

Date: 09/11/2021

Subject: Mathematics

Topic : Relations and Functions Class: Standard XII

- 1. Let A be a non-empty set such that $A\times A$ has 9 elements and (-1,0),(0,1) are elements of $A\times A$, then A=
 - **A.** $\{-1,0,2\}$
 - **B.** $\{-1,0,1\}$
 - lacktriangleright C. $\{-2,0,1\}$
 - x D. Cannot be determined

Given that $(-1,0) \in A \times A$ and $(0,1) \in A \times A$

 \Rightarrow -1,0,1 are elements of set A and given that $n(A \times A) = 9 \Rightarrow n(A) = 3$

 $A = \{-1, 0, 1\}$

2. Let $\mathbb N$ denote the set of all natural numbers. Define two binary relations on $\mathbb N$ as

$$R_1=\{(x,y)\in \mathbb{N} imes \mathbb{N}: 2x+y=10\}$$
 and $R_2=\{(x,y)\in \mathbb{N} imes \mathbb{N}: x+2y=10\}.$ Then

- f A. Both R_1 and R_2 are transitive relations.
- **B.** Range of R_2 is $\{1, 2, 3, 4\}$.
- **C.** Range of R_1 is $\{2, 4, 8\}$.
- f D. Both R_1 and R_2 are symmetric relations.

$$R_1 = \{(1,8), (2,6), (3,4), (4,2)\}$$

 $R_2 = \{(8,1), (6,2), (4,3), (2,4)\}$
Range of $R_2 = \{1,2,3,4\}$

 $(1,8)\in R_1$ but $(8,1)\not\in R_1$, so R_1 is not symmetric. $(4,2)\in R_1\ \&\ (2,6)\in R_1$ but $(4,6)\not\in R_1$, So R_1 is not transitive.

Similarly, R_2 is neither symmetric nor transitive.

- 3. If the function $f:B\to [-5,\infty)$ defined by $f(x)=x^2-4x+5$ is one-one function, then B is
 - lacksquare A. $[2,\infty)$
 - $oldsymbol{\mathsf{x}}$ **B.** $[0,\infty)$
 - $lackbox{\textbf{C}}.\quad [-5,\infty)$
 - $lackbox{ D. } [-1,\infty)$

$$f(x) = x^2 - 4x + 5$$

= $(x-2)^2 + 1$

Clearly, we can conclude from above graph and given options $\ f(x)$ will be one-one function for $x\in [2,\infty)$

- 4. Consider the set $A=\{1,2,3\}$ and the relation on A as $R=\{(1,2),(1,3)\},$ then R is
 - **A.** a reflexive relation
 - B. a symmetric relation
 - **c.** a transitive relation
 - x D. None of the above

R is not reflexive as (1,1),(2,2),(3,3) does not belong to R R is not symmetric as $(1,2) \in R$ but $(2,1) \notin R$

R is transitive as $(1,2),(1,3)\in R$

but there is no ordered pair starting with 2 or 3 in relation i.e., the antecedent statement in transitive relation is false. So, given relation is transitive.

- 5. The number of solution(s) of the equation $|x-3| = x^3$ is
 - ✓ A. ₁
 - **x** B. ₀
 - **x** c. 2
 - **(x) D**. 3

The graph of y = |x - 3| and $y = x^3$

Clearly, there is only one intersection point. Hence, the number of solution is 1.

6. Let
$$f(x)=rac{x^2-1}{x}, g(x)=rac{x+2}{x-3}$$
 then domain of $rac{f(x)}{g(x)}$ is

- **A.** $\mathbb{R} \{0, -2\}$
- **B.** $\mathbb{R} \{-2, 0, 3\}$
- (x) C. R
- **X D.** $\mathbb{R} \{0, -3\}$

Let
$$h(x)=rac{f(x)}{g(x)}$$

$$\therefore h(x)=rac{rac{x^2-1}{x}}{rac{x+2}{x-3}}=rac{(x^2-1)(x-3)}{x(x+2)}$$

But for x = 3, g(x) not defined

Hence h(x) is not defined for x = 0, -2, 3

Hence required domain is

$$\mathbb{R}-\{-2,0,3\}$$

- 7. The function $f:\mathbb{R} \to \mathbb{R}$ defined by f(x) = |(x-1)(x-2)| is
 - X A. One-one function
 - B. Many-one function
 - x C. Constant function
 - x D. None of these

We can clearly see that f(x) = 0 for x = 1 and x = 2 $\therefore f(x)$ is many-one function.

