x \in [\pi, 2\pi]$, then n = 1 in (i) \Rightarrow y = $2\pi - x$

Let us plot the graph of $y = \cos^{-1}(\cos(x))$ for $x \in [0, 2\pi]$



We also know that if g(x) is periodic with period T, then f(g(x)) is also periodic with period T. That means the period of $\cos^{-1}(\cos(x))$ is 2π , and we have already plotted the graph for 2π length. So, the graph will simply repeat itself after every 2π interval. The graph of $y = \cos^{-1}(\cos(x))$ is as follows:

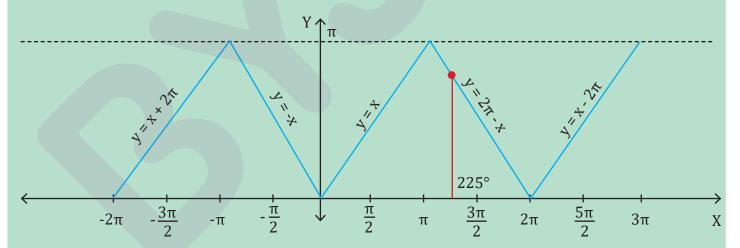


Evaluate: cos⁻¹(cos 225°).

Solution

Step 1: 225° lies between 180° and 360°.

From the graph, it is clear that $y = cos^{-1}(cos(x))$ will follow $y = 2\pi - x$



Step 2:

 $\cos^{-1}(\cos 225^{\circ}) = 360^{\circ} - 225^{\circ} = 135^{\circ}$

Let $f: [0, 4\pi] \to [0, \pi]$ be defined by $f(x) = \cos^{-1}(\cos x)$. Find the

(10-x)

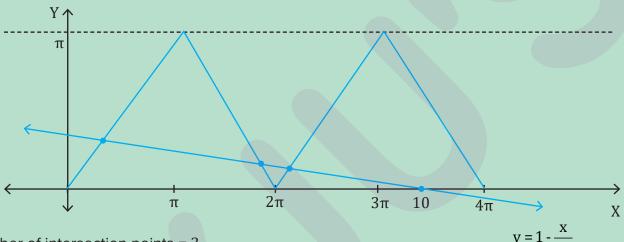
JEE ADVANCED 2014

number of points for $x \in [0, 4\pi]$ satisfying the equation $f(x) = \frac{(10 - x)^2}{10}$

Solution

Step 1: Let us plot $y = \cos^{-1}(\cos x)$ and $y = \frac{(10 - x)}{10}$ for $x \in [0, 4\pi]$. The number of solutions will be equal to the number of intersection points.

Step 2:



Number of intersection points = 3

Hence, $f(x) = \frac{(10 - x)}{10}$ has 3 solutions in $x \in [0, 4\pi]$.

Concept Check

1. Evaluate the following:

(a)
$$2 \cot^{-1} \left(-\sqrt{3} \right)$$

$$(b) \sin \left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$$

2. Evaluate the following:

(a)
$$\csc\left(\csc^{-1}\left(\frac{1}{2}\right)\right)$$

$$(b) \sin(\sin^{-1}(2))$$

- 3. Evaluate $\sin^{-1}(\sin 7)$.
- 4. Evaluate cos⁻¹(cos (7)).

Summary Sheet

Key formulae

• Properties of inverse function f¹(-x)

1.
$$\sin^{-1}(-x) = -\sin^{-1}x$$
; $|x| \le 1$

2.
$$tan^{-1}(-x) = -tan^{-1}x; x \in \mathbb{R}$$

3.
$$cosec^{-1}(-x) = -cosec^{-1}x$$
; $|x| \ge 1$

4.
$$\cos^{-1}(-x) = \pi - \cos^{-1}x$$
; $|x| \le 1$

5.
$$\cot^{-1}(-x) = \pi - \cot^{-1} x$$
; $x \in \mathbb{R}$

6.
$$\sec^{-1}(-x) = \pi - \sec^{-1} x$$
; $|x| \ge 1$

• Properties of inverse function $f(f^{-1}(x))$

1.
$$\sin(\sin^{-1}(x)) = x; x \in [-1,1]$$

2.
$$\cos(\cos^{-1}(x)) = x$$
; $x \in [-1,1]$

3.
$$tan(tan^{-1}(x)) = x; x \in \mathbb{R}$$

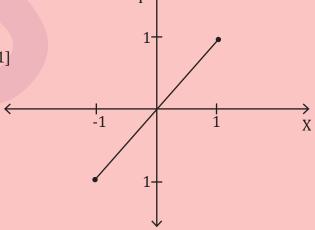
4.
$$\cot(\cot^{-1}(x)) = x; x \in \mathbb{R}$$

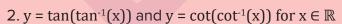
5.
$$cosec(cosec^{-1}(x)) = x; |x| \ge 1$$

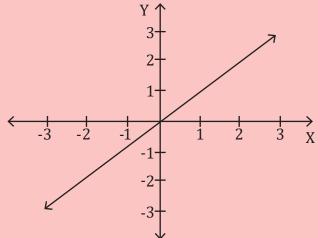
6.
$$sec(sec^{-1}(x)) = x; |x| \ge 1$$

Graphs

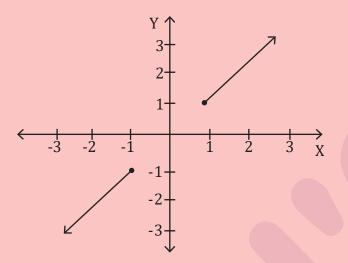
1.
$$y = \sin(\sin^{-1}(x))$$
 and $y = \cos(\cos^{-1}(x))$ for $x \in [-1, 1]$



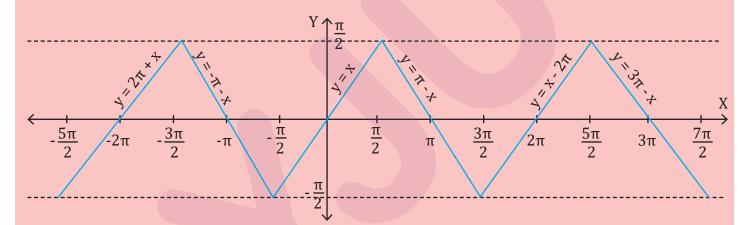




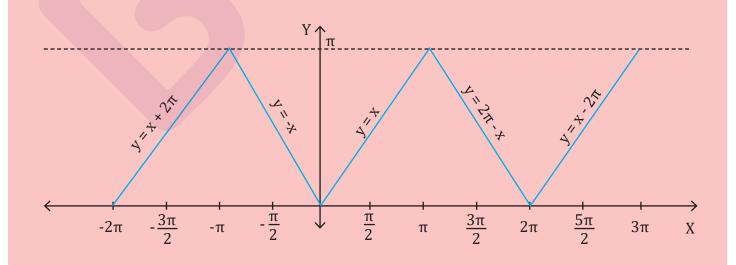
3. $y = cosec(cosec^{-1}(x))$ and $y = sec(sec^{-1}(x))$ for $|x| \ge 1$



4. $y = \sin^{-1}(\sin(x))$



5. $y = cos^{-1}(cos(x))$



Mind Map

Properties of ITF

Properties of f⁻¹(-x)

Properties of $f(f^{-1}(x))$

Properties of $f^{-1}(f(x))$

Self-Assessment

Evaluate $\cos^{-1} \cos \left(\frac{7\pi}{6} \right)$.

Answers

Concept Check

1.

$$2\cot^{-1}(-\sqrt{3}) = 2(\pi - \cot^{-1}\sqrt{3})$$

$$=2\left(\pi-\frac{\pi}{6}\right)=\frac{5\pi}{3}$$

$$\sin\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right) = \sin\left(\frac{\pi}{2} + \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)\right)$$

Step 2:

$$=\sin\left(\frac{\pi}{2}+\frac{\pi}{3}\right)=\cos\frac{\pi}{3}=\frac{1}{2}$$

2.

(a)

Domain of $\operatorname{cosec}^{-1} x \text{ is } |x| \ge 1$

 $\therefore \csc\left(\csc^{-1}\left(\frac{1}{2}\right)\right) \text{ is not defined.}$

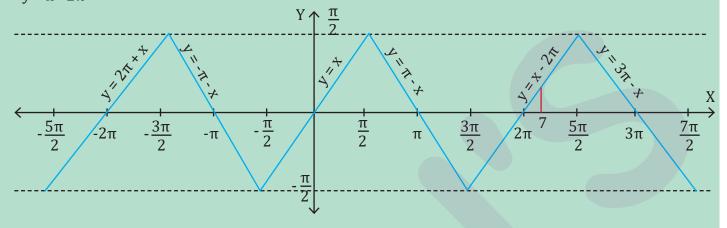
(b)

Domain of $\sin^{-1} x$ is $x \in [-1, 1]$

 $\therefore \sin(\sin^{-1}(2))$ is not defined.

3.

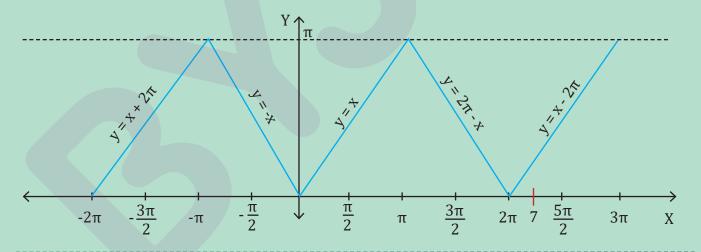
Step 1: 7 lies between 2π and $\frac{5\pi}{2}$. From the graph, it is clear that $y = \sin^{-1}(\sin(x))$ will follow $y = x - 2\pi$



Step 2: $\sin^{-1}(\sin 7) = 7 - 2\pi$

4.

Step 1: 7 lies between 2π and 3π . From the graph, it is clear that $y = cos^{-1}(cos(x))$ will follow $y = x - 2\pi$

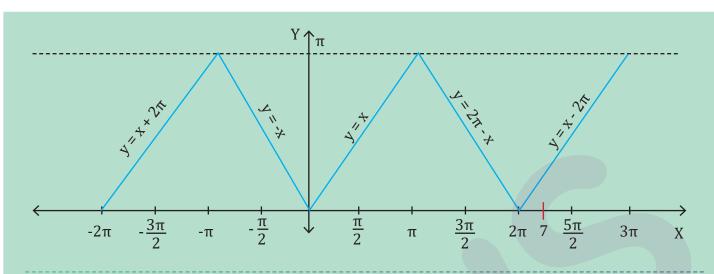


Step 2: $\cos^{-1}(\cos 7) = 7 - 2\pi$

Self-Assessment

Step 1: $\frac{7\pi}{6}$ lies between π and 2π .

From the graph, it is clear that $y = \cos^{-1}(\cos(x))$ will follow $y = 2\pi - x$



Step 2:
$$\cos^{-1}\cos\left(\frac{7\pi}{6}\right) = 2\pi - \frac{7\pi}{6} = \frac{5\pi}{6}$$

INVERSE TRIGONOMETRIC FUNCTIONS

MORE ON PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS

What you already know

- · Function and classification of functions
- · Basic graphs of functions
- Domain, range, and graph of inverse trigonometric functions

What you will learn

- Function of the form $f^{-1}(f(x))$
- Properties of inverse trigonometric function $f^1\!\left(\frac{1}{x}\right)$

Properties of Inverse Function $f^{-1}(f(x))$ (cont.)

Let us consider function $y = tan^{-1}(tan x)$. Given function is an inverse tangent function

$$\therefore$$
 Range of the function is $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Also, x is an argument of the tangent function

∴ Domain of the function is
$$x \in \mathbb{R}$$
- $\left\{ (2n+1)\frac{\pi}{2} \right\}$

As the value of the function oscillates in the range $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, the function is periodic and

depends on the period of tan x.

We know that the period of $\tan x$ is π .

∴ Period of $y = tan^{-1}(tan x)$ is also π So, let's plot the graph of $y = tan^{-1}(tan x)$ for the length π .

$$y = tan^{-1}(tan x)$$

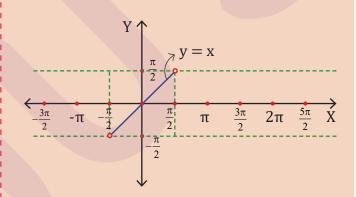
$$\Rightarrow$$
 tan y = tan x

$$\Rightarrow$$
 y = n π + x ... (i)

 \Rightarrow Graph of y = tan⁻¹(tan x) will be a straight line with slope 1.

