BYJU'S Study Planner for Board Term I (CBSE Grade 12)

Date: 15/11/2021
Subject: Mathematics
Topic : Continuity and
Differentiability
Class: Standard XII

1. The function given by $f(x)=\frac{1}{|x|-1}-\frac{x^{2}}{2}$ is continuous inA. $\mathbb{R}-\{-1,1\}$
(B. $\mathbb{R}-\{1\}$
\times
C. $\mathbb{R}-\{-1\}$
\times
D. $\{-1,1\}$
$\frac{1}{|x|-1}$ is discontinuous where $|x|=1$
i.e., $x=-1,1$
while $\frac{x^{2}}{2}$ is continuous for all real x.
So, $f(x)=\frac{1}{|x|-1}-\frac{x^{2}}{2}$ is discontinuous at $x=-1,1$
Hence, $f(x)$ is continuous for all $x \in \mathbb{R}-\{-1,1\}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

2. $f(x)=\operatorname{sgn}\left(x^{3}-x\right)$ is discontinuous at which of the following points
x A. 0
(B. 1
X C. -1
(v)
D. All the above

We know that $\operatorname{sgn}(x)$ is discontinuous at $x=0$.
So, the function $f(x)=\operatorname{sgn}\left(x^{3}-x\right)$ will be discontinuous at all the points where $x^{3}-x=0$
$\Rightarrow x\left(x^{2}-1\right)=0$
$\Rightarrow x(x+1)(x-1)=0$
$\Rightarrow x=\{0,1,-1\}$
3. If $f(x)=[[x]]-[x-1]$ then which of the following options is CORRECT, (where [.] represents the greatest integer function.)
x A. Discontinuous at $x=0$
x B. Discontinuous at $x=1$
x C. Discontinuous at $x=-1$
(ح) D. Continuous at every where
$f(x)=[[x]]-[x-1]=[x]-([x]-1)=1$
$\Rightarrow f(x)$ is continuous $\forall x \in \mathbb{R}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

4.

Let $f(x)=\frac{(27-2 x)^{1 / 3}-3}{9-3(243+5 x)^{1 / 5}}, x \neq 0$. If $f(x)$ is continuous at $x=0$, then the value of $f(0)$ is
(A. $\frac{2}{3}$B. 2
\times C. 4
(D) D. 6

For continuity of $f(x)$ at $x=0$, we must have:

$$
\begin{aligned}
& f(0)=\lim _{x \rightarrow 0} f(x) \\
& =\lim _{x \rightarrow 0} \frac{(27-2 x)^{1 / 3}-3}{9-3(243+5 x)^{1 / 5}}\left[\frac{0}{0} \text { form }\right] \\
& =\lim _{x \rightarrow 0} \frac{\frac{1}{3}(27-2 x)^{-2 / 3} \cdot(-2)}{-\frac{3}{5}(243+5 x)^{-4 / 5} \cdot 5} \\
& =\frac{2}{9} \lim _{x \rightarrow 0} \frac{(243+5 x)^{4 / 5}}{(27-2 x)^{2 / 3}} \\
& =\frac{2}{9} \cdot \frac{(243)^{4 / 5}}{(27)^{2 / 3}}=\frac{2}{9} \cdot \frac{81}{9}=2
\end{aligned}
$$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

5. The value of $f(0)$, so that the function $f(x)=\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}$ is continuous at $x=0$ is
A. $\frac{1}{6}$
x
B. $\frac{1}{3}$
\times
C. $\frac{1}{2}$
\times
D. $\frac{2}{3}$

For continuity of $f(x)$ at $x=0$, we must have,
$f(0)=\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}\left(\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}\right)=\lim _{x \rightarrow 0} \frac{(1+x)^{1 / 2}-(1+x)^{1 / 3}}{x}$
$\left[\frac{0}{0}\right.$ form $]$
$=\lim _{x \rightarrow 0}\left\{\frac{1}{2(1+x)^{1 / 2}}-\frac{1}{3(1+x)^{2 / 3}}\right\}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$
6. The function given by $f(x)=\frac{3 x+7}{x^{2}-5 x+6}$ is continuous in
x A. $(2,3]$
(X) B. $\mathbb{R}-[2,3]$
C. $\mathbb{R}-\{2,3\}$
x D. None of the above
$f(x)$ is not defined when denominator equals 0
So, for $f(x)$ to be continuous, $x^{2}-5 x+6 \neq 0$,
$\Rightarrow x \neq 2,3$
So, $f(x)$ is continuous for all $x \in \mathbb{R}-\{2,3\}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