- 8. Let $A=\{1,2,3\}$ and R,S be two relations on A given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}, S=\{(1,1),(2,2),(3,3),(2,3),(3,2)\}$ then $R\cup S$ is
 - A. Reflexive, symmetric and transitive relation
 - **B.** reflexive and transitive relation only
 - C. not a transitive relation
 - **x D.** Reflexive relation but not Symmetric relation $R \cup S = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,2)\}$

 \therefore It is reflexive, symmetric but not transitive because $(1,2),(2,3)\in R\cup S$ but $(1,3)\notin R\cup S$.

- 9. Let $f(x) = (1+b^2)x^2 + 2bx + 1$ and let m(b) be the minimum value of f(x). As b varies, the range of m(b) is
 - $lackbox{ A. } [0,1]$
 - $lackbox{\textbf{B}}.\quad \left[0,\frac{1}{2}\right]$
 - lacktriangle C. $\left[\frac{1}{2},1\right]$
 - \bigcirc **D.** (0,1]

$$f(x) = (1 + b^2)x^2 + 2bx + 1$$

Coefficient of x^2 is $(1+b^2)>0$

Minimum value of f(x) is $\frac{-D}{4a}$

$$\therefore m(b) = -rac{\{4b^2 - 4(1+b^2)\}}{4(1+b^2)}$$

$$\Rightarrow m(b) = rac{1}{1+b^2}$$

$$\therefore 1 \leq 1 + b^2 < \infty \ orall \ b \in \mathbb{R}$$

$$\Rightarrow 0 < \frac{1}{1+b^2} \le 1$$

 \therefore Range of m(b) is (0,1]

10. The domain of
$$f(x) = \sqrt{rac{4-x^2}{[x]+2}}$$
 is

(where [.] represents the greatest integer function)

$$lackbox{ A. } (-\infty,1)$$

B.
$$(-\infty, -2) \cup [-1, 2]$$

$$lackbox{\textbf{c}}.\quad (-\infty,-1)\cup[2,\infty)$$

$$lackbox{\textbf{D}}.\quad (-\infty,1)\cup[2,\infty)$$

$$\mathsf{Given}: f(x) = \sqrt{\frac{4-x^2}{[x]+2}}$$

For f(x) to be defined, we get

$$egin{aligned} rac{4-x^2}{[x]+2} &\geq 0 ext{ and } [x]+2
eq 0 \ \Rightarrow [x]
eq -2 \ \therefore x
otin [-2,-1) \end{aligned}$$

Case
$$1: 4-x^2 \ge 0, \ [x]+2>0 \ \Rightarrow x \in [-2,2], \ x \in [-1,\infty) \ \therefore x \in [-1,2] \cdots (1)$$

Case
$$2: 4-x^2 < 0, \ [x]+2 < 0$$

 $\Rightarrow x \in (-\infty, -2) \cup (2, \infty), \ x \in (-\infty, -2)$
 $\therefore x \in (-\infty, -2) \cdots (2)$

So, from (1) and (2), we get
$$x \in (-\infty, -2) \cup [-1, 2]$$

- 11. Let the function $f:\mathbb{R}-\{-b\}\to\mathbb{R}-\{1\}$ be defined by $f(x)=\dfrac{x+a}{x+b}, a\neq b,$ then
 - f A. f is one—one but not onto function
 - \mathbf{x} **B.** f is onto but not one—one function
 - $oldsymbol{C}$. f is bijective function
 - lackbox **D.** f is neither one—one nor onto function

For one-one:

Let
$$x, y \in \mathbb{R} - \{-b\}$$
 such that $f(x) = f(y)$

$$\Rightarrow \frac{x+a}{x+b} = \frac{y+a}{y+b}$$

$$\Rightarrow xy + ay + bx + ab = xy + xa + yb + ab$$

$$\Rightarrow x(b-a) = y(b-a)$$

$$\Rightarrow x = y \ (\because a \neq b)$$

$$\therefore f \text{ is one-one function.}$$

For onto:

Let
$$y \in \mathbb{R}$$
 such that $f(x) = y$

$$\Rightarrow \frac{x+a}{x+b} = y$$

$$\Rightarrow x+a = xy+yb$$

$$\Rightarrow x = \frac{a-by}{y-1}$$

$$\Rightarrow y \in \mathbb{R} - \{1\}$$

 $\therefore f$ is onto function.