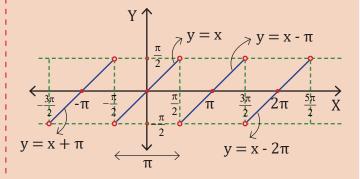
Now, by substituting n=0, we get the relation between x and y for the first interval, y=x

So, for the first interval, the function $y = tan^{-1}(tan x)$ can be plotted as shown in the figure above.



As the function is periodic with the period π , the slope of the graph is always 1.

Hence, for all the intervals graph of the function $y = \tan^{-1}(\tan x)$ can be plotted as shown in the figure below.



Let us consider the function $y = \cot^{-1}(\cot x)$. Given function is an inverse cotangent function

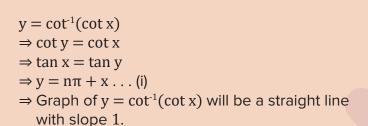
 \therefore Range of the function is $y \in (0, \pi)$

Also, x is the argument of the tangent function

∴ Domain of the function is $x \in \mathbb{R}$ - $\{n\pi\}$; $n \in \mathbb{Z}$ As the value of the function oscillates in the range $(0, \pi)$, the function is periodic and depends on the period of cot x.

We know that the period of $\cot x$ is π .

∴ Period of $y = \cot^{-1}(\cot x)$ is also π So, let's plot the graph of $y = \cot^{-1}(\cot x)$ for the length π .



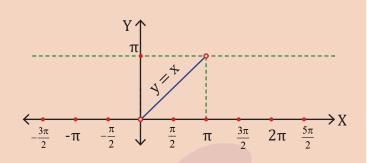
Now, by substituting n=0, we get the relation between x and y for the first interval,

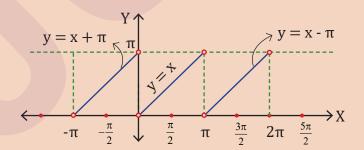
y = x

So, the first interval the function $y = \cot^{-1}(\cot x)$ can be plotted as shown in the figure above.

As the function is periodic with the period π , the slope of the graph is always 1.

Hence, all the interval graphs of the function $y = \cot^{1}(\cot x)$ can be plotted as shown in the adjacent figure.





Find $\sin^{-1}(\sin 5) + \cos^{-1}(\cos 10) + \tan^{-1}(\tan (-6)) + \cot^{-1}(\cot (-10))$.

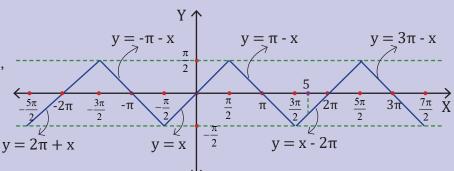
Solution

Step 1:

From the graph of $y = \sin^{-1}(\sin x)$, we get,

For
$$x = 5$$
, $y = x - 2\pi$
 $\Rightarrow y = 5 - 2\pi$

$$\Rightarrow \sin^{-1}(\sin 5) = 5 - 2\pi \dots (i)$$



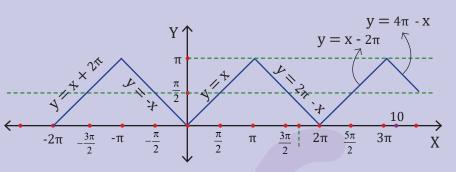
Step 2:

From the graph of $y = \cos^{-1}(\cos x)$, we get,

For
$$x = 10$$
, $y = 4\pi - x$

$$\Rightarrow$$
 y = 4π - 10

$$\Rightarrow \cos^{-1}(\cos 10) = 4\pi - 10 \dots$$
 (ii)

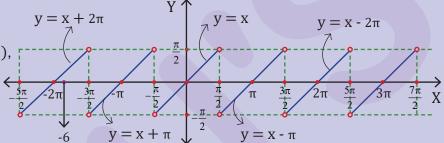


Step 3:

From the graph of $y = tan^{-1}(tan(x))$, For x = -6, $y = x + 2\pi$, we get,

$$\Rightarrow$$
 y = $2\pi - 6$

$$\Rightarrow \tan^{-1}(\tan{(-6)}) = 2\pi - 6 \dots$$
 (iii)

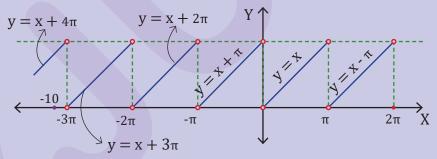


Step 4:

From the graph of $y = \cot^{1}(\cot(x))$, For x = -10, $y = x + 4\pi$, we get,

$$\Rightarrow y = 4\pi - 10$$

$$\Rightarrow$$
 cot⁻¹(cot (-10)) = 4π - 10 (iv)



Step 5:

$$\sin^{-1}(\sin 5) + \cos^{-1}(\cos 10) + \tan^{-1}(\tan (-6)) + \cot^{-1}(\cot (-10))$$

$$= 5 - 2\pi + 4\pi - 10 + 2\pi - 6 + 4\pi - 10$$
 (from (i), (ii), (iii), (iv))

$$= 8\pi - 21$$

Let us consider the function $y = sec^{-1}(sec x)$. Given function is an inverse secant function

$$\therefore$$
 Range of the function is $y \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$

Also, x is the argument of the secant function

$$\therefore$$
 Domain of the function is $x \in \mathbb{R} - \left\{ (2n+1)\frac{\pi}{2} \right\}$

We know that the period of $\sec x$ is 2π .

∴ Period of
$$y = sec^{-1}(sec\ x)$$
 is also 2π
So, let's plot the graph of $y = sec^{-1}(sec\ x)$ for the length 2π .

$$\Rightarrow$$
 y = sec⁻¹(sec x)

$$\Rightarrow$$
 sec y = sec x

$$\Rightarrow$$
 cos x = cos y

$$\Rightarrow$$
 y = 2n π ± x . . . (i)

Hence, the graph of the function $y = \sec^{-1}(\sec x)$ will be a replica of the graph of the function $y = \cos^{-1}(\cos x)$, except that $y = \sec^{-1}(\sec x)$ is not defined for

$$x = \left\{ (2n+1)\frac{\pi}{2} \right\}; n \in \mathbb{Z}$$

Now, let us consider the function $y = \csc^{-1}(\csc x)$.

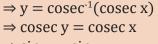
Given function is an inverse cosecant function

Also, \boldsymbol{x} is the argument of the cosecant function

 \div Domain of the function is $x\in\mathbb{R}$ - $\{n\pi\}$ We know that the period of cosec x is 2π

∴ Period of $y = cosec^{-1}(cosec x)$ is also 2π So, let's plot the graph of

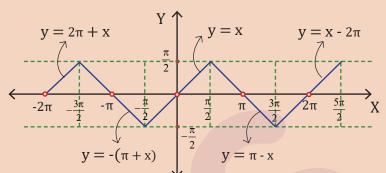
 $y = cosec^{-1}(cosec x)$ for the length 2π .



$$\Rightarrow \sin y = \sin x$$

$$\Rightarrow y = n\pi + (-1)^n x \dots (i)$$

Hence, the graph of the function $y = cosec^{-1}(cosec\ x)$ will be a replica of the graph of the function $y = sin^{-1}(sin\ x)$, except $y = cosec^{-1}(cosec\ x)$ is not defined for $x = n\pi$; $n \in \mathbb{Z}$



Property 3: Function of the Form $f^1(f(x))$ (For the Principal Values of x Only)

•
$$\sin^{-1}(\sin(x)) = x; \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

•
$$\cos^{-1}(\cos(x)) = x; \forall x \in [0, \pi]$$

•
$$tan^{-1}(tan(x)) = x; \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

•
$$\cot^{-1}(\cot(x)) = x; \forall x \in (0, \pi)$$

•
$$\operatorname{cosec}^{-1}(\operatorname{cosec} x) = x; \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$

•
$$\sec^{-1}(\sec(x)) = x; \forall x \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$$

If $x^2 + 2x + n > 10 + \sin^{-1}(\sin 9) + \tan^{-1}(\tan 9)$ for all real numbers x, then the possible value of n can be:

(a) 11

(b) 12

(c) 13

(d) 14

Solution

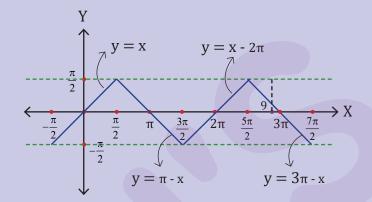
Step 1:

From the graph of $y = \sin^{-1}(\sin x)$, we get,

For
$$x = 9$$
, $y = 3\pi - x$

$$\Rightarrow$$
 y = 3π - 9

$$\Rightarrow \sin^{-1}(\sin 9) = 3\pi - 9 \dots (i)$$



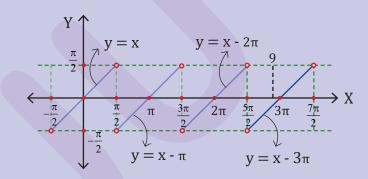
Step 2:

From the graph of $y = tan^{-1}(tan(x))$

For
$$x = 9$$
, $y = x - 3\pi$, we get,

$$\Rightarrow$$
 y = 9 - 3 π

$$\Rightarrow \tan^{-1}(\tan 9) = 9 - 3\pi \dots \text{ (ii)}$$



Step 3:

$$x^2 + 2x + n > 10 + \sin^{-1}(\sin 9) + \tan^{-1}(\tan 9)$$

$$x^2 + 2x + n > 10 + 3\pi - 9 + 9 - 3\pi$$
 (from (i) and (ii))

$$x^2 + 2x + n > 10$$

$$x^2 + 2x + (n - 10) > 0$$

Here, a > 0

We know that for a > 0, $y = ax^2 + bx + c > 0 \ \forall \ x \in \mathbb{R}$ only if D < 0

$$2^2 - 4(n - 10) < 0$$

$$4 - 4n + 40 < 0$$

n > 11

: Options (b), (c), and (d) are the correct answers.

Property 4: Properties of Inverse Function $f^{-1}\left(\frac{1}{x}\right)$

•
$$cosec^{-1}(x) = sin^{-1}\left(\frac{1}{x}\right); |x| \ge 1$$

Proof

Let
$$\csc^{-1}(x) = \theta$$
; $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$
 $\csc \theta = x$

$$\Rightarrow \frac{1}{\sin \theta} = x$$

$$\Rightarrow \sin \theta = \left(\frac{1}{x}\right)$$

$$\Rightarrow \theta = \sin^{-1}\left(\frac{1}{x}\right)$$

$$\Rightarrow$$
 cosec⁻¹(x) = sin⁻¹ $\left(\frac{1}{x}\right)$

As
$$\frac{1}{x} \neq 0$$
, so $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\}$

Similarly,

•
$$\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right); |x| \ge 1$$

$$\cdot \cot^{-1}(x) = \frac{\tan^{-1}\left(\frac{1}{x}\right); x > 0}{\pi + \tan^{-1}\left(\frac{1}{x}\right); x < 0}$$

Justification:

Range of $\cot^{-1}x$ is $(0, \pi)$, but the range of $\tan^{-1}x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. So, we can not equate L.H.S. and R.H.S. directly.

For x > 0, both L.H.S. and R.H.S. lie in the interval $\left(0, \frac{\pi}{2}\right)$.

For x < 0, L.H.S. lies in the interval $\left(\frac{\pi}{2},\pi\right)$, and R.H.S. lies in the interval $\left(-\frac{\pi}{2},0\right)$. So, π is added

to the R.H.S. to make the range of L.H.S. and R.H.S. equal

Note

 $\sin^{-1}x = \csc^{-1}\left(\frac{1}{x}\right) \to \text{Not identical, because L.H.S. } \sin^{-1}x \text{ is defined for } x = 0, \text{ but R.H.S. } \csc^{-1}\left(\frac{1}{x}\right)$ is not defined for x = 0.

Due to the same reason, $\sec^{\text{-}1}(x) = \cos^{\text{-}1}\left(\frac{1}{x}\right) \to \text{Not identical}$

Find the value of $\sec^{-1}\left(\sqrt{2}\right) + \cot^{-1}\left(-\sqrt{2}\right) + \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$.

