BYJU'S Study Planner for Board Term I (CBSE Grade 12)

Date: 15/11/2021
Subject: Mathematics
Topic : Continuity and
Differentiability

Class: Standard XII

1. The function given by $f(x)=\frac{1}{|x|-1}-\frac{x^{2}}{2}$ is continuous in
A. $\mathbb{R}-\{-1,1\}$
B. $\mathbb{R}-\{1\}$
C. $\mathbb{R}-\{-1\}$
D. $\{-1,1\}$
2. $f(x)=\operatorname{sgn}\left(x^{3}-x\right)$ is discontinuous at which of the following points
A. 0
B. 1
C. -1
D. All the above
3. If $f(x)=[[x]]-[x-1]$ then which of the following options is CORRECT, (where [.] represents the greatest integer function.)
A. Discontinuous at $x=0$
B. Discontinuous at $x=1$
C. Discontinuous at $x=-1$
D. Continuous at every where

BYJU'S Study Planner for Board Term I

 (CBSE Grade 12)4.

Let $f(x)=\frac{(27-2 x)^{1 / 3}-3}{9-3(243+5 x)^{1 / 5}}, x \neq 0$. If $f(x)$ is continuous at $x=0$, then the value of $f(0)$ is
A. $\frac{2}{3}$
B. 2
C. 4
D. 6
5. The value of $f(0)$, so that the function $f(x)=\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}$ is continuous at $x=0$ is
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{2}{3}$
6. The function given by $f(x)=\frac{3 x+7}{x^{2}-5 x+6}$ is continuous in
A. $(2,3]$
B. $\mathbb{R}-[2,3]$
C. $\mathbb{R}-\{2,3\}$
D. None of the above
7. If $f(x)=\frac{1-\sin x}{\sin 2 x}, x \neq \frac{\pi}{2}$ is continuous at $x=\frac{\pi}{2}$, then the value of $f\left(\frac{\pi}{2}\right)$ is
A. 0
B. $\frac{1}{2}$
C. 1
D. 2
8.

Let $f(x)=\left\{\begin{array}{cc}(x-1)^{\frac{1}{2-x}}, & x>1, x \neq 2 \\ k, & x=2\end{array}\right.$
The value of k for which f is continuous at $x=2$ is :
A. e^{-1}
B. e^{-2}
C. e
D. 1
9. For the function $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$. The value of $f(\pi)$, so that $f(x)$ is continuous at $x=\pi$ is
A. -1
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. 1

(CBSE Grade 12)

10.

If $f(x)=\left\{\begin{array}{cl}\frac{\left(4^{x}-1\right)^{3}}{\sin \left(\frac{x}{a}\right) \ln \left(1+\frac{x^{2}}{3}\right),}, & x \neq 0 \\ 9(\ln 4)^{3}, & x=0\end{array}\right.$ is continuous at $x=0$, then the value of a is
A. 0
B. 1
C. 2
D. 3
11.

If $f(x)=\left\{\begin{array}{cl}\frac{(1-\sin x)}{(\pi-2 x)^{2}}, & x \neq \frac{\pi}{2} \\ \lambda, & x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then the value of λ is
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{8}$
D. 1
12.

Let $f(x)=\frac{\tan \left(\frac{\pi}{4}-x\right)}{\cot 2 x}, x \neq \frac{\pi}{4}$. If $f(x)$ is continuous at $x=\frac{\pi}{4}$, then the value of $f\left(\frac{\pi}{4}\right)$ is
A. 1
B. $\frac{1}{2}$
C. 2
D. $\frac{1}{4}$

BYJU'S Study Planner for Board Term I

 (CBSE Grade 12)13. The value of $f(0)$ such that the function $f(x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$ is continuous at every point in its domain, is equal to
A. $\frac{1}{3}$
B. $-\frac{1}{3}$
C. $\frac{2}{3}$
D. 2
14. The function $f(x)=x-\left|x-x^{2}\right|$ is
A. continuous at $x=1$
B. discontinuous at $x=0$
C. not defined at $x=1$
D. not defined at $x=0$
15. The interval where the function $\log (1+x)$ is continuous, is
A. $(0, \infty)$
B. $(-1, \infty)$
C. $(-\infty,-1)$
D. None of the above

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

16. If $f(x)=\frac{\log _{e}\left(1+x^{2} \tan x\right)}{\sin x^{3}}, x \neq 0$ is continuous at $x=0$, then the value of $f(0)$ is
A. -1
B. 0
C. $\frac{1}{2}$
D. 1
17.

Let $f(x)= \begin{cases}\sqrt{1+x^{2}}, & x<\sqrt{3} \\ \sqrt{3} x-1, & \sqrt{3} \leq x<4 \\ {[x],} & 4 \leq x<5 \\ |1-x|, & x \geq 5\end{cases}$
where $[x]$ is the greatest integer less than or equal to x.
The number of point(s) of discontinuity of $f(x)$ in \mathbb{R} is
A. 3
B. 0
C. Infinite
D. 1
18.

The value of a so that the function $f(x)=\left\{\begin{array}{cc}\frac{1-\cos 4 x}{x^{2}}, & x<0 \\ a, & x=0 \\ \frac{\sqrt{x}}{\sqrt{16+\sqrt{x}}-4}, & x>0\end{array}\right.$
is continuous at $x=0$ is
A. 2
B. 4
C. 6
D. 8

BYJU'S Study Planner for Board Term I

 (CBSE Grade 12)19. Let $f(x)=5-|x-2|$ and $g(x)=|x+1|, x \in \mathbb{R}$. If $f(x)$ attains maximum value at α and $g(x)$ attains minimum value at β, then
$\lim _{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^{2}-5 x+6\right)}{x^{2}-6 x+8}$ is equal to:
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. $\frac{3}{2}$
D. $\frac{-3}{2}$
20. If the function $f(x)= \begin{cases}a|\pi-x|+1, & x \leq 5 \\ b|x-\pi|+3, & x>5\end{cases}$
is continuous at $x=5$, then the value of $a-b$ is :
A. $\frac{2}{\pi-5}$
B. $\frac{2}{\pi+5}$
C. $\frac{2}{5-\pi}$
D. $\frac{-2}{\pi+5}$
