BYJU'S Study Planner for Board Term I (CBSE Grade 12)

Date: 09/11/2021
Subject: Mathematics
Topic: Relations and Functions

1. Let A be a non-empty set such that $A \times A$ has 9 elements and $(-1,0),(0,1)$ are elements of $A \times A$, then $A=$

X A. $\{-1,0,2\}$

B. $\{-1,0,1\}$
\times
C. $\{-2,0,1\}$
\times
D. Cannot be determined

Given that $(-1,0) \in A \times A$ and $(0,1) \in A \times A$
$\Rightarrow-1,0,1$ are elements of set A and given that $n(A \times A)=9 \Rightarrow n(A)=3$
$\therefore A=\{-1,0,1\}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

2. Let \mathbb{N} denote the set of all natural numbers. Define two binary relations on \mathbb{N} as
$R_{1}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: 2 x+y=10\}$ and $R_{2}=\{(x, y) \in \mathbb{N} \times \mathbb{N}: x+2 y=10\}$. Then
x A. Both R_{1} and R_{2} are transitive relations.

B. Range of R_{2} is $\{1,2,3,4\}$.
\times
C. Range of R_{1} is $\{2,4,8\}$.
\times
D. Both R_{1} and R_{2} are symmetric relations.
$R_{1}=\{(1,8),(2,6),(3,4),(4,2)\}$
$R_{2}=\{(8,1),(6,2),(4,3),(2,4)\}$
Range of $R_{2}=\{1,2,3,4\}$
$(1,8) \in R_{1}$ but $(8,1) \notin R_{1}$, so R_{1} is not symmetric.
$(4,2) \in R_{1} \&(2,6) \in R_{1}$ but $(4,6) \notin R_{1}$, So R_{1} is not transitive.
Similarly, R_{2} is neither symmetric nor transitive.

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

3. If the function $f: B \rightarrow[-5, \infty)$ defined by $f(x)=x^{2}-4 x+5$ is one-one function, then B is
A. $[2, \infty)$
\times
B. $[0, \infty)$
x
C. $[-5, \infty)$
x
D. $[-1, \infty)$
$f(x)=x^{2}-4 x+5$
$=(x-2)^{2}+1$

Clearly, we can conclude from above graph and given options $f(x)$ will be one-one function for $x \in[2, \infty)$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

4. Consider the set $A=\{1,2,3\}$ and the relation on A as $R=\{(1,2),(1,3)\}$, then R is
x A. a reflexive relation
$\times B$.
B. a symmetric relationC. a transitive relation
\times
D. None of the above
R is not reflexive as $(1,1),(2,2),(3,3)$ does not belong to R
R is not symmetric as $(1,2) \in R$ but $(2,1) \notin R$
R is transitive as $(1,2),(1,3) \in R$
but there is no ordered pair starting with 2 or 3 in relation
i.e., the antecedent statement in transitive relation is false. So, given relation is transitive.
5. The number of solution(s) of the equation $|x-3|=x^{3}$ is
A. 1
\times
B. 0
\times
C. 2
\times
D. 3

The graph of $y=|x-3|$ and $y=x^{3}$

Clearly, there is only one intersection point.
Hence, the number of solution is 1 .

BYJU'S Study Planner for Board Term I

 (CBSE Grade 12)6. Let $f(x)=\frac{x^{2}-1}{x}, g(x)=\frac{x+2}{x-3}$ then domain of $\frac{f(x)}{g(x)}$ is

X A. $\mathbb{R}-\{0,-2\}$
(v) B. $\mathbb{R}-\{-2,0,3\}$
(C. \mathbb{R}
x
D. $\mathbb{R}-\{0,-3\}$

Let $h(x)=\frac{f(x)}{g(x)}$
$\therefore h(x)=\frac{\frac{x^{2}-1}{x}}{\frac{x+2}{x-3}}=\frac{\left(x^{2}-1\right)(x-3)}{x(x+2)}$
But for $x=3, g(x)$ not defined
Hence $h(x)$ is not defined for $x=0,-2,3$
Hence required domain is
$\mathbb{R}-\{-2,0,3\}$
7. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=|(x-1)(x-2)|$ is
x A. One-one functionB. Many-one function
x
C. Constant function
\times
D. None of these

We can clearly see that $f(x)=0$ for $x=1$ and $x=2$
$\therefore f(x)$ is many-one function.