Solution

Step 1:

Given,

$$\sec^{-1}\left(\sqrt{2}\right) + \cot^{-1}\left(-\sqrt{2}\right) + \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

$$= \sec^{-1}\left(\sqrt{2}\right) + \pi + \tan^{-1}\left(-\frac{1}{\sqrt{2}}\right) + \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) \quad (\cot^{-1}(x) = \pi + \tan^{-1}\left(\frac{1}{x}\right); x < 0)$$

$$= \sec^{-1}\left(\sqrt{2}\right) + \pi - \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) + \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) (\tan^{-1}(-x) = -\tan^{-1}(x))$$

$$= \sec^{-1}\left(\sqrt{2}\right) + \pi$$

Step 2:

Let
$$\sec^{-1}(\sqrt{2}) = \alpha$$

$$\Rightarrow$$
 sec $\alpha = \sqrt{2}$

$$\Rightarrow$$
 cos $\alpha = \frac{1}{\sqrt{2}}$

$$\Rightarrow \alpha = \frac{\pi}{4}$$

$$\therefore \sec^{-1}\left(\sqrt{2}\right) + \pi = \frac{\pi}{4} + \pi = \frac{5\pi}{4}$$

Property 5: Properties of some particular Inverse Functions

- $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$; $x \in [-1, 1]$
- $\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$; $|x| \ge 1$
- $tan^{-1}x + cot^{-1}x = \frac{\pi}{2}$; $x \in \mathbb{R}$

Proof

Let
$$\sin^{-1}x = \theta$$
; $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\Rightarrow \sin \theta = x$$

$$\Rightarrow \cos\left(\frac{\pi}{2} - \theta\right) = x$$

$$\because -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$$

$$\Rightarrow \frac{\pi}{2} \ge -\theta \ge -\frac{\pi}{2}$$

$$\Rightarrow \frac{\pi}{2} + \frac{\pi}{2} \ge -\theta + \frac{\pi}{2} \ge -\frac{\pi}{2} + \frac{\pi}{2}$$

$$\Rightarrow \pi \geq \frac{\pi}{2} - \theta \geq 0$$

Which is the range of the inverse cosine function

$$\Rightarrow \frac{\pi}{2} - \sin^{-1}x = \cos^{-1}x$$

$$\Rightarrow \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$$

Similarly, the other two results can also be proved.

Find the range of $f(x) = \sin^{-1}x + \cos^{-1}x + \tan^{-1}x$.

Solution

Step 1:

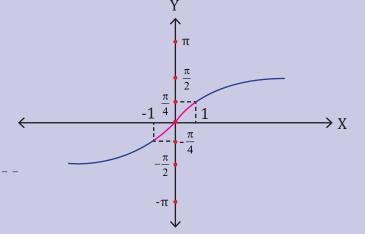
Domain of $\sin^{-1}x$ is $x \in [-1, 1]$

Domain of $\cos^{-1}x$ is $x \in [-1, 1]$

Domain of $tan^{-1}x$ is $x \in \mathbb{R}$

 $\therefore \text{ Domain of } f(x) = \sin^{-1}x + \cos^{-1}x + \tan^{-1}x \text{ is}$

 $x \in [-1, 1]$



Step 2:

We know that for $x \in [-1, 1]$,

$$\sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2}$$

From the graph of the inverse tangent function,

for
$$x \in [-1, 1], -\frac{\pi}{4} \le \tan^{-1}(x) \le \frac{\pi}{4}$$

$$\Rightarrow -\frac{\pi}{4} + \frac{\pi}{2} \le \sin^{-1}(x) + \cos^{-1}(x) + \tan^{-1}(x) \le \frac{\pi}{4} + \frac{\pi}{2}$$

$$\Rightarrow \frac{\pi}{4} \le f(x) \le \frac{3\pi}{4}$$

 \therefore Range of the function f(x) is $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$

The greatest and least value of $(\sin^{-1}(x))^2 + (\cos^{-1}(x))^2$ are ____ and ____, respectively.

(a)
$$\frac{5\pi^2}{4}$$
, $\frac{\pi^2}{8}$ (b) $\frac{\pi}{2}$, $-\frac{\pi}{2}$ (c) $\frac{\pi^2}{4}$, $-\frac{\pi^2}{4}$ (d) $\frac{\pi^2}{4}$, 0

(b)
$$\frac{\pi}{2}$$
, $-\frac{\pi}{2}$

(c)
$$\frac{\pi^2}{4}$$
, $-\frac{\pi^2}{4}$

(d)
$$\frac{\pi^2}{4}$$
, 0

Solution

Step 1:

Given,

$$y = (\sin^{-1}x)^2 + (\cos^{-1}x)^2$$

$$\Rightarrow$$
 y = $(\sin^{-1}x)^2 + (\cos^{-1}x)^2 + 2\sin^{-1}x\cos^{-1}x - 2\sin^{-1}x\cos^{-1}x$

$$\Rightarrow$$
 y = $(\sin^{-1}x + \cos^{-1}x)^2 - 2\sin^{-1}x \cos^{-1}x$

$$\Rightarrow y = \left(\frac{\pi}{2}\right)^2 - 2\sin^{-1}x\left(\frac{\pi}{2} - \sin^{-1}x\right)$$

$$\Rightarrow y = \frac{\pi^2}{4} - \pi \sin^{-1} x + 2 \left(\sin^{-1} x \right)^2$$

$$\Rightarrow y = 2\left\{ \left(\sin^{-1} x\right)^2 - \frac{\pi}{2}\sin^{-1} x + \frac{\pi^2}{8} \right\}$$

$$\Rightarrow y = 2 \left[\left(\sin^{-1} x \right)^2 - 2 \left(\sin^{-1} x \right) \frac{\pi}{4} + \left(\frac{\pi}{4} \right)^2 - \left(\frac{\pi}{4} \right)^2 + \frac{\pi^2}{8} \right]$$

$$\Rightarrow y = 2 \left[\left(\sin^{-1} x - \frac{\pi}{4} \right)^2 + \frac{\pi^2}{16} \right]$$

Step 2:

$$\therefore y_{\min} = 2 \left[0 + \frac{\pi^2}{16} \right] = \frac{\pi^2}{8}$$

and
$$y_{\text{max}} = 2 \left[\left(-\frac{\pi}{2} - \frac{\pi}{4} \right)^2 + \frac{\pi^2}{16} \right]$$

$$=2\left(\frac{9\pi^2}{16}+\frac{\pi^2}{16}\right)=\frac{5\pi^2}{4}$$

∴ Option (a) is the correct option.

AIEEE 2007

- 1. If $\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$, then the value of x is:
 - (a) 1
- (b) 3
- (c) 4
- (d) 5

2. Solve $\sin^{-1}(x^2 - 2x + 1) + \cos^{-1}(x^2 - x) = \frac{\pi}{2}$

Summary Sheet

Key Takeaways

- $\sin^{-1}(\sin(x)) = x; \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- $\cos^{-1}(\cos(x)) = x; \forall x \in [0, \pi]$
- $tan^{-1}(tan(x)) = x; \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
- $\cot^{-1}(\cot(x)) = x; \forall x \in (0, \pi)$
- $\operatorname{cosec}^{-1}(\operatorname{cosec} x) = x; \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \{0\}$
- $\sec^{-1}(\sec(x)) = x; \forall x \in [0, \pi] \left\{\frac{\pi}{2}\right\}$
- $\csc^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right); |x| \ge 1$
- $\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right); |x| \ge 1$

•
$$\cot^{-1}(x) = -\frac{\tan^{-1}\left(\frac{1}{x}\right); x > 0}{\pi + \tan^{-1}\left(\frac{1}{x}\right); x < 0}$$

- $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$; $x \in [-1, 1]$
- $\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$; $|x| \ge 1$
- $tan^{-1}x + cot^{-1}x = \frac{\pi}{2}$; $x \in \mathbb{R}$

Mind Map

Properties of inverse function

$$f^{-1}(x) + g^{-1}(x) = \frac{\pi}{2}$$

Properties of inverse function

Properties of inverse function $f^{-1}\left(\frac{1}{x}\right)$

Function of the form $f^{-1}(f(x))$

Self-Assessment

A value of x satisfying the equation $\sin[\cot^{-1}(1+x)] = \cos[\tan^{-1}x]$ is:

(a)
$$\frac{1}{2}$$

(d)
$$-\frac{1}{2}$$

Answers

Concept Check

1.

Step 1:

Given,

$$\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$$

$$\sin^{-1}\left(\frac{x}{5}\right) = \frac{\pi}{2} - \csc^{-1}\left(\frac{5}{4}\right)$$

$$\sin^{-1}\left(\frac{x}{5}\right) = \sec^{-1}\left(\frac{5}{4}\right)$$

$$\sin^{-1}\left(\frac{x}{5}\right) = \sec^{-1}\left(\frac{5}{4}\right)$$
 $(\because \sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}, |x| \ge 1)$

$$\sin^{-1}\left(\frac{x}{5}\right) = \cos^{-1}\left(\frac{4}{5}\right)$$

$$\sin^{-1}\left(\frac{x}{5}\right) = \cos^{-1}\left(\frac{4}{5}\right) \qquad (\because \sec^{-1}x = \cos^{-1}\left(\frac{1}{x}\right); |x| \ge 1)$$

Step 2:

Let
$$\cos^{-1}\left(\frac{4}{5}\right) = \theta, \theta \in \left(0, \frac{\pi}{2}\right)$$

$$\Rightarrow \cos \theta = \frac{4}{5}$$

Here, θ is an acute angle in the right angle triangle, as shown in the figure.

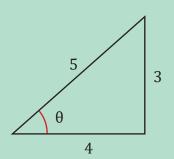
$$\sin^{-1}\left(\frac{x}{5}\right) = \theta$$

$$\Rightarrow \frac{x}{5} = \sin \theta$$

$$\Rightarrow \frac{x}{5} = \frac{3}{5}$$
 (From the triangle)

$$\Rightarrow$$
 x = 3

: Option (b) is the correct answer.



2.

$$-1 \le x^2 - 2x + 1 \le 1 \dots$$
 (i)

$$-1 \le x^2 - x \le 1 \dots$$
 (ii)

Given,
$$\sin^{-1}(x^2 - 2x + 1) + \cos^{-1}(x^2 - x) = \frac{\pi}{2}$$

$$\Rightarrow x^2 - 2x + 1 = x^2 - x \quad [\sin^{-1}(A) + \cos^{-1}(A) = \frac{\pi}{2}]$$

$$\Rightarrow$$
 2x - x = 1

$$\Rightarrow x = 1$$

x = 1 satisfies both (i) and (ii)

Hence, x = 1 is the solution of $\sin^{-1}(x^2 - 2x + 1) + \cos^{-1}(x^2 - x) = \frac{\pi}{2}$

Self Assessment

Step 1:

Given equation is $sin[cot^{-1}(1+x)] = cos[tan^{-1}x]$

Let
$$\cot^{-1}(1 + x) = a$$

$$\Rightarrow$$
 cot a = 1 + x

We know,

cosec a =
$$\sqrt{1 + \cot^2 a} = \sqrt{1 + (1 + x)^2} = \sqrt{x^2 + 2x + 2}$$

Also,
$$\sin a = \frac{1}{\csc a}$$

$$\Rightarrow \sin a = \frac{1}{\sqrt{x^2 + 2x + 2}}$$

$$\Rightarrow a = \sin^{-1}\left(\frac{1}{\sqrt{x^2 + 2x + 2}}\right)$$

Let $tan^{-1}x = b$

$$\Rightarrow$$
 x = tan b

We know that $\sec b = \sqrt{1 + \tan^2 b} = \sqrt{1 + x^2}$

Also,
$$cosb = \frac{1}{secb}$$

$$\Rightarrow \cos b = \frac{1}{\sqrt{1+x^2}}$$

$$\Rightarrow b = \cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right)$$

Step 2:

Given equation is $\sin[\cot^{-1}(1+x)] = \cos[\tan^{-1}x]$

$$\Rightarrow \sin\left(\sin^{-1}\left(\frac{1}{\sqrt{x^2 + 2x + 2}}\right)\right) = \cos\left(\cos^{-1}\left(\frac{1}{\sqrt{1 + x^2}}\right)\right)$$

$$\Rightarrow \frac{1}{\sqrt{x^2 + 2x + 2}} = \frac{1}{\sqrt{1 + x^2}}$$

$$\Rightarrow \sqrt{1+x^2} = \sqrt{x^2 + 2x + 2}$$

$$\Rightarrow$$
 1 + x² = x² + 2x + 2 (Squaring on both sides)