7. If $f(x)=\frac{1-\sin x}{\sin 2 x}, x \neq \frac{\pi}{2}$ is continuous at $x=\frac{\pi}{2}$, then the value of $f\left(\frac{\pi}{2}\right)$ is
(ح) A. 0
(B. $\frac{1}{2}$
x C. 1
(D) 2

For continuity of $f(x)$ at $x=\frac{\pi}{2}$, we must have
$f\left(\frac{\pi}{2}\right)=\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\sin 2 x}\left(\frac{0}{0}\right.$ form $)$
Using L Hospital's Rule
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\cos x}{2 \cos 2 x}=\frac{-\cos \frac{\pi}{2}}{2 \cos \pi}=0$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

8.

Let $f(x)=\left\{\begin{array}{cc}(x-1)^{\frac{1}{2-x}}, & x>1, x \neq 2 \\ k, & x=2\end{array}\right.$
The value of k for which f is continuous at $x=2$ is :A. e^{-1}
x
B. e^{-2}
x
C. e
x D. 1
$f(x)=\left\{\begin{array}{cc}(x-1)^{\frac{1}{2-x}}, & x>1, x \neq 2 \\ k, & x=2\end{array}\right.$
As $f(x)$ is continuous at $x=2$
$\therefore k=\lim _{x \rightarrow 2}(x-1)^{\frac{1}{2-x}}$
$=\lim _{x \rightarrow 2} e^{(x-1-1) \cdot \frac{1}{2-x}}$
$=\lim _{x \rightarrow 2} e^{(-1)}$
$=e^{-1}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

9. For the function $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$. The value of $f(\pi)$, so that $f(x)$ is continuous at $x=\pi$ is
A. -1
\times
B. $-\frac{1}{2}$
\times
C. $\frac{1}{2}$
x
D. 1

For continuity of $f(x)$ at $x=\pi$, we must have
$f(\pi)=\lim _{x \rightarrow \pi} f(x)$
$\lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi} \frac{1-\sin x+\cos x}{1+\sin x+\cos x} \quad\left[\frac{0}{0}\right.$ Form $]$
Applying L Hospital's rule
$=\lim _{x \rightarrow \pi} \frac{-\cos x-\sin x}{\cos x-\sin x}$
$=\frac{-\cos \pi-\sin \pi}{\cos \pi-\sin \pi}$
$=\frac{1-0}{-1-0}=-1$
$\therefore f(\pi)=-1$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

10.

If $f(x)=\left\{\begin{array}{cl}\frac{\left(4^{x}-1\right)^{3}}{\sin \left(\frac{x}{a}\right) \ln \left(1+\frac{x^{2}}{3}\right)}, & x \neq 0 \\ 9(\ln 4)^{3}, & x=0\end{array} \quad\right.$ is continuous at $x=0$, then the value of a is
x A. 0
x B. 1
\times C.
(v)
D. 3

For $f(x)$ to be continuous at $x=0$, we must have
$f(0)=\lim _{x \rightarrow 0} f(x) \quad \cdots(1)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\left(4^{x}-1\right)^{3}}{\sin \left(\frac{x}{a}\right) \ln \left(1+\frac{x^{2}}{3}\right)}$
$=\lim _{x \rightarrow 0} \frac{\left(4^{x}-1\right)^{3}}{x^{3}} \cdot \frac{\left(\frac{x}{a}\right)}{\sin \left(\frac{x}{a}\right)} \cdot \frac{\frac{x^{2}}{3}}{\ln \left(1+\frac{x^{2}}{3}\right)} \cdot 3 a$
$=3 a \cdot\left(\lim _{x \rightarrow 0} \frac{4^{x}-1}{x}\right)^{3} \cdot\left(\frac{1}{\lim _{x \rightarrow 0} \frac{\sin (x / a)}{(x / a)}}\right) \cdot\left(\frac{1}{\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2} / 3\right)}{\left(x^{2} / 3\right)}}\right)$
$=3 a \cdot(\ln 4)^{3} \cdot \frac{1}{1} \cdot \frac{1}{1}=3 a(\ln 4)^{3}$
Using (1), we get
$\Rightarrow 9(\ln 4)^{3}=3 a(\ln 4)^{3}$
$\therefore a=3$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

11.

