Date: 15/11/2021

Subject: Mathematics

Topic : Continuity and Differentiability

Class: Standard XII

- 1. The function given by $f(x) = rac{1}{|x|-1} rac{x^2}{2}$ is continuous in
 - **A.** $\mathbb{R} \{-1, 1\}$
 - **B.** $\mathbb{R} \{1\}$
 - C. $\mathbb{R} \{-1\}$
 - **D.** $\{-1,1\}$
- 2. $f(x) = sgn(x^3 x)$ is discontinuous at which of the following points
 - **A**. 0
 - **B**. 1
 - C. -1
 - D. All the above
- 3. If f(x) = [[x]] [x 1] then which of the following options is CORRECT, (where [.] represents the greatest integer function.)
 - **A.** Discontinuous at x = 0
 - **B.** Discontinuous at x = 1
 - **C.** Discontinuous at x = -1
 - **D.** Continuous at every where

- 6. The function given by $f(x) = \frac{3x+7}{x^2-5x+6}$ is continuous in
 - **A.** (2,3]
 - **B.** $\mathbb{R} [2, 3]$
 - C. $\mathbb{R}-\{2,3\}$
 - D. None of the above

7. If
$$f(x) = \frac{1 - \sin x}{\sin 2x}, x \neq \frac{\pi}{2}$$
 is continuous at $x = \frac{\pi}{2}$, then the value of $f\left(\frac{\pi}{2}\right)$ is
A. 0
B. $\frac{1}{2}$
C. 1
D. 2
8. Let $f(x) = \begin{cases} (x-1)^{\frac{1}{2-x}}, & x > 1, x \neq 2\\ k, & x = 2 \end{cases}$
The value of k for which f is continuous at $x = 2$ is :
A. e^{-1}
B. e^{-2}
C. e
D. 1

9. For the function $f(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x}$. The value of $f(\pi)$, so that f(x) is continuous at $x = \pi$ is

A.
$$-1$$

B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. 1

Copyright © Think and Learn Pvt. Ltd.

B BYJU'S

10. If $f(x) = \begin{cases} \frac{(4^x - 1)^3}{\sin\left(\frac{x}{a}\right)\ln\left(1 + \frac{x^2}{3}\right)}, & x \neq 0\\ 9(\ln 4)^3, & x = 0 \end{cases}$ is continuous at x = 0, then the value of a is **A**. 0 **B**. 1 **C**. 2 **D**. 3 11. If $f(x) = \begin{cases} \frac{(1-\sin x)}{(\pi-2x)^2}, & x \neq \frac{\pi}{2} \\ \lambda, & x = \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, then the value of λ is **A.** $\frac{1}{4}$ **B.** $\frac{1}{2}$ **C**. $\frac{1}{8}$ **D**. 1 12. Let $f(x) = \frac{\tan\left(\frac{\pi}{4} - x\right)}{\cot 2x}$, $x \neq \frac{\pi}{4}$. If f(x) is continuous at $x = \frac{\pi}{4}$, then the value of $f\left(\frac{\pi}{4}\right)$ is **A.** 1 $\frac{1}{2}$ В. **C**. 2 D.

^{13.} The value of f(0) such that the function $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$ is continuous at every point in its domain, is equal to

A. $\frac{1}{3}$ **B.** $-\frac{1}{3}$ **C.** $\frac{2}{3}$ **D.** 2

14. The function $f(x) = x - |x - x^2|$ is

- **A.** continuous at x = 1
- **B.** discontinuous at x = 0
- **C.** not defined at x = 1
- **D.** not defined at x = 0
- 15. The interval where the function log(1 + x) is continuous, is
 - A. $(0,\infty)$
 - B. $(-1,\infty)$
 - **C.** $(-\infty, -1)$
 - D. None of the above

16. If
$$f(x) = \frac{\log_e(1 + x^2 \tan x)}{\sin x^3}$$
, $x \neq 0$ is continuous at $x = 0$, then the value of $f(0)$ is
A. -1
B. 0
C. $\frac{1}{2}$
D. 1
17. Let $f(x) = \begin{cases} \sqrt{1 + x^2}, & x < \sqrt{3} \\ \sqrt{3}x - 1, & \sqrt{3} \le x < 4 \\ |x|, & 4 \le x < 5 \\ |1 - x|, & x \ge 5 \end{cases}$ where $[x]$ is the greatest integer less than or equal to x . The number of point(s) of discontinuity of $f(x)$ in \mathbb{R} is
A. 3
B. 0
C. Infinite
D. 1
18. The value of a so that the function $f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2}, & x < 0 \\ a, & x = 0 \\ \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x} - 4}}, & x > 0 \end{cases}$ is continuous at $x = 0$ is

8 Copyright © Think and Learn Pvt. Ltd.

A. 2

C. 6

Β. 4

D.

Continuity and Differentiability

BYJU'S The Learning App

$$\lim_{x \to -\alpha\beta} \frac{(x-1)(x^2-5x+6)}{x^2-6x+8}$$
 is equal to:
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. $\frac{3}{2}$
D. $\frac{-3}{2}$

20.

If the function $f(x)=egin{cases} a|\pi-x|+1, & x\leq 5\ b|x-\pi|+3, & x>5 \end{cases}$

is continuous at x = 5, then the value of a - b is :

A.
$$\frac{2}{\pi - 5}$$

B. $\frac{2}{\pi + 5}$
C. $\frac{2}{5 - \pi}$
D. $\frac{-2}{\pi + 5}$