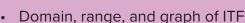
$$\Rightarrow 2x = -1$$

$$\Rightarrow$$
 x = $-\frac{1}{2}$

INVERSE TRIGONOMETRIC FUNCTIONS

INTERCONVERSION OF INVERSE TRIGONOMETRIC FUNCTIONS

What you will learn



- Properties and graphs of the inverse

What you already know

- function $f^{-1}(f(x))$
- Interconversion of different ITF
- Sum of angles in terms of tan-1 x
- Difference of angles in terms of tan⁻¹ x

Interconversion of Different ITF

Consider a \triangle ABC in which \triangle BAC = θ

We know,

$$\sin \theta = \frac{p}{h} \Rightarrow \theta = \sin^{-1} \left(\frac{p}{h}\right)$$

$$\cos \theta = \frac{b}{h} \Rightarrow \theta = \cos^{-1} \left(\frac{b}{h} \right)$$

$$\tan \theta = \frac{p}{b} \Rightarrow \theta = \tan^{-1} \left(\frac{p}{b}\right)$$

$$\csc \theta = \frac{h}{p} \Rightarrow \theta = \csc^{-1} \left(\frac{h}{p}\right)$$

$$\sec \theta = \frac{h}{b} \Rightarrow \theta = \sec^{-1} \left(\frac{h}{b} \right)$$

$$\cot \theta = \frac{b}{p} \Rightarrow \theta = \cot^{-1} \left(\frac{b}{p} \right)$$

For x > 0,

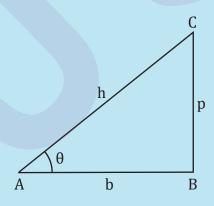
$$\sin \theta = \frac{x}{1} \Rightarrow \theta = \sin^{-1} x$$

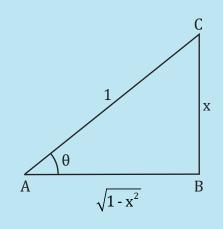
$$\cos\theta = \sqrt{1 - x^2} \Rightarrow \theta = \sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}$$

$$\tan \theta = \frac{x}{\sqrt{1 - x^2}} \Rightarrow \theta = \sin^{-1} x = \tan^{-1} \left(\frac{x}{\sqrt{1 - x^2}}\right)$$

$$\csc \theta = \frac{1}{x} \Rightarrow \theta = \sin^{-1} x = \csc^{-1} \left(\frac{1}{x}\right)$$

$$\sec \theta = \frac{1}{\sqrt{1-x^2}} \Rightarrow \theta = \sin^{-1} x = \sec^{-1} \left(\frac{1}{\sqrt{1-x^2}}\right)$$





$$\cot \theta = \frac{\sqrt{1 - x^2}}{x} \Rightarrow \theta = \sin^{-1} x = \cot^{-1} \left(\frac{\sqrt{1 - x^2}}{x} \right)$$

Find the value of the expression $\sin\left(\frac{1}{2}\cot^{-1}\left(-\frac{3}{4}\right)\right)$

Solution

Step 1:

We know that, $\cot^{-1}(-x) = \pi - \cot^{-1}(x)$

$$\Rightarrow \sin\left(\frac{1}{2}\cot^{-1}\left(-\frac{3}{4}\right)\right) = \sin\left(\frac{1}{2}\left(\pi - \cot^{-1}\left(\frac{3}{4}\right)\right)\right)$$

$$= \sin\left(\frac{\pi}{2} - \frac{\cot^{-1}\left(\frac{3}{4}\right)}{2}\right)$$

$$= \cos \left(\frac{\cot^{-1} \left(\frac{3}{4} \right)}{2} \right)$$

Step 2:

Let
$$\cot^{-1} \frac{3}{4} = \theta \Rightarrow \cot \theta = \frac{3}{4}$$

$$\Rightarrow \cos\left(\frac{\cot^{-1}\left(\frac{3}{4}\right)}{2}\right) = \cos\left(\frac{\theta}{2}\right)$$

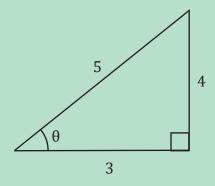
Since,
$$\cos \theta = \frac{3}{5}$$

$$\Rightarrow 2\cos^2\frac{\theta}{2} - 1 = \frac{3}{5}$$

$$\Rightarrow \cos \frac{\theta}{2} = \pm \frac{2}{\sqrt{5}}$$

Also,
$$\cot^{-1} \frac{3}{4} = \theta \Rightarrow \theta \in \left(0, \frac{\pi}{2}\right) \text{ or } \frac{\theta}{2} \in \left(0, \frac{\pi}{4}\right)$$

So,
$$\cos\left(\frac{\theta}{2}\right) > 0 \Rightarrow \cos\left(\frac{\theta}{2}\right) = \frac{2}{\sqrt{5}}$$



JEE MAIN 2008

Find the value of $\cot\left(\csc^{-1}\left(\frac{5}{3}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right)$

- (a) $\frac{5}{17}$ (b) $\frac{6}{17}$ (c) $\frac{3}{17}$
- $(d) \frac{4}{17}$

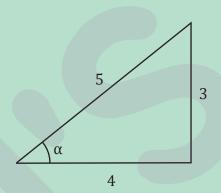
Solution

Step 1:

Let
$$\csc^{-1}\left(\frac{5}{3}\right) = \alpha, \alpha \in \left(0, \frac{\pi}{2}\right)$$
 and $\tan^{-1}\left(\frac{2}{3}\right) = \beta, \beta \in \left(0, \frac{\pi}{2}\right)$

$$\Rightarrow$$
 cosec $\alpha = \frac{5}{3}$ and $\tan \beta = \frac{2}{3}$ or $\cot \beta = \frac{3}{2}$

Also,
$$\csc \alpha = \frac{5}{3} \Rightarrow \cot \alpha = \frac{4}{3}$$



Step 2:

$$\cot(\alpha + \beta) = \frac{\cot\alpha \cdot \cot\beta - 1}{\cot\alpha + \cot\beta} = \frac{\frac{4}{3} \cdot \frac{3}{2} - 1}{\frac{4}{3} \cdot \frac{3}{2}} = \frac{6}{17}$$

So, option (b) is the correct choice.

? If 0 < x < 1, then $\sqrt{1 + x^2} \left[\left\{ x \cos(\cot^{-1}x) + \sin(\cot^{-1}x) \right\}^2 - 1 \right]^{\frac{1}{2}}$ is equal to

$$\left(a\right)\frac{x}{\sqrt{1+x^2}}$$

$$(c) x\sqrt{1+x^2}$$

$$(\mathsf{d}) \sqrt{1+\mathsf{x}^2}$$

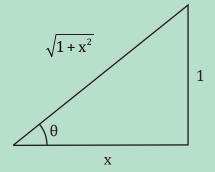
Solution

Step 1:

Let
$$\cot^{-1} x = \theta, 0 < \theta < \frac{\pi}{2}$$

$$\Rightarrow$$
 cot θ = x

$$\therefore \sin \theta = \frac{1}{\sqrt{1 + y^2}} \text{ and } \cos \theta = \frac{x}{\sqrt{1 + y^2}}$$



Step 2:

The expression reduces to
$$\sqrt{1+x^2} \left[\left\{ x \cos \theta + \sin \theta \right\}^2 - 1 \right]^{\frac{1}{2}}$$

Substituting
$$\sin \theta = \frac{1}{\sqrt{1+x^2}}$$
 and $\cos \theta = \frac{x}{\sqrt{1+x^2}}$, we get,

$$\sqrt{1+x^2} \left[\left\{ x \times \frac{x}{\sqrt{1+x^2}} + \frac{1}{\sqrt{1+x^2}} \right\}^2 - 1 \right]^{\frac{1}{2}}$$

$$= \sqrt{1+x^2} \left[\left\{ \frac{1+x^2}{\sqrt{1+x^2}} \right\}^2 - 1 \right]^{\frac{1}{2}}$$

$$= \sqrt{1+x^2} \left[x^2 \right]^{\frac{1}{2}}$$

$$= |x|\sqrt{1+x^2}$$

$$= x\sqrt{1+x^2} \left(|x| = x, x > 0 \right)$$

So, option (c) is the correct answer.

Sum of Angles in Terms of arctan x

$$\tan^{-1}x + \tan^{-1}y = \begin{cases} \tan^{-1}\left(\frac{x+y}{1-xy}\right) & x \ge 0, y \ge 0, xy < 1 \\ \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right) & x \ge 0, y \ge 0, xy > 1 \end{cases}$$

Proof

Let
$$\tan^{-1} x = A, A \in \left[0, \frac{\pi}{2}\right]$$

Let
$$\tan^{-1} y = B, B \in \left[0, \frac{\pi}{2}\right]$$

$$\Rightarrow \tan^{-1}\left(\frac{x+y}{1-xy}\right) = \tan^{-1}\left(\frac{\tan A + \tan B}{1-\tan A \tan B}\right) = \tan^{-1}\left(\tan\left(A+B\right)\right), \ 0 \le A+B < \pi$$

Also, from the graph of $tan^{-1}(tan \theta)$, we know that,

$$\tan^{-1}(\tan\theta) = \theta, \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
 and

$$\tan^{-1}(\tan\theta) = \theta - \pi, \theta \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$

$$\Rightarrow \tan^{-1}\left(\frac{x+y}{1-xy}\right) = \tan^{-1}\left(\tan\left(A+B\right)\right) = \begin{cases} A+B, & 0 \le A+B < \frac{\pi}{2} \\ A+B-\pi, & \frac{\pi}{2} < A+B < \pi \end{cases}$$

Case 1: A + B <
$$\frac{\pi}{2}$$

$$\Rightarrow A < \frac{\pi}{2} - B$$

$$\Rightarrow \tan A < \tan \left(\frac{\pi}{2} - B\right)$$

- \Rightarrow tan A < cot B
- \Rightarrow tan A tan B < 1 or xy < 1

That means, A + B < $\frac{\pi}{2}$ is equivalent to xy < 1

Similarly, A + B > $\frac{\pi}{2}$ is equivalent to xy > 1

$$\Rightarrow \tan^{-1}\left(\frac{x+y}{1-xy}\right) = \begin{cases} \tan^{-1}x + \tan^{-1}y & x \ge 0, y \ge 0, xy < 1\\ \tan^{-1}x + \tan^{-1}y - \pi & x \ge 0, y \ge 0, xy > 1 \end{cases}$$

$$\therefore \tan^{-1}x + \tan^{-1}y = \begin{cases} \tan^{-1}\left(\frac{x+y}{1-xy}\right) & x \ge 0, y \ge 0, xy < 1\\ \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right) & x \ge 0, y \ge 0, xy > 1 \end{cases}$$

Case 2: A + B =
$$\frac{\pi}{2}$$

$$\Rightarrow$$
 A = $\frac{\pi}{2}$ - B

$$\Rightarrow \tan A = \tan \left(\frac{\pi}{2} - B\right)$$

$$\Rightarrow$$
 tan A = cot B

$$\Rightarrow$$
 tan A tan B = 1 or xy = 1

$$\therefore \text{ When } xy = 1 \text{ we have, } A + B = \frac{\pi}{2} \text{ or } tan^{-1}x + tan^{-1}y = \frac{\pi}{2}$$

Prove that $\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \pi$

Solution

Step 1:

Let's first evaluate $tan^{-1}(2) + tan^{-1}(3)$

Here, $2 \times 3 = 6 > 1$

Step 2:

Also, we know that

$$\tan^{-1}x + \tan^{-1}y = \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
 $x \ge 0, y \ge 0, xy > 1$

$$\Rightarrow \tan^{-1}(2) + \tan^{-1}(3) = \pi + \tan^{-1}\left(\frac{2+3}{1-2\cdot 3}\right) = \pi + \tan^{-1}(-1) = \pi - \tan^{-1}(1)$$

Step 3:

$$\tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \tan^{-1}(1) + \pi - \tan^{-1}(1)$$

= π

Addition formulae for sum of angles in terms of arctan x

$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \begin{cases} \tan^{-1}\frac{\left(x + y + z - xyz\right)}{\left(1 - \sum xy\right)} & x \ge 0, y \ge 0, z \ge 0, \sum xy < 1 \\ \pi + \tan^{-1}\frac{\left(x + y + z - xyz\right)}{\left(1 - \sum xy\right)} & x \ge 0, y \ge 0, z \ge 0, \sum xy > 1 \end{cases}$$

Note

1. If
$$xy + yz + zx = 1$$
, then $tan^{-1}x + tan^{-1}y + tan^{-1}z = \frac{\pi}{2}$

2 If
$$x + y + z = xyz$$
, then $tan^{-1}x + tan^{-1}y + tan^{-1}z = \pi$

If
$$\sin^{-1}\left(\frac{12}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{63}{16}\right) = k \cdot \pi$$
, then find the value of k.