If $f(x)=\left\{\begin{array}{cl}\frac{(1-\sin x)}{(\pi-2 x)^{2}}, & x \neq \frac{\pi}{2} \\ \lambda, & x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then the value of λ is
(x) A. $\frac{1}{4}$
x
B. $\frac{1}{2}$
(v)
C. $\frac{1}{8}$
\times
D. 1

For $f(x)$ to be continuous at $x=\frac{\pi}{2}$, we must have
$\lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right)=\lambda$
$\Rightarrow \lambda=\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} \frac{(1-\sin x)}{(\pi-2 x)^{2}}$
Using L Hospital's Rule
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\cos x}{-4(\pi-2 x)}$
$=\frac{1}{4} \cdot \lim _{x \rightarrow \frac{\pi}{2}} \frac{-\sin x}{-2}=\frac{1}{8}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

12.

Let $f(x)=\frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}, x \neq \frac{\pi}{4}$. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, then the value of $f\left(\frac{\pi}{4}\right)$ is
x A. 1
(ح) B. $\frac{1}{2}$
x C. 2
(D) $\frac{1}{4}$

As $f(x)$ is continuous at $x=\frac{\pi}{4}$
$\therefore f\left(\frac{\pi}{4}\right)=\lim _{x \rightarrow \frac{\pi}{4}} f(x)$
$\lim _{x \rightarrow \frac{\pi}{4}} f(x)=\lim _{x \rightarrow \frac{\pi}{4}} \frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}$
Using L Hospital's rule
$=\lim _{x \rightarrow \frac{\pi}{4}} \frac{-\sec ^{2}\left(\frac{\pi}{4}-x\right)}{-2 \operatorname{cosec}^{2} 2 x}=\frac{1}{2}$
$\therefore f\left(\frac{\pi}{4}\right)=\frac{1}{2}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

13. The value of $f(0)$ such that the function $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$ is continuous at every point in its domain, is equal toA. $\frac{1}{3}$
x
B. $-\frac{1}{3}$
\times
C. $\frac{2}{3}$
\times
D. 2

For $f(x)$ to be continuous at every point of its domain, it must be continuous at $x=0$ also,
\therefore We must have,
$f(0)=\lim _{x \rightarrow 0} f(x)$,
$\Rightarrow f(0)=\lim _{x \rightarrow 0} \frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$
Dividing numerator and denominator by x
$=\lim _{x \rightarrow 0}\left\{\frac{2-\frac{\sin ^{-1} x}{x}}{2+\frac{\tan ^{-1} x}{x}}\right\}=\frac{1}{3}$
$\therefore f(0)=\frac{1}{3}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

14. The function $f(x)=x-\left|x-x^{2}\right|$ isA. continuous at $x=1$
x
B. discontinuous at $x=0$
\times
C. not defined at $x=1$
\times
D. not defined at $x=0$
$f(x)=x-|x(1-x)|$
$= \begin{cases}x+x(1-x) & x \geq 1 \\ x-x(1-x) & 0 \leq x<1 \\ x+x(1-x) & x<0\end{cases}$
So, doubtfull points are $x=0,1$
at $x=1, f(x)=1=f\left(1^{+}\right)$and
$\lim _{x \rightarrow 1^{-}} f(x)=1$,
at $x=0, f(x)=0=f\left(0^{+}\right)$and
$\lim _{x \rightarrow 0^{-}} f(x)=0$
Hence, $f(x)$ is continuous at $x \in \mathbb{R}$
15. The interval where the function $\log (1+x)$ is continuous, is
x A. $(0, \infty)$
B. $(-1, \infty)$
x C. $(-\infty,-1)$
\times
D. None of the above
$\because \log _{a} x$ is continuous where $x>0$ and $a>0, a \neq 1$, Therefore $\log (1+x)$ is continuous when $1+x>0$
$\Rightarrow x>-1$
\therefore Required interval $=(-1, \infty)$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

16. If $f(x)=\frac{\log _{e}\left(1+x^{2} \tan x\right)}{\sin x^{3}}, x \neq 0$ is continuous at $x=0$, then the value of $f(0)$ is
x A. -1
x B. 0
x
C. $\frac{1}{2}$
(
D. 1

For $f(x)$ to be continuous at $x=0$, we must have
$f(0)=\lim _{x \rightarrow 0} f(x)$
$=\lim _{x \rightarrow 0} \frac{\log _{e}\left(1+x^{2} \tan x\right)}{\sin x^{3}}$
$=\lim _{x \rightarrow 0} \frac{\log _{e}\left(1+x^{2} \tan x\right)}{x^{2} \tan x} \cdot \frac{x^{2} \tan x}{x^{3}} \cdot \frac{x^{3}}{\sin x^{3}}$
$=\lim _{x \rightarrow 0}\left\{\frac{\log _{e}\left(1+x^{2} \tan x\right)}{x^{2} \tan x}\right\} \cdot \lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right) \cdot \frac{1}{\lim _{x \rightarrow 0}\left(\frac{\sin x^{3}}{x^{3}}\right)}$
$=1 \times 1 \times \frac{1}{1}=1$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

17.