Hence, f is one-one and onto function, it is bijective function.

12. If relation R is defined as aRb if "a is the father of b". Then R is

B. symmetric

x C. transitive

D. none of these

Given

 $R = \{(a,b); a \text{ is the father of } b\}$ $(i) \because (a,a) \notin R \text{ [as } a \text{ can not be father of } a]$ So, R is not reflexive.

(ii) Now if aRb is true, then a is the father of b} $\Rightarrow (b,a) \notin R$ [as b cannot be father of a] So, R is not symmetric.

(iii) Let $(a,b) \in R$ and $(b,c) \in R$ Hence a is father of b and b is father of c $\Rightarrow (a,c) \notin R$ [as a is not the father of c] So, R is not transitive.

13. Let $\mathbb N$ denote the set of natural numbers and R be a relation on $\mathbb N \times \mathbb N$ defined by

$$(a,b)R(c,d)\Longleftrightarrow ad(b+c)=bc(a+d).$$
 Then on $\mathbb{N}\times\mathbb{N},R$ is

- An equivalence relation
- Reflexive and symmetric relation only
- C. Transitive relation only
- Symmetric and transitive relation only

Given $(a,b)R(c,d) \Leftrightarrow ad(b+c) = bc(a+d)$ where $(a,b),(c,d) \in \mathbb{N} \times \mathbb{N}$ ad(b+c) = bc(a+d)

$$\Rightarrow \frac{b+c}{bc} = \frac{a+d}{ad}$$

$$\Rightarrow \frac{1}{b} + \frac{1}{c} = \frac{1}{a} + \frac{1}{d}$$

$$\therefore (a,b)R(c,d) \Leftrightarrow \frac{1}{b} + \frac{1}{c} = \frac{1}{a} + \frac{1}{d}$$

As
$$\frac{1}{b}+\frac{1}{a}=rac{1}{a}+rac{1}{b}\;orall\;(a,b)\in\mathbb{N} imes\mathbb{N}$$
 So, $(a,b)R(a,b)$

 $\therefore R$ is reflexive relation.

If
$$(a,b)R(c,d) \Rightarrow \frac{1}{b} + \frac{1}{c} = \frac{1}{a} + \frac{1}{d}$$

$$\Rightarrow \frac{1}{d} + \frac{1}{a} = \frac{1}{c} + \frac{1}{b}$$

$$\Rightarrow (c,d)R(a,b)$$

 $\therefore R$ is symmetric relation.

Let
$$(a,b), (c,d), (e,f) \in \mathbb{N} \times \mathbb{N}$$

Let $(a,b)R(c,d)$ and $(c,d)R(e,f)$ $(a,b)R(c,d) \Rightarrow ad(b+c) = bc(a+d)$
 $\Rightarrow \frac{1}{b} + \frac{1}{c} = \frac{1}{a} + \frac{1}{d} \cdot \cdot \cdot (1)$
 $(c,d)R(e,f) \Rightarrow cf(d+e) = de(c+f)$
 $\Rightarrow \frac{1}{d} + \frac{1}{e} = \frac{1}{f} + \frac{1}{c} \cdot \cdot \cdot (2)$
 $(1) + (2) \Rightarrow \left(\frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e}\right) = \left(\frac{1}{a} + \frac{1}{d} + \frac{1}{f} + \frac{1}{c}\right)$
 $\frac{1}{b} + \frac{1}{e} = \frac{1}{a} + \frac{1}{f}$
 $\Rightarrow (a,b)R(e,f)$

 $\therefore R$ is a Transitive relation.

Since *R* is Reflexive, Symmetric and Transitive relation.

 $\therefore R$ is an Equivalence relation.