Solution

Step 1:

Let
$$\sin^{-1}\left(\frac{12}{13}\right) = \alpha, \alpha \in \left(0, \frac{\pi}{2}\right)$$

$$\Rightarrow$$
 sin $\alpha = \left(\frac{12}{13}\right)$ or tan $\alpha = \left(\frac{12}{5}\right)$

Let
$$\cos^{-1}\left(\frac{4}{5}\right) = \beta, \beta \in \left(0, \frac{\pi}{2}\right)$$

$$\Rightarrow$$
 cos $\beta = \left(\frac{4}{5}\right)$ or tan $\beta = \left(\frac{3}{4}\right)$

$$\sin^{-1}\left(\frac{12}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{63}{16}\right) = \tan^{-1}\left(\frac{12}{5}\right) + \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{63}{16}\right)$$

Let's first evaluate $\tan^{-1}\left(\frac{12}{5}\right) + \tan^{-1}\left(\frac{3}{4}\right)$

Here,
$$\frac{12}{5} \times \frac{3}{4} = \frac{36}{20} > 1$$

Step 3:

Also, we know that,

$$\tan^{-1}x + \tan^{-1}y = \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
 $x \ge 0, y \ge 0, xy > 1$

$$\Rightarrow \tan^{-1}\left(\frac{12}{5}\right) + \tan^{-1}\left(\frac{3}{4}\right) = \pi + \tan^{-1}\left(\frac{\frac{12}{5} + \frac{3}{4}}{1 - \frac{12}{5} \cdot \frac{3}{4}}\right) = \pi + \tan^{-1}\left(-\frac{63}{16}\right)$$

$$\sin^{-1}\left(\frac{12}{13}\right) + \cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{63}{16}\right)$$

$$= \pi + \tan^{-1}\left(-\frac{63}{16}\right) + \tan^{-1}\left(\frac{63}{16}\right) = \pi - \tan^{-1}\left(\frac{63}{16}\right) + \tan^{-1}\left(\frac{63}{16}\right) = \pi$$

$$\Rightarrow$$
 k = 1

Difference of Angles in Terms of arctan x

$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}$$
 $x \ge 0, y \ge 0$

The value of $\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(-\frac{8}{19}\right)$ is:

Solution

Step 1:

Let's first evaluate

$$\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right)$$

Here,

$$\frac{3}{4} \times \frac{3}{5} = \frac{9}{20} < 1$$

Step 2:

Also, we know that

$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
 $x \ge 0$, $y \ge 0$, $x < 1$

$$\Rightarrow \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{\frac{3}{4} + \frac{3}{5}}{1 - \frac{3}{4} \cdot \frac{3}{5}}\right) = \tan^{-1}\left(\frac{27}{11}\right)$$

Step 3:

$$\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(-\frac{8}{19}\right) = \tan^{-1}\left(\frac{27}{11}\right) - \tan^{-1}\left(\frac{8}{19}\right)$$

Now,
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x - y}{1 + xy}$$
 $x \ge 0$, $y \ge 0$

$$\Rightarrow \tan^{-1}\left(\frac{27}{11}\right) - \tan^{-1}\left(\frac{8}{19}\right) = \tan^{-1}\left(\frac{\frac{27}{11} - \frac{8}{19}}{1 + \frac{27}{11} \times \frac{8}{19}}\right)$$

$$= \tan^{-1} \left(\frac{425}{425} \right) = \tan^{-1} \left(1 \right)$$

$$=\frac{\pi}{4}$$

If $\alpha = \cos^{-1}\left(\frac{3}{5}\right)$, $\beta = \tan^{-1}\left(\frac{1}{3}\right)$, where $0 < \alpha$, $\beta < \frac{\pi}{2}$, then $\alpha - \beta$ is equal to?

JEE ADVANCED 2019

Solution

Step 1:

We have,
$$\cos \alpha = \frac{3}{5}$$

$$\Rightarrow$$
 tan $\alpha = \frac{4}{3}$

Also,
$$\tan \beta = \frac{1}{3}$$

Step 2:

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} = \frac{\frac{4}{3} - \frac{1}{3}}{1 + \frac{4}{3} \cdot \frac{1}{3}} = \frac{9}{13}$$

$$\therefore \alpha - \beta = \tan^{-1} \left(\frac{9}{13} \right)$$

Concept Check

- 1. Solve: $\cos(\tan^{-1}x) = \sin(\cot^{-1}\frac{3}{4})$; x > 0
- 2. Prove that, $\tan^{-1}(1) + \tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{1}{3}) = \frac{\pi}{2}$

Summary Sheet

Key Formulae

Interconversion of different ITF

For
$$x > 0$$
,
 $\sin \theta = \frac{x}{1} \Rightarrow \theta = \sin^{-1} x$
 $\cos \theta = \sqrt{1 - x^2} \Rightarrow \theta = \sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}$
 $\tan \theta = \frac{x}{\sqrt{1 - x^2}} \Rightarrow \theta = \sin^{-1} x = \tan^{-1} \left(\frac{x}{\sqrt{1 - x^2}}\right)$
 $\csc \theta = \frac{1}{x} \Rightarrow \theta = \sin^{-1} x = \csc^{-1} \left(\frac{1}{x}\right)$
 $\sec \theta = \frac{1}{\sqrt{1 - x^2}} \Rightarrow \theta = \sin^{-1} x = \sec^{-1} \left(\frac{1}{\sqrt{1 - x^2}}\right)$
 $\cot \theta = \frac{\sqrt{1 - x^2}}{x} \Rightarrow \theta = \sin^{-1} x = \cot^{-1} \left(\frac{\sqrt{1 - x^2}}{x}\right)$

Sum of Angles in terms of arctan x

$$\tan^{-1}x + \tan^{-1}y = \begin{cases} \tan^{-1}\left(\frac{x+y}{1-xy}\right) & x \ge 0, y \ge 0, xy < 1\\ \pi + \tan^{-1}\left(\frac{x+y}{1-xy}\right) & x \ge 0, y \ge 0, xy > 1 \end{cases}$$

$$\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \begin{cases} \tan^{-1}\frac{\left(x + y + z - xyz\right)}{\left(1 - \sum xy\right)} & x \ge 0, y \ge 0, z \ge 0, \sum xy < 1 \\ \pi + \tan^{-1}\frac{\left(x + y + z - xyz\right)}{\left(1 - \sum xy\right)} & x \ge 0, y \ge 0, z \ge 0, \sum xy > 1 \end{cases}$$

Difference of angles in terms of arctan x

$$\tan^{-1}x - \tan^{-1}y = \tan^{-1}\frac{x - y}{1 + xy}$$
 $x \ge 0, y \ge 0$

Mind Map

Inverse Trigonomteric Functions

Interconversion of different ITF

Sum of angles in terms of tan⁻¹ x

ITF formulae

Difference of angles in terms of tan-1 x

Self-Assessment

Prove that
$$4\left(2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\frac{1}{7}\right) = \pi$$

Answers

Concept Check

1

Step 1:

Let
$$tan^{-1}x = \alpha$$
, $0 < \alpha < \frac{\pi}{2}$

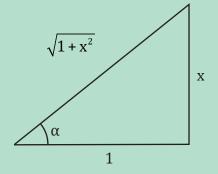
$$\Rightarrow$$
 tan α = x

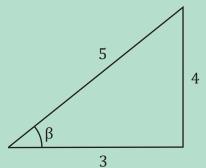
$$\therefore \cos \alpha = \frac{1}{\sqrt{1+x^2}}$$

Let
$$\cot^{-1}\left(\frac{3}{4}\right) = \beta$$
, $0 < \beta < \frac{\pi}{2}$

$$\Rightarrow$$
 cot $\beta = \frac{3}{4}$

$$\therefore \sin \beta = \frac{4}{5}$$





Step 2:

Now, we have, $\cos \alpha = \sin \beta$

$$\frac{1}{\sqrt{1+x^2}} = \frac{4}{5}$$

Squaring both the sides and then solving, we get,

$$x = \pm \frac{3}{4}$$

However, it is given that x > 0

So, $x = \frac{3}{4}$ is the only solution.

2.

Step 1:

Let's first evaluate $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$

Here,

$$\frac{1}{2} \times \frac{1}{3} = \frac{1}{6} < 1$$

Step 2:

Also, we know that

$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
 $x \ge 0, y \ge 0, xy < 1$

$$\Rightarrow \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}}\right) = \tan^{-1}(1)$$

Step 3:

$$\tan^{-1}(1) + \tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{1}{3}) = \tan^{-1}(1) + \tan^{-1}(1)$$

$$=\frac{\pi}{4}+\frac{\pi}{4}$$

$$=\frac{\pi}{2}$$

Self-Assessment

Step 1:

$$2 \tan^{-1} \left(\frac{1}{3}\right) = \tan^{-1} \left(\frac{1}{3}\right) + \tan^{-1} \left(\frac{1}{3}\right)$$

Let's first evaluate $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{3}\right)$

Here,

$$\frac{1}{3} \times \frac{1}{3} = \frac{1}{9} < 1$$

Step 2:

Also, we know that

$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$$
 $x \ge 0$, $y \ge 0$, $x < 1$

$$\Rightarrow \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{1}{3} + \frac{1}{3}}{1 - \frac{1}{3} \cdot \frac{1}{3}}\right) = \tan^{-1}\left(\frac{3}{4}\right)$$

Step 3:

$$4\left(2\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\frac{1}{7}\right) = 4\left(\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{1}{7}\right)$$

$$= 4 \left(\tan^{-1} \left(\frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}} \right) \right)$$

$$=4\left(\tan^{-1}\left(1\right)\right)$$

$$=4\times\frac{\pi}{4}=\pi$$

Hence proved

INVERSE TRIGONOMETRIC FUNCTIONS

SUM AND DIFFERENCE OF INVERSE TRIGONOMETRIC FUNCTIONS

What you already know

- Interconversion of different ITF
- Sum of angles in terms of tan-1 x
- Difference of angles in terms of tan⁻¹ x

What you will learn

- Telescopic Series: Method of Difference
- Sum and Difference of angles in terms of sin⁻¹ x and cos⁻¹ x

Telescopic Series: Method of Difference

Sum of series $\tan^{-1} \frac{1}{1+1+1^2} + \tan^{-1} \frac{1}{1+2+2^2} + \tan^{-1} \frac{1}{1+3+3^2} + \cdots$ n terms is

Solution

Step 1:

One can observe that the general term T_n is $tan^{-1} \left(\frac{1}{1+n+n^2} \right)$

Also,
$$\tan^{-1}\left(\frac{1}{1+n+n^2}\right) = \tan^{-1}\left(\frac{(n+1)-n}{1+(n)(n+1)}\right)$$

For $x \ge 0$, $y \ge 0$, we have $\tan^{-1} \left(\frac{x - y}{1 + xy} \right) = \tan^{-1} x - \tan^{-1} y$

$$\Rightarrow \tan^{-1}\left(\frac{(n+1)-(n)}{1+(n)(n+1)}\right) = \tan^{-1}(n+1) - \tan^{-1}(n)$$

That means, $T_n = \tan^{-1}(n+1) - \tan^{-1}(n)$

Step 3:

Substituting n = 1, we get, $T_1 = \tan^{-1}(2) - \tan^{-1}(1)$

Substituting n = 2, we get, $T_2 = tan^{-1}(3) - tan^{-1}(2)$

Substituting n = 3, we get, $T_3 = tan^{-1}(4) - tan^{-1}(3)$

Similarly, substituting n = n, we get, $T_n = tan^{-1}(n + 1) - tan^{-1}(n)$

$$\Rightarrow S_{n} = \sum T_{n} = \left(\tan^{-1}(2) - \tan^{-1}(1) + \tan^{-1}(3) - \tan^{-1}(2) + \dots + \tan^{-1}(n+1) - \tan^{-1}(n) \right)$$

$$= \tan^{-1}(n+1) - \tan^{-1}(1)$$

$$= \tan^{-1}(n+1) - \frac{\pi}{4}$$

The value of $\cot \left(\sum_{n=1}^{19} \cot^{-1} \left(1 + \sum_{p=1}^{n} 2p \right) \right)$ is:

(a)
$$\frac{23}{22}$$

(b)
$$\frac{22}{23}$$

(c)
$$\frac{19}{21}$$

(d)
$$\frac{21}{19}$$

Solution

$$\cot\left(\sum_{n=1}^{19}\cot^{-1}\left(1+\sum_{p=1}^{n}2p\right)\right)=\cot\left(\sum_{n=1}^{19}\cot^{-1}\left(1+2\sum_{p=1}^{n}p\right)\right)$$

$$= \cot \left(\sum_{n=1}^{19} \cot^{-1} \left(1 + 2 \times \frac{n(n+1)}{2} \right) \right) \qquad \left(\sum_{p=1}^{n} p = \frac{n(n+1)}{2} \right)$$

$$= \cot \left(\sum_{n=1}^{19} \cot^{-1} \left(n^2 + n + 1 \right) \right)$$

$$= \cot \left(\sum_{n=1}^{19} \tan^{-1} \frac{1}{(n^2 + n + 1)} \right)$$

$$\Rightarrow \cot\left(\sum_{n=1}^{19} \tan^{-1} \frac{1}{(n^2 + n + 1)}\right) = \cot\left(\sum_{n=1}^{19} \tan^{-1} \frac{(n+1) - (n)}{(1 + (n)(n+1))}\right)$$

$$=\cot\left(\sum_{n=1}^{19}\left(\tan^{-1}\left(n+1\right)-\tan^{-1}\left(n\right)\right)\right)\left(\text{For }x\geq0,\,y\geq0,\,\tan^{-1}x-\tan^{-1}y=\tan^{-1}\left(\frac{x-y}{1+xy}\right)\right)$$

=
$$\cot(\tan^{-1}(2) - \tan^{-1}(1) + \tan^{-1}(3) - \tan^{-1}(2) + \dots + \tan^{-1}(20) - \tan^{-1}(19))$$

$$= \cot(\tan^{-1}(20) - \tan^{-1}(1))$$

$$= \cot\left(\tan^{-1}\left(\frac{20-1}{1+20\times 1}\right)\right) = \cot\left(\tan^{-1}\left(\frac{19}{21}\right)\right)$$

$$=\cot\left(\cot^{-1}\left(\frac{21}{19}\right)\right)=\frac{21}{19}$$

So, option (d) is the correct answer.

Sum of series: $\tan^{-1}\frac{1}{x^2+x+1} + \tan^{-1}\frac{1}{x^2+3x+3} + \tan^{-1}\frac{1}{x^2+5x+7} + \tan^{-1}\frac{1}{x^2+7x+13} \cdots n$

terms, where x > 0 is

(a)
$$\tan^{-1}(x+n) - \tan^{-1}(x)$$

(b)
$$\tan^{-1}(x+n-1)$$

(c)
$$tan^{-1}(x)$$

(d)
$$\tan^{-1}(x+n+1)-\tan^{-1}(x)$$

Solution

Step 1:

The given series can be re-written as

$$\tan^{-1}\frac{(x+1)-(x)}{1+(x)(x+1)} + \tan^{-1}\frac{(x+2)-(x+1)}{1+(x+2)(x+1)} + \tan^{-1}\frac{(x+3)-(x+2)}{1+(x+3)(x+2)} + \cdots n \text{ terms}$$

Step 2:

For
$$x \ge 0$$
, $y \ge 0$, $tan^{-1} \left(\frac{x - y}{1 + xy} \right) = tan^{-1}x - tan^{-1}y$

$$T_1 = \tan^{-1} \frac{(x+1) - (x)}{1 + (x+1)(x)} = \tan^{-1} (x+1) - \tan^{-1} (x)$$

$$T_2 = \tan^{-1} \frac{(x+2) - (x+1)}{1 + (x+2)(x+1)} = \tan^{-1} (x+2) - \tan^{-1} (x+1)$$

$$T_3 = \tan^{-1} \frac{(x+3) - (x+2)}{1 + (x+3)(x+2)} = \tan^{-1} (x+3) - \tan^{-1} (x+2)$$

$$T_4 = \tan^{-1} \frac{(x+4) - (x+3)}{1 + (x+4)(x+3)} = \tan^{-1} (x+4) - \tan^{-1} (x+3)$$

.

 $T_{n} = \tan^{-1} \frac{(x+n) - (x+(n-1))}{1 + (x+n)(x+(n-1))} = \tan^{-1} (x+n) - \tan^{-1} (x+(n-1))$

$$\Rightarrow$$
 $S_n = \sum T_n = \tan^{-1}(x + n) - \tan^{-1}(x)$

So, option(a) is the correct answer.

Consider only the principal values of inverse function, the set $A = \left\{ x \ge 0 : tan^{-1}(2x) + tan^{-1}(3x) = \frac{\pi}{4} \right\}$

- (a) Contains two elements
- (b) Contains more than two elements

(c) It is an empty set

(d) It is a singleton set

Solution

Step 1:

Let $\tan^{-1}(2x) = \alpha \Rightarrow \tan \alpha = 2x$ and $\tan^{-1}(3x) = \beta \Rightarrow \tan \beta = 3x$

Given that $\alpha + \beta = \frac{\pi}{4}$

Step 2:

Taking tangent on both sides, we get,

$$\tan(\alpha + \beta) = \tan\frac{\pi}{4}$$

$$\Rightarrow 1 = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\Rightarrow \frac{2x + 3x}{1 - 2x \cdot 3x} = \frac{5x}{1 - 6x^2} = 1$$

$$\Rightarrow$$
 6x² + 5x - 1 = 0

$$\Rightarrow$$
x = -1, $\frac{1}{6}$

Step 3:

But $x \ge 0$, so x = -1 is rejected.

$$\therefore x = \frac{1}{6}$$

So, option (d) is the correct answer.

Sum and Difference of Angles in terms of sin⁻¹ x and cos⁻¹x

Sum and Difference of Angles in terms of sin-1x

$$1. \sin^{-1}x + \sin^{-1}y = \begin{cases} \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right); & x \ge 0, y \ge 0, x^2 + y^2 \le 1 \\ \pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right); & x \ge 0, y \ge 0, x^2 + y^2 > 1 \end{cases}$$

2.
$$\sin^{-1} x - \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right); x \ge 0, y \ge 0$$

Sum and Difference of Angles in terms of cos-1x

1.
$$\cos^{-1}x + \cos^{-1}y = \cos^{-1}\left(xy - \sqrt{1 - x^2}\sqrt{1 - y^2}\right); x \ge 0, y \ge 0$$

$$2.\cos^{-1}x - \cos^{-1}y = \begin{cases} \cos^{-1}\left(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}\right); & x \ge 0, y \ge 0, x \le y \\ -\cos^{-1}\left(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}\right); & x \ge 0, y \ge 0, x > y \end{cases}$$

JEE MAIN (APRIL 2019)

? The value of $\sin^{-1}\left(\frac{12}{13}\right)$ - $\sin^{-1}\left(\frac{3}{5}\right)$ is equal to

(a)
$$\frac{\pi}{2} - \sin^{-1}\left(\frac{56}{65}\right)$$

(b)
$$\pi - \sin^{-1}\left(\frac{63}{65}\right)$$

(c)
$$\frac{\pi}{2}$$
-cos⁻¹ $\left(\frac{9}{65}\right)$

(d)
$$\pi - \cos^{-1} \left(\frac{33}{65} \right)$$

Solution

Step 1:

We know that, $\sin^{\text{-}1} x - \sin^{\text{-}1} y = \sin^{\text{-}1} \left(x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right)$; $x \ge 0$, $y \ge 0$

$$\Rightarrow \sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{12}{13}\sqrt{1 - \left(\frac{3}{5}\right)^2} - \frac{3}{5}\sqrt{1 - \left(\frac{12}{13}\right)^2}\right)$$

$$=\sin^{-1}\left(\frac{12}{13}\cdot\frac{4}{5}-\frac{3}{5}\cdot\frac{5}{13}\right)$$

$$=\sin^{-1}\left(\frac{48}{65}-\frac{15}{65}\right)$$

$$=\sin^{-1}\left(\frac{33}{65}\right)$$

Step 2:

$$\Rightarrow \sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{33}{65}\right)$$

$$=\frac{\pi}{2}-\cos^{-1}\left(\frac{33}{65}\right)$$

Step 3:

Also,
$$\cos^{-1} x = \sin^{-1} \sqrt{1 - x^2}$$
; $x \ge 0$

$$\Rightarrow \sin^{-1}\left(\frac{12}{13}\right) - \sin^{-1}\left(\frac{3}{5}\right)$$

$$=\frac{\pi}{2}-\cos^{-1}\left(\frac{33}{65}\right)$$

$$= \frac{\pi}{2} - \sin^{-1} \sqrt{1 - \left(\frac{33}{65}\right)^2}$$

$$=\frac{\pi}{2}-\sin^{-1}\left(\frac{56}{65}\right)$$

So, option (a) is the correct answer.

If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$, then prove that $x^2 + y^2 + z^2 + 2xyz = 1$.

Solution

Step 1:

Given,
$$\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$$

$$\Rightarrow$$
 cos⁻¹x + cos⁻¹y = π - cos⁻¹z

Let
$$\cos^{-1} x = \alpha$$
, $\cos^{-1} y = \beta$, $\cos^{-1} z = \gamma$

$$\Rightarrow$$
 cos α = x, cos β = y, cos γ = z

$$\Rightarrow \alpha + \beta = \pi - \gamma$$

Step 2:

Taking cosine on both sides, we get

$$\cos(\alpha + \beta) = \cos(\pi - \gamma)$$

$$\Rightarrow$$
 cos α cos β - sin α sin β = -cos γ

$$\Rightarrow$$
 xy - $\sqrt{1-x^2}\sqrt{1-y^2}$ = -z

$$\Rightarrow$$
 xy + z = $\sqrt{1 - x^2} \sqrt{1 - y^2}$

Squaring both sides, we get,

$$x^2y^2 + z^2 + 2xyz = 1 - x^2 - y^2 + x^2y^2$$

$$\Rightarrow$$
 x² + y² + z² + 2xyz = 1

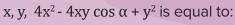
Hence proved.

Concept Check

1. Find the sum of the series.

$$S = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{8}\right) + \tan^{-1}\left(\frac{1}{18}\right) + \tan^{-1}\left(\frac{1}{32}\right) + \cdots \infty$$

2. If $\cos^{-1} x - \cos^{-1} \frac{y}{2} = \alpha$, where $-1 \le x \le 1$, $-2 \le y \le 2$, $x \le \frac{y}{2}$, then for all



- (a) $4 \sin^2 \alpha$
- (b) $2 \sin^2 \alpha$
- (c) $4 \sin^2 \alpha 2x^2y^2$ (d) $4 \cos^2 \alpha + 2x^2y^2$

Summary Sheet

Key Formulae

Sum and Difference of Angles in terms of sin-1x

$$1. \sin^{-1}x + \sin^{-1}y = \begin{cases} \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right); & x \ge 0, y \ge 0, x^2 + y^2 \le 1\\ \pi - \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right); & x \ge 0, y \ge 0, x^2 + y^2 > 1 \end{cases}$$

2.
$$\sin^{-1} x - \sin^{-1} y = \sin^{-1} \left(x \sqrt{1 - y^2} - y \sqrt{1 - x^2} \right); x \ge 0, y \ge 0$$

Sum and Difference of Angles in terms of cos⁻¹x

1.
$$\cos^{-1}x + \cos^{-1}y = \cos^{-1}\left(xy - \sqrt{1 - x^2}\sqrt{1 - y^2}\right)$$
; $x \ge 0$, $y \ge 0$

$$2.\cos^{-1}x - \cos^{-1}y = \begin{cases} \cos^{-1}\left(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}\right); & x \ge 0, y \ge 0, x \le y \\ -\cos^{-1}\left(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}\right); & x \ge 0, y \ge 0, x > y \end{cases}$$

Mind Map

Sum and difference of ITF

Telescopic series: Method of difference

Sum and difference of angles in terms of $\sin^{-1} x$ and $\cos^{-1} x$

Self-Assessment

Evaluate:
$$\sum_{n=1}^{100} tan^{-1} \left(\frac{2n}{n^4 + n^2 + 2} \right)$$

Answers

Concept Check

1

Step 1:

We have,
$$T_n = \tan^{-1}\left(\frac{1}{2n^2}\right) = \tan^{-1}\left(\frac{2}{4n^2}\right)$$

Step 2:

For
$$x \ge 0$$
, $y \ge 0$, we have $\tan^{-1}\left(\frac{x-y}{1+xy}\right) = \tan^{-1}x - \tan^{-1}y$

$$\begin{split} &T_n = tan^{-1} \left(\frac{2}{4n^2} \right) \\ &= tan^{-1} \left(\frac{2}{1 + (2n)^2 - 1} \right) \\ &= tan^{-1} \left(\frac{(2n+1) - (2n-1)}{1 + (2n+1)(2n-1)} \right) = tan^{-1} (2n+1) - tan^{-1} (2n-1) \end{split}$$

Step 3:

$$T_1 = \tan^{-1}(3) - \tan^{-1}(1)$$

$$T_2 = \tan^{-1}(5) - \tan^{-1}(3)$$

$$T_3 = \tan^{-1}(7) - \tan^{-1}(5)$$

•

$$T_n = \tan^{-1}(2n + 1) - \tan^{-1}(2n - 1)$$

Step 4:

$$\Rightarrow S_n = \sum T_n = \tan^{-1}(2n+1) - \tan^{-1}(1)$$

$$\Rightarrow$$
 $S_{\infty} = \lim_{n \to \infty} (S_n) = \lim_{n \to \infty} \tan^{-1} (2n + 1) - \tan^{-1} (1)$

$$=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}$$

2.