Let $f(x)= \begin{cases}\sqrt{1+x^{2}}, & x<\sqrt{3} \\ \sqrt{3} x-1, & \sqrt{3} \leq x<4 \\ {[x],} & 4 \leq x<5 \\ |1-x|, & x \geq 5\end{cases}$
where $[x]$ is the greatest integer less than or equal to x.
The number of point(s) of discontinuity of $f(x)$ in \mathbb{R} is
x A. 3

- B. 0
x C. Infinite
(v)
D. 1

Checking discontinuity at the points where $f(x)$ changes it's branches i.e.
$\sqrt{3}, 4,5$
$f\left(\sqrt{3}^{-}\right)=2$
$f\left(\sqrt{3}^{+}\right)=f(\sqrt{3})=2$
$f\left(4^{-}\right)=4 \sqrt{3}-1$
$f\left(4^{+}\right)=f(4)=4$
$f\left(5^{-}\right)=4$
$f\left(5^{+}\right)=f(5)=4$
So, $f(x)$ is discontinuous only at $x=4$.

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

18.

The value of a so that the function $f(x)=\left\{\begin{array}{cl}\frac{1-\cos 4 x}{x^{2}}, & x<0 \\ a, & x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & x>0\end{array}\right.$
is continuous at $x=0$ is
x A. 2
X B. 4
\times C. 6
(D) 8
$f(0)^{-}=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{1-\cos 4 x}{x^{2}}$
$=\lim _{x \rightarrow 0^{-}} \frac{2 \sin ^{2} 2 x}{x^{2}}=8$
$f(0)^{+}=\lim _{x \rightarrow 0^{+}} f(x)$
$=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}$
$=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x} \cdot(\sqrt{16+\sqrt{x}}+4)}{16+\sqrt{x}-16}$
$=\lim _{x \rightarrow 0^{+}}(\sqrt{16+\sqrt{x}}+4)=8$
For $f(x)$ to be continuous,
$f\left(0^{-}\right)=f\left(0^{+}\right)=f(0)$
$\Rightarrow a=8$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

19. Let $f(x)=5-|x-2|$ and $g(x)=|x+1|, x \in \mathbb{R}$. If $f(x)$ attains maximum value at α and $g(x)$ attains minimum value at β, then $\lim _{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^{2}-5 x+6\right)}{x^{2}-6 x+8}$ is equal to:
(v)
A. $\frac{1}{2}$
x
B. $\frac{-1}{2}$
x
C. $\frac{3}{2}$
x
D. $\frac{-3}{2}$
$f(x)=5-|x-2|$
$f(x)$ attains maximum value when
$|x-2|=0 \Rightarrow x=2=\alpha$
$g(x)=|x+1|$
$g(x)$ attains minimum value when $x=-1=\beta$
$\lim _{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^{2}-5 x+6\right)}{x^{2}-6 x+8}$
$=\lim _{x \rightarrow 2} \frac{(x-1)(x-2)(x-3)}{(x-2)(x-4)}=\frac{1}{2}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

20. If the function $f(x)= \begin{cases}a|\pi-x|+1, & x \leq 5 \\ b|x-\pi|+3, & x>5\end{cases}$
is continuous at $x=5$, then the value of $a-b$ is :
x A. $\frac{2}{\pi-5}$
(B. $\frac{2}{\pi+5}$
($)$ C. $\frac{2}{5-\pi}$
(D. $\frac{-2}{\pi+5}$
$f(x)= \begin{cases}a|\pi-x|+1, & x \leq 5 \\ b|x-\pi|+3, & x>5\end{cases}$
is continuous at $x=5$
$\therefore \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=f(5)$
$\Rightarrow a|\pi-5|+1=b|5-\pi|+3$
$\Rightarrow a(5-\pi)+1=b(5-\pi)+3$
$\Rightarrow(a-b)(5-\pi)=2$
$\therefore a-b=\frac{2}{5-\pi}$