- 14. Let a relation f defined on $(0,\infty)$ as $f(x)=\left|1-\frac{1}{x}\right|$. Then which among the following is true
 - **A.** f(-1) = 2
 - f B. f is many-one function
 - f C. f is one-one function
 - lackbox **D.** Relation f is not a function

f(-1) = 2 is not true as -1 is not an element in domain of relation.

$$f(x) = \left|1 - rac{1}{x}
ight|$$

For
$$x=1$$

$$f(x)=\left|1-rac{1}{1}
ight|=0$$

But, the co-domain of relation is $(0, \infty)$ which is not including 0.

- So, relation f is not a function.
- 15. Let $f:\mathbb{R} o\mathbb{R}$ be defined by $f(x)=\dfrac{(e^x-e^{-x})}{2}$.

The inverse of the given function is:

$$m{A}$$
. $f^{-1}(x) = \log_e(x+\sqrt{x^2+1})$

$$egin{array}{|c|c|c|c|} egin{array}{cccc} \mathbf{X} & \mathbf{B.} & f^{-1}(x) = \log_e(x - \sqrt{x^2 + 1}) \end{array}$$

C.
$$f^{-1}(x) = \log_e(x + \sqrt{x^2 - 1})$$

D.
$$f^{-1}(x) = \log_e(x - \sqrt{x^2 - 1})$$

Let
$$y = f(x) = (e^x - e^{-x})/2$$

 $\Rightarrow 2y = e^x - e^{-x}$
 $\Rightarrow e^{2x} - 2ye^x - 1 = 0$
 $\Rightarrow e^x = \frac{2y \pm \sqrt{4y^2 + 4}}{2} = y \pm \sqrt{y^2 + 1}$
 $\Rightarrow e^x = y + \sqrt{y^2 + 1}$

$$(\because y - \sqrt{y^2 + 1} < 0 \text{ for all } y \text{ but } e^x \text{ is always positive})$$

$$\Rightarrow x = \log_e(y + \sqrt{y^2 + 1})$$

$$f^{-1}(x) = \log_e(x + \sqrt{x^2 + 1})$$

$$\therefore f^{-1}(x) = \log_e(x + \sqrt{x^2 + 1})$$

16. Which among the following relations on \mathbb{Z} is an equivalence relation

A.
$$xRy \Leftrightarrow |x| = |y|$$

B.
$$xRy \Leftrightarrow x \geq y$$

C.
$$xRy \Leftrightarrow x > y$$

D.
$$xRy \Leftrightarrow x < y$$

Let's consider $xRy \Leftrightarrow |x| = |y|$

Now,
$$|x| = |x|$$

$$\Rightarrow xRx$$

Hence, R is reflexive.

Now, let
$$xRy \Rightarrow |x| = |y|$$

or |y|=|x| as equality commutative $\Rightarrow yRx$

Hence, R is symmetric.

Checking for transitive,

Let (x, y) and (y, z) satisfies R

Now, xRy, yRz

$$\Rightarrow |x| = |y|, |y| = |z|$$

$$\Rightarrow |x| = |z|$$

$$\Rightarrow xRz$$

 $\therefore (x,z)$ satisfies R

Hence, R is transitive.

Hence, R is an equivalence relation.

R is not symmetric relation as $3 \geq 2$ does not implies $2 \geq 3$. Hence R is not an equivalence relation.

R is not symmetric relation as 3>2 does not implies 2>3. Hence R is not an equivalence relation.

R is not symmetric relation as 1 < 3 is true but 3 < 1 is not true. Hence R is not an equivalence relation.

- 17. Let S be the set of all triangles and R^+ be the set of all positive real numbers. If the relation f defined from S to R^+ such that $f(\triangle) =$ area of triangle, $\triangle \in S$, then which of the following is true about relation f
 - $m{\mathsf{X}}$ **A.** f is not a function
 - lacksquare **B.** relation f is a many-one function
 - $lackbox{\textbf{C}}.\quad ext{If } riangle_1\cong riangle_2 ext{, then } f(riangle_1)
 eq f(riangle_2)$
 - **D.** None of the above

Relation f is a function as a triangle can't have two different values of it's area.

f is not one-one as many triangles exist for same area.

