

Date: 10/11/2021

Subject: Mathematics

Topic: Inverse Trigonometric

Functions Class: Standard XII

- 1. The principal value of $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is
 - $\mathbf{A.} \quad \frac{\pi}{3}$
 - **B.** $-\frac{\pi}{3}$
 - C. $\frac{\pi}{6}$
 - **D.** $-\frac{\pi}{6}$
- 2. The domain of the function $f(x) = \sin^{-1}(5x)$ is
 - **A.** $\left[-\frac{\pi}{5}, \frac{\pi}{5}\right]$
 - $\mathbf{B.} \quad \left[-\frac{\pi}{10}, \frac{\pi}{10} \right]$
 - C. $_{\mathbb{R}}$
 - **D.** $\left[-\frac{1}{5}, \frac{1}{5} \right]$
- 3. The value of $\cos^{-1}\!\left(\cos\frac{5\pi}{3}\right) + \sin^{-1}\!\left(\cos\frac{5\pi}{3}\right)$ is
 - A. $\frac{\pi}{2}$
 - $\mathbf{B.} \quad \frac{5\pi}{3}$
 - **c.** $\frac{10\pi}{3}$
 - **D**. 0

- 4. The value of $\sin^{-1}\!\left(\sin\frac{4\pi}{3}\right) + \cos^{-1}\!\left(\cos\frac{4\pi}{3}\right)$ is
 - A. $\frac{8\pi}{3}$
 - B. $\frac{4\pi}{3}$
 - $\mathbf{C}. \quad \frac{2\pi}{3}$
 - $D. \quad \frac{\pi}{3}$
- 5. If $\sin^{-1}x+\sin^{-1}y=\frac{\pi}{2}$, then $\cos^{-1}x+\cos^{-1}y$ is equal to
 - A. $\frac{\pi}{2}$
 - $\mathbf{B.} \quad \frac{\pi}{4}$
 - **C**. π
 - **D.** $\frac{3\pi}{4}$
- $6. \quad \cos\biggl[\cos^{-1}\biggl(\frac{-1}{7}\biggr) + \sin^{-1}\biggl(\frac{-1}{7}\biggr)\biggr] =$
 - **A.** $\frac{-1}{3}$
 - **B**. 0
 - **c**. $\frac{1}{3}$
 - **D.** $\frac{4}{9}$

- 7. The value of $\tan^{-1} \left(\tan \left(-\frac{3\pi}{4} \right) \right) + \cot^{-1} \left(\cot \left(-\frac{3\pi}{4} \right) \right)$ is
 - A. $\frac{\pi}{2}$
 - **B**. π
 - **C.** $-\frac{3\pi}{2}$
 - $\mathbf{D.} \quad \frac{3\pi}{2}$
- 8. The value of $\tan^{-1}\cot\frac{12\pi}{7}$ is
 - **A.** $\frac{12\pi}{7}$
 - $\mathbf{B.} \quad \frac{5\pi}{7}$
 - $\mathbf{C.} \quad \frac{3\pi}{7}$
 - **D.** $-\frac{3\pi}{14}$
- 9. In the interval $x \in [0,1]$ the value of $\cos^{-1} \sqrt{1-x} + \sin^{-1} \sqrt{1-x}$ is
 - **A**. π
 - $B. \quad \frac{\pi}{2}$
 - **c**. ₁
 - **D.** 0
- 10. A solution of the equation $an^{-1}(1+x)+ an^{-1}(1-x)=rac{\pi}{2}$ is
 - **A.** x = 1
 - **B.** x = -1
 - **C.** x = 0
 - D. $x = \pi$

- 11. The value of $\cos^{-1}\left[-\sin\left(\frac{7\pi}{6}\right)\right]$ is
 - A. $\frac{5\pi}{3}$
 - $\mathbf{B.} \quad \frac{7\pi}{6}$
 - C. $\frac{\pi}{3}$
 - **D.** $-\frac{7\pi}{6}$
- 12. The value of $\sin^{-1}\sin\frac{36\pi}{7} + \cos^{-1}\sin\frac{39\pi}{7}$ is
 - $\mathbf{A}. \quad \frac{4\pi}{7}$
 - $B. \quad \frac{\pi}{7}$
 - **C**. $\frac{11\pi}{14}$
 - **D.** $\frac{3\pi}{14}$
- 13. The value of $\cos \left[2\cos^{-1} \frac{1}{5} + \sin^{-1} \frac{1}{5} \right]$ is
 - **A.** $\frac{2\sqrt{6}}{5}$
 - **B.** $-\frac{2\sqrt{6}}{5}$
 - **C**. $\frac{1}{5}$
 - **D.** $-\frac{1}{5}$

- 14. If $(\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}$, then x equals
 - **A.** -1
 - B. -
 - **c**. 0
 - D. None of these
- 15. If α and β ($\alpha > \beta$) are the roots of the equation $x^2 \sqrt{2}x + \sqrt{3 2\sqrt{2}} = 0$, then the value of $(\cos^{-1}\alpha + \tan^{-1}\alpha + \tan^{-1}\beta)$ is equal to
 - A. $\frac{3\pi}{8}$
 - $\mathbf{B.} \quad \frac{5\pi}{8}$
 - $\mathbf{C}. \quad \frac{7\pi}{8}$
 - $\mathbf{D.} \quad \frac{\pi}{3}$
- 16. The value of $\sin^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right)$ is
 - A. $\frac{\pi}{4}$
 - $\mathbf{B.} \quad \frac{\pi}{2}$
 - $\mathbf{C.} \quad \cos^{-1}\left(\frac{4}{5}\right)$
 - $\mathbf{D.} \quad \frac{3\pi}{4}$

- 17. The value of $\sum_{x=0}^4 \sin^{-1}(\sin x)$ is equal to
 - **A.** $3\pi 8$
 - B. $3\pi 7$
 - **C.** $3\pi 9$
 - **D.** $3\pi 6$
- 18. If $f(x)=x^{11}+x^9-x^7+x^3+1$ and $f\left(\sin^{-1}(\sin 8)\right)=\alpha$, where α is constant, then $f\left(\tan^{-1}(\tan 8)\right)$ is equal to
 - **A**. _a
 - B. $\alpha-2$
 - C. $\alpha+2$
 - D. $2-\alpha$
- 19. Consider

$$f(x) = \sin^{-1} \left(\sec \left(an^{-1} x
ight)
ight) + \cos^{-1} \left(\operatorname{cosec} \left(\cot^{-1} x
ight)
ight)$$

Statement-1: Domain of f(x) is a singleton set.

Reason

 ${\sf Statement-2}: {\sf Range \ of \ the \ function} \ f(x) \ {\sf is \ a \ singleton \ set}.$

- A. Statement-1 is true, Statement-2 is true and Statement-2 is correct explantion for Statement-1.
- **B.** Statement-1 is true, Statement-2 is true and Statement-2 is NOT the correct explanation for Statement-1.
- **C.** Statement-1 is true, Statement-2 is false.
- **D.** Statement-1 is false, Statement-2 is true.

20. Assertion (A): $\cos^{-1} x$ and $\tan^{-1} x$ are positive for all positive real values of x in their domain.

Reason (R): The domain of $f(x) = \cos^{-1} x + \tan^{-1} x$ is [-1, 1].

- **A.** Both A and R are true and R is the correct explanation of A.
- **B.** Both A and R are true but R is not correct explanation of A.
- **C.** *A* is true but *R* is false.
- **D.** A is false but R is true.