Step 1:

Let
$$\cos^{-1} x = A$$
, $\cos^{-1} \frac{y}{2} = B$

$$\Rightarrow$$
 cos A = x, cos B = $\frac{y}{2}$

$$\Rightarrow$$
 A - B = α

Step 2:

Taking cosine on both the sides, we get, $cos(A - B) = cos \alpha$

$$\Rightarrow$$
 cos A cos B + sin A sin B = cos α

$$\Rightarrow$$
 x. $\frac{y}{2} + \sqrt{1 - x^2} \sqrt{1 - \frac{y^2}{4}} = \cos \alpha$

$$\Rightarrow$$
 x. $\frac{y}{2}$ - cos α = - $\sqrt{1-x^2}$ $\sqrt{1-\frac{y^2}{4}}$

Squaring both sides, we get,

$$\frac{x^2y^2}{4} - xy \cos \alpha + \cos^2 \alpha = 1 - x^2 - \frac{y^2}{4} + \frac{x^2y^2}{4}$$

$$\Rightarrow$$
 -4xy cos α + 4 cos² α = 4 - 4x² - y²

$$\Rightarrow$$
 4x² - 4xy cos α + y² = 4 - 4 cos² α = 4 sin² α

So, option (a) is the correct answer.

Self-Assessment

Step 1:

$$\sum_{n=1}^{100} \tan^{-1} \left(\frac{2n}{n^4 + n^2 + 2} \right) = \sum_{n=1}^{100} \tan^{-1} \left(\frac{2n}{1 + n^4 + n^2 + 1} \right)$$

$$= \sum_{n=1}^{100} \tan^{-1} \left(\frac{(n^2 + n + 1) - (n^2 - n + 1)}{1 + (n^2 + n + 1)(n^2 - n + 1)} \right)$$

$$= \sum_{n=1}^{100} \left(\tan^{-1} \left(n^2 + n + 1 \right) - \tan^{-1} \left(n^2 - n + 1 \right) \right)$$

Step 2:

$$T_1 = \tan^{-1}(3) - \tan^{-1}(1)$$

$$T_2 = \tan^{-1}(7) - \tan^{-1}(3)$$

$$T_3 = \tan^{-1}(13) - \tan^{-1}(7)$$

$$T_4 = \tan^{-1}(21) - \tan^{-1}(13)$$

•

.

$$T_{100} = \tan^{-1} (100^2 + 100 + 1) - \tan^{-1} (100^2 - 100 + 1)$$

Step 3:

The required sum is
$$T_1 + T_2 + T_3 + T_4 + \cdots + T_{100}$$

= $tan^{-1} (100^2 + 100 + 1) - tan^{-1} (1)$
= $tan^{-1} (10101) - \frac{\pi}{4}$

INVERSE TRIGONOMETRIC FUNCTIONS

MULTIPLE ANGLES OF INVERSE TRIGONOMETRIC FUNCTIONS

What you already know

- Domain and range of inverse trigonometric functions
- · Graphs of inverse trigonometric functions
- Graphs of T-1T

What you will learn

- Multiple angles in terms of sin⁻¹, cos⁻¹, tan⁻¹, and more
- · Inequalities involving ITF

Multiple Angles in terms of sin⁻¹

$$2 \sin^{-1} x = \begin{cases} -\pi - \sin^{-1} \left(2x\sqrt{1 - x^2} \right); -1 \le x < \frac{-1}{\sqrt{2}} \\ \sin^{-1} \left(2x\sqrt{1 - x^2} \right); \frac{-1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}} \\ \pi - \sin^{-1} \left(2x\sqrt{1 - x^2} \right); \frac{1}{\sqrt{2}} < x \le 1 \end{cases}$$

Proof

Step 1:

Let
$$\sin^{-1} x = \alpha, \alpha \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$$

$$\Rightarrow$$
 x = sin α

$$\Rightarrow \sin^{-1}\left(2x\sqrt{1-x^2}\right) = \sin^{-1}\left(2\sin\alpha\sqrt{1-\sin^2\alpha}\right)$$

$$= \sin^{-1} \left(2 \sin \alpha \left| \cos \alpha \right| \right)$$

$$= \sin^{-1}\left(2\sin\alpha\cos\alpha\right) \left(\alpha \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\right)$$

$$=\sin^{-1}(\sin 2\alpha)$$

Where
$$2\alpha \in [-\pi, \pi]$$

Step 2:

We have,
$$\sin^{-1}(2x\sqrt{1-x^2}) = \sin^{-1}(\sin 2\alpha)$$
,

where
$$2\alpha \in [-\pi, \pi]$$

Let us look at the graph of $\sin^{-1}(\sin x)$. Now, we can see that,

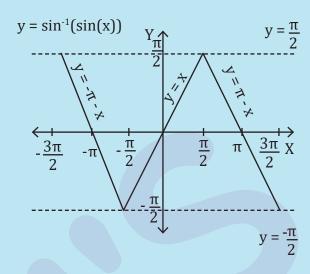
$$\sin^{-1}\left(2x\sqrt{1-x^2}\right) = \begin{cases} -\pi - 2\alpha \ ; \ -\pi \le 2\alpha < \frac{-\pi}{2} \\ 2\alpha \ ; \ \frac{-\pi}{2} \le 2\alpha \le \frac{\pi}{2} \\ \pi - 2\alpha \ ; \ \frac{\pi}{2} < 2\alpha \le \pi \end{cases}$$

By substituting $\alpha = \sin^{-1}x$, we get,

$$\sin^{-1}\left(2x\sqrt{1-x^2}\right) = \begin{cases} -\pi - 2\sin^{-1}x; -\pi \le 2\sin^{-1}x < \frac{-\pi}{2} \\ 2\sin^{-1}x; \frac{-\pi}{2} \le 2\sin^{-1}x \le \frac{\pi}{2} \\ \pi - 2\sin^{-1}x; \frac{\pi}{2} < 2\sin^{-1}x \le \pi \end{cases}$$

This can also be written as follows:

$$\sin^{-1}\left(2x\sqrt{1-x^{2}}\right) = \begin{cases} -\pi - 2\sin^{-1}x ; \frac{-\pi}{2} \le \sin^{-1}x < \frac{-\pi}{4} \\ 2\sin^{-1}x ; \frac{-\pi}{4} \le \sin^{-1}x \le \frac{\pi}{4} \\ \pi - 2\sin^{-1}x ; \frac{\pi}{4} < \sin^{-1}x \le \frac{\pi}{2} \end{cases}$$



Step 3:

The given piecewise function can be written as follows:

$$\sin^{-1}\left(2x\sqrt{1-x^{2}}\right) = \begin{cases} -\pi - 2\sin^{-1}x; -1 \le x < \frac{-1}{\sqrt{2}} \\ 2\sin^{-1}x; \frac{-1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}} \\ \pi - 2\sin^{-1}x; \frac{1}{\sqrt{2}} < x \le 1 \end{cases}$$

Step 4:

$$2 \sin^{-1} x = \begin{cases} -\pi - \sin^{-1} \left(2x\sqrt{1 - x^2} \right); -1 \le x < \frac{-1}{\sqrt{2}} \\ \sin^{-1} \left(2x\sqrt{1 - x^2} \right); \frac{-1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}} \\ \pi - \sin^{-1} \left(2x\sqrt{1 - x^2} \right); \frac{1}{\sqrt{2}} < x \le 1 \end{cases}$$

AIEEE 2003

The trigonometric equation $\sin^{-1} x = 2 \sin^{-1} \alpha$ has a solution for which of the following values of α ?

(a) All real values

$$ig(\mathsf{b} ig) ig| lpha ig| \leq rac{1}{\sqrt{2}}$$

$$|a| |a| \le \frac{1}{\sqrt{2}}$$
 $|a| \ge \frac{1}{\sqrt{2}}$

$$\left(\mathsf{d}\right)\frac{1}{\sqrt{2}} < \left|\alpha\right| \leq \frac{1}{\sqrt{2}}$$

Solution

Step 1:

We know that,

$$\sin^{-1} x \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

$$\Rightarrow 2 \sin^{-1} \alpha \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$$

$$\Rightarrow \sin^{-1} \alpha \in \left[\frac{-\pi}{4}, \frac{\pi}{4} \right]$$

Step 2:

$$\frac{-\pi}{4} \le \sin^{-1} \alpha \le \frac{\pi}{4}$$

$$\Rightarrow \sin\left(\frac{-\pi}{4}\right) \le \sin\left(\sin^{-1}\alpha\right) \le \sin\left(\frac{\pi}{4}\right)$$

$$\Rightarrow \frac{-1}{\sqrt{2}} \le \alpha \le \frac{1}{\sqrt{2}}$$

Therefore, $|\alpha| \le \frac{1}{\sqrt{2}}$

So, option (b) is the correct answer.

 $2\cos^{-1} x = 2\pi - \cos^{-1}(2x^2 - 1)$ is true for which values of x?

$$(a) x \in [0,1]$$

$$(b)x \in [-1,0]$$

$$(\mathbf{c})\mathbf{x} \in [-1,1]$$

$$(d)x \in \left[\frac{1}{2}, 1\right]$$

Solution

Step 1:

Let $\cos^{-1} x = \theta$, where $\theta \in [0, \pi]$ and $x \in [-1, 1]$

$$\Rightarrow$$
 x = cos θ

Step 2:

To solve $2 \cos^{-1} x = 2\pi - \cos^{-1} (2x^2 - 1)$

It is similar to $\cos^{-1}(2x^2-1)=2\pi-2\cos^{-1}x=2\pi-2\theta$(i)

By substituting $x = \cos \theta$ in $\cos^{-1}(2x^2-1)$, we get,

$$\cos^{-1}(2x^2 - 1) = \cos^{-1}(2\cos^2\theta - 1)$$
$$= \cos^{-1}(\cos 2\theta)$$

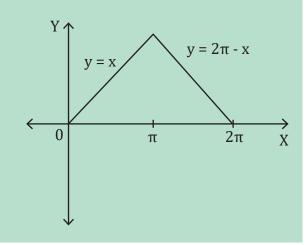
Step 3:

$$\cos^{-1}(2x^2 - 1) = \cos^{-1}(\cos 2\theta)$$
, where $2\theta \in [0, 2\pi]$

Let us draw the graph of $\cos^{-1}(\cos x)$, where $x \in [0, 2\pi]$

We can see that for $2\theta \in [\pi, 2\pi]$, we get,

 $\cos^{-1}(\cos 2\theta) = 2\pi - 2\theta$ which is similar to(i).



Step 4:

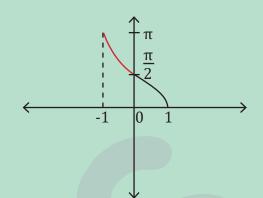
$$\Rightarrow \pi \leq 2\theta \leq 2\pi$$

$$\Rightarrow \frac{\pi}{2} \le \theta \le \pi$$

$$\Rightarrow \frac{\pi}{2} \le \cos^{-1} x \le \pi$$

Therefore, $x \in [-1, 0]$

So, option (b) is the correct answer.



$$\overline{?}$$
 If $f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, $g(x) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$, $h(x) = 2 \tan^{-1}x$ and f , g , and h are identical

functions, then x belongs to:

$$(d)[-1,0)$$

Solution

Step 1:

Let $\tan^{-1} x = \theta$, where $\theta \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and $x \in \mathbb{R}$.