- 18. If a relation R is defined on set of real numbers as $xRy \Longleftrightarrow x-y+\sqrt{2}$ is an irrational number, then the relation R is
 - A. a reflexive relation
 - **B.** a symmetric relation
 - x C. a transitive relation
 - **D.** both reflexive and transitive relation

 $xRy \Longleftrightarrow x-y+\sqrt{2}$ is irrational, $x,y \in \mathbb{R}$

- (i) R is reflexive relation as $x x + \sqrt{2} = \sqrt{2}$ is irrational.
- $(ii)\;R$ is not symmetric relation as $(\sqrt{2},1)\in R$ but $(1,\sqrt{2})
 otin R$
- (iii) R is not transitive relation as $(\sqrt{2},1)\in R$ and $(1,2\sqrt{2})\in R$ but $(\sqrt{2},2\sqrt{2})\not\in R$

19. Consider the functions $f(x) = \left\{ egin{array}{ll} x+1, & x \leq 1 \\ 2x+1, & 1 < x \leq 2 \end{array}
ight.$

$$g(x)=\left\{egin{array}{ll} x^2, & -1\leq x<2\ x+2, & 2\leq x\leq 3 \end{array}
ight.$$

Domain of f(g(x)) is

- (x)
- **A.** $[0, \sqrt{2}]$
- ×
- **B.** [-1,2]
- **(**
- **C.** $[-1, \sqrt{2}]$
- (x)
- D. $[\sqrt{2},\sqrt{2}]$

$$f\left(g\left(x
ight)
ight) = \left\{ egin{array}{ll} g\left(x
ight) +1 & g\left(x
ight) \leq 1 \ 2g\left(x
ight) +1 & 1 < g\left(x
ight) \leq 2 \end{array}
ight.$$

Now from graph of g(x),

$$egin{aligned} g(x) & \leq 1 \ \Rightarrow x \in [-1,1] \ ext{and} \ g(x) \in (1,2] \Rightarrow x \in (1,\sqrt{2}] \end{aligned}$$

$$\therefore f\left(g\left(x
ight)
ight) = \left\{egin{array}{ll} g(x)+1, & x\in\left[-1,1
ight] \ 2g(x)+1, & x\in\left(1,\sqrt{2}
ight.
ight] \end{array}
ight.$$

$$= \left\{ egin{array}{ll} x^2+1, & x \in [-1,1] \ 2x^2+1, & x \in (1,\sqrt{2}\,] \end{array}
ight.$$

So, domain of $f(g(x)) = [-1, \sqrt{2}]$

20. Consider the functions
$$f(x) = \left\{ egin{array}{ll} x+1, & x \leq 1 \\ 2x+1, & 1 < x \leq 2 \end{array}
ight.$$

$$g(x)=\left\{egin{array}{ll} x^2, & -1\leq x<2\ x+2, & 2\leq x\leq 3 \end{array}
ight.$$

Range of the function f(g(x)) is

- **A**. [1, 5]
- **B.** [2, 3]
- $lackbox{\textbf{c}.} \quad [1,2] \cup (3,5]$
- **X** D. $[1,5] \{3\}$

$$f\left({g\left(x
ight)}
ight) = \left\{ egin{array}{ll} {g\left(x
ight) + 1} & {g\left(x
ight) \le 1} \ {2g\left(x
ight) + 1} & {1 < g\left(x
ight) \le 2} \end{array}
ight.$$

Now from graph of g(x),

$$g(x) \leq 1$$

$$\Rightarrow x \in [-1,1]$$

and
$$g(x) \in (1,2] \Rightarrow x \in (1,\sqrt{2}]$$

$$\therefore f\left(g\left(x
ight)
ight) = \left\{egin{array}{ll} g(x)+1, & x\in\left[-1,1
ight] \ 2g(x)+1, & x\in\left(1,\sqrt{2}\,
ight] \end{array}
ight.$$

$$= \left\{ egin{array}{ll} x^2+1, & x \in [-1,1] \ 2x^2+1, & x \in (1,\sqrt{2} \] \end{array}
ight.$$

For
$$-1 \le x \le 1$$

$$\begin{array}{l} \mathsf{For} \ -1 \leq x \leq 1 \\ x^2 \in [0,1] \Rightarrow x_{_}^2 + 1 \in [1,2] \end{array}$$

For
$$1 < x \le \sqrt{2}$$

$$2x^2+1\in \overline{(3,5]}$$

$$\therefore$$
 range is $[1,2] \cup (3,5]$