 \Rightarrow x = tan θ

Also, f, g, and h are identical functions.

$$\Rightarrow$$
 f(x)=g(x)=h(x)

Step 2:

Case 1: $h(x) = 2\tan^{-1} x = 2\theta, x \in \mathbb{R}$

Case 2:

$$f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$$

By substituting $x = tan\theta$, we get,

$$f(\theta) = \tan^{-1} \left(\frac{2 \tan \theta}{1 - \tan^2 \theta} \right)$$

$$f(\theta) = \tan^{-1}(\tan 2\theta)$$

If
$$tan^{-1}(tan 2\theta) = 2\theta$$

$$\Rightarrow 2\theta \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) \text{ or } \theta \in \left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$$

It means that $\tan^{-1} x \in \left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$ or $x \in (-1, 1)$.

Case 3

$$g(x) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

By substituting $x = tan\theta$, we get,

$$g(\theta) = \cos^{-1}\left(\frac{1 - \tan^2\theta}{1 + \tan^2\theta}\right)$$

$$g(\theta) = \cos^{-1}(\cos 2\theta)$$

If
$$\cos^{-1}(\cos 2\theta) = 2\theta$$

$$\Rightarrow 2\theta \in [0,\pi) \text{ or } \theta \in \left[0,\frac{\pi}{2}\right)$$

It means that $\tan^{-1} x \in \left[0, \frac{\pi}{2}\right]$ or $x \ge 0$.

Step 3:

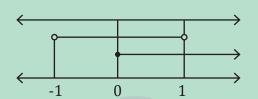
For f, g, and h to be identical, their domain must be identical.

So, the final domain is as follows:

$$D_{f} \cap D_{g} \cap D_{h}$$

$$\Rightarrow x \in [0, 1)$$

So, option (b) is the correct answer.



If $\alpha = 3 \sin^{-1} \left(\frac{6}{11} \right)$ and $\beta = 3 \cos^{-1} \left(\frac{4}{9} \right)$ where the inverse trigonometric functions take

only the principal values, then which of the following option (s) is / are correct?

(a)
$$\cos \beta > 0$$

(b)
$$\sin \beta < 0$$

(c)
$$\cos(\alpha+\beta)>0$$

$$(d)\cos\alpha < 0$$

Solution

We have to find the quadrants in which α and β lie.

Step 1:

Given,
$$\alpha = 3 \sin^{-1} \left(\frac{6}{11} \right)$$

We know that,
$$\frac{6}{12} < \frac{6}{11} < \frac{6}{4\sqrt{3}}$$

sin⁻¹x is an increasing function, so,

$$\Rightarrow \sin^{-1}\frac{6}{12} < \sin^{-1}\frac{6}{11} < \sin^{-1}\frac{6}{4\sqrt{3}}$$

$$\Rightarrow \sin^{-1}\frac{1}{2} < \sin^{-1}\frac{6}{11} < \sin^{-1}\frac{\sqrt{3}}{2}$$

$$\Rightarrow \frac{\pi}{6} < \sin^{-1} \frac{6}{11} < \frac{\pi}{3}$$

$$\Rightarrow \frac{\pi}{2} < 3 \sin^{-1} \frac{6}{11} < \pi$$

Therefore,
$$\alpha \in \left(\frac{\pi}{2}, \pi\right)$$

Step 2:

Given,
$$\beta = 3 \cos^{-1} \left(\frac{4}{9} \right)$$

We know that,
$$0 < \frac{4}{9} < \frac{4}{8}$$

 $\cos^{-1}x$ is a decreasing function, so,

$$\Rightarrow \cos^{-1} 0 > \cos^{-1} \frac{4}{9} > \cos^{-1} \frac{4}{8}$$

$$\Rightarrow \frac{\pi}{2} > \cos^{-1}\frac{4}{9} > \frac{\pi}{3}$$

$$\Rightarrow \frac{3\pi}{2} > 3\cos^{-1}\frac{4}{9} > \pi$$

Therefore,
$$\beta \in \left(\pi, \frac{3\pi}{2}\right)$$

Step 3:

Since α lies in the second quadrant, $\cos \alpha < 0$.

Since β lies in the third quadrant, $\cos \beta < 0$ and $\sin \beta < 0$

Also, $\alpha \in \left(\frac{\pi}{2}, \pi\right)$ and $\beta \in \left(\pi, \frac{3\pi}{2}\right) \Rightarrow \alpha + \beta \in \left(\frac{3\pi}{2}, \frac{5\pi}{2}\right)$, which lies in the first or fourth quadrant.

Therefore, $\cos(\alpha + \beta) > 0$.

So, option (b), (c), (d) are the correct answers.

Inequalities Involving ITF

Solve: $\log_2 (\tan^{-1}x) > 1$

Solution

Step 1:

 $\log_2 (\tan^{-1} x) > 1$ $\Rightarrow \tan^{-1} (x) > 2$

Step 2:

We know that, $\tan^{-1} x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

It means that $tan^{-1}(x) > 2$ is not possible. Therefore, $x \in \Phi$

All the values of x satisfying the inequality $(\cot^{-1} x)^2 - 7 \cot^{-1} x + 10 > 0$ lie in which of the following intervals?

- (a) $(-\infty, \cot 5) \cup (\cot 4, \cot 2)$
- (b) (cot 5, cot 4)
- (c) $(-\infty, \cot 5) \cup (\cot 2, \infty)$
- $(d)(\cot 2, \infty)$

Solution

Step 1:

Let $\cot^{-1}x = t$, where $t \in (0, \pi)$ The inequality becomes, $t^2 - 7t + 10 > 0$

(t-5)(t-2) > 0 $t \in (-\infty, 2) \cup (5, \infty)$

JEE MAIN 2019

Step 2:

However, $t \in (0, \pi)$

By taking the intersection, we get,

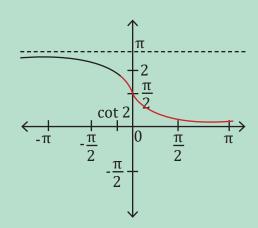
 $t \in (0, 2)$

 $\cot^{-1}x \in (0, 2)$

Step 3:

Let us see the graph of $\cot^{-1} x$. For $\cot^{-1} x \in (0, 2)$, we get, $x \in (\cot 2, \infty)$

So, option (d) is the correct answer.



Concept Check

1. If $\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left(\frac{2x}{1 - x^2} \right)$; $|x| < \frac{1}{\sqrt{3}}$, then what is the value of y?

(a)
$$\frac{3x + x^3}{1 - 3x^2}$$

(a)
$$\frac{3x + x^3}{1 - 3x^2}$$
 (b) $\frac{3x - x^3}{1 + 3x^2}$ (c) $\frac{3x + x^3}{1 + 3x^2}$ (d) $\frac{3x - x^3}{1 - 3x^2}$

(c)
$$\frac{3x + x^3}{1 + 3x^2}$$

(d)
$$\frac{3x - x^3}{1 - 3x^2}$$

2. Solve: $\sin^{-1} x > \frac{\pi}{6}$

3. For how many integral values of x, is the inequality $\cos^{-1}x > \cos^{-1}x^2$ true?

Summary Sheet

Key formulae

$$\sin^{-1}\left(2x\sqrt{1-x^{2}}\right) = \begin{cases} -\pi - 2\sin^{-1}x; -1 \le x < \frac{-1}{\sqrt{2}} \\ 2\sin^{-1}x; \frac{-1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}} \\ \pi - 2\sin^{-1}x; \frac{1}{\sqrt{2}} < x \le 1 \end{cases}$$

Mind Map

Graph of Inverse Trigonomteric Ratios

Inequalities involving ITF

Graph of f⁻¹(f(x))

Multiple angles in terms of sin⁻¹, cos⁻¹, tan⁻¹

Self-Assessment

Solve the following inequality: $(\sec^{-1}x)^2 - 6\sec^{-1}x + 8 > 0$

A

Answers

Concept Check

1

Step 1:

Let $\tan^{-1} x = \theta$, where $\theta \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and $x \in \mathbb{R}$.

$$\Rightarrow$$
 x = tan θ

However, in the question, it is given that $|x| < \frac{1}{\sqrt{3}}$.

It means that
$$\frac{-1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$$
 or $\frac{-1}{\sqrt{3}} < \tan \theta < \frac{1}{\sqrt{3}}$

Therefore,
$$\theta \in \left(\frac{-\pi}{6}, \frac{\pi}{6}\right)$$
......(i)

Step 2:

By substituting $x = \tan \theta$, we get

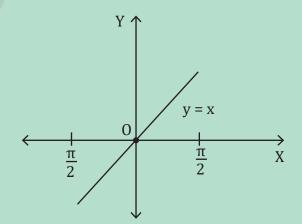
$$\tan^{-1} y = \theta + \tan^{-1} \left(\frac{2 \tan \theta}{1 - \tan^2 \theta} \right)$$

$$=\theta + \tan^{-1}(\tan 2\theta)$$
, where $2\theta \in \left(\frac{-\pi}{3}, \frac{\pi}{3}\right)(\text{from}(i))$

Let us examine the graph of $\tan^{-1} (\tan x)$ for $x \in (\frac{-\pi}{3}, \frac{\pi}{3})$

For
$$x \in \left(\frac{-\pi}{3}, \frac{\pi}{3}\right)$$
, $\tan^{-1}(\tan x) = x$

$$\Rightarrow \tan^{-1} y = \theta + \tan^{-1} (\tan 2\theta) = \theta + 2\theta = 3\theta$$



Step 3:

$$y = \tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$$
$$= \frac{3x - x^3}{1 - 3x^2}$$

Therefore, option (d) is the correct answer.

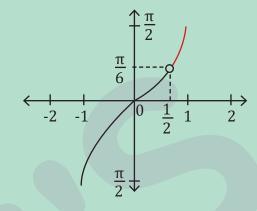
2.

Step 1:

From the graph,

We can see that $\sin^{-1} x$ is always less than or equal to $\frac{\pi}{2}$

So,
$$\frac{\pi}{2} \ge \sin^{-1} x > \frac{\pi}{6}$$



Step 2:

Since $\sin^{-1} x$ is an increasing function, the given inequality can be modified as follows:

$$\sin\left(\frac{\pi}{2}\right) \ge x > \sin\left(\frac{\pi}{6}\right)$$

$$\Rightarrow 1 \ge x > \frac{1}{2}$$

Therefore,
$$x \in \left(\frac{1}{2}, 1\right]$$

3.

Step 1:

Since $\cos^{-1} x$ is a decreasing function, the inequality $\cos^{-1} x > \cos^{-1} x^2$ can be reduced to $x^2 > x$

$$\Rightarrow$$
(x)(x-1) > 0

$$\Rightarrow$$
x \in $(-\infty, 0) $\cup (1, \infty)$$

Step 2:

However, for $\cos^{-1} x$, $\cos^{-1} x^2$ is defined for $x \in [-1, 1]$

Step 3:

By taking the intersection, we get, $x \in [-1, 0)$ Therefore, the number of integral value possible is only 1.

Self-Assessment

 $(\sec^{-1}x)^2 - 6\sec^{-1}x + 8 > 0$

Step 1:

Let $\sec^{-1}x = t$

The inequality becomes,

$$t^2 - 6t + 8 > 0$$

$$(t-4)(t-2) > 0$$

$$t \in (-\infty, 2) \cup (4, \infty)$$

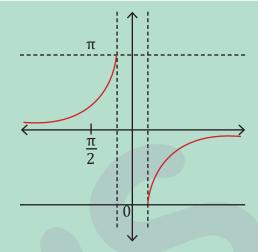
$$\Rightarrow$$
 sec⁻¹x < 2 or sec⁻¹x > 4

Step 2:

From the graph for $\sec^{-1}x$, we can see that,

$$\sec^{-1} x \in \left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right]$$

It means that $\sec^{-1}x > 4$ is not possible. So, the inequality that needs to be solved is $\sec^{-1}x < 2$.



Step 3:

 $sec^{-1}x < 2$ is represented by the shaded region in the graph.

$$\Rightarrow x \in (-\infty, \sec 2) \cup (1, \infty)$$