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

8. Let $A=\{1,2,3\}$ and R, S be two relations on A given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}, S=\{(1,1),(2,2),(3,3),(2,3),(3,2)\}$ then $R \cup S$ is
x A. Reflexive, symmetric and transitive relation
\times
B. reflexive and transitive relation only
C. not a transitive relation

X D. Reflexive relation but not Symmetric relation
$R \cup S=\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)\}$
\therefore It is reflexive, symmetric but not transitive because $(1,2),(2,3) \in R \cup S$ but $(1,3) \notin R \cup S$.
9. Let $f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$ and let $m(b)$ be the minimum value of $f(x)$. As b varies, the range of $m(b)$ is
x A. $[0,1]$
x
B. $\left[0, \frac{1}{2}\right]$
(C. $\left[\frac{1}{2}, 1\right]$

D. $(0,1]$
$f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$
Coefficient of x^{2} is $\left(1+b^{2}\right)>0$
Minimum value of $f(x)$ is $\frac{-D}{4 a}$
$\therefore m(b)=-\frac{\left\{4 b^{2}-4\left(1+b^{2}\right)\right\}}{4\left(1+b^{2}\right)}$
$\Rightarrow m(b)=\frac{1}{1+b^{2}}$
$\because 1 \leq 1+b^{2}<\infty \forall b \in \mathbb{R}$
$\Rightarrow 0<\frac{1}{1+b^{2}} \leq 1$
\therefore Range of $m(b)$ is $(0,1]$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

10. The domain of $f(x)=\sqrt{\frac{4-x^{2}}{[x]+2}}$ is
(where [.] represents the greatest integer function)
x A. $(-\infty, 1)$
B. $(-\infty,-2) \cup[-1,2]$
\times
C. $(-\infty,-1) \cup[2, \infty)$
x
D. $(-\infty, 1) \cup[2, \infty)$

Given : $f(x)=\sqrt{\frac{4-x^{2}}{[x]+2}}$
For $f(x)$ to be defined, we get
$\frac{4-x^{2}}{[x]+2} \geq 0$ and $[x]+2 \neq 0$
$\Rightarrow[x] \neq-2$
$\therefore x \notin[-2,-1)$
Case 1: $4-x^{2} \geq 0,[x]+2>0$
$\Rightarrow x \in[-2,2], \quad x \in[-1, \infty)$
$\therefore x \in[-1,2] \cdots(1)$
Case 2: $4-x^{2}<0,[x]+2<0$
$\Rightarrow x \in(-\infty,-2) \cup(2, \infty), x \in(-\infty,-2)$
$\therefore x \in(-\infty,-2) \cdots(2)$
So, from (1) and (2), we get
$x \in(-\infty,-2) \cup[-1,2]$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

11. Let the function $f: \mathbb{R}-\{-b\} \rightarrow \mathbb{R}-\{1\}$ be defined by $f(x)=\frac{x+a}{x+b}, a \neq b$, then
x A. f is one-one but not onto function
x
B. f is onto but not one-one function
C. f is bijective function
\times
D. f is neither one-one nor onto function

For one-one :
Let $x, y \in \mathbb{R}-\{-b\}$ such that $f(x)=f(y)$
$\Rightarrow \frac{x+a}{x+b}=\frac{y+a}{y+b}$
$\Rightarrow x y+a y+b x+a b=x y+x a+y b+a b$
$\Rightarrow x(b-a)=y(b-a)$
$\Rightarrow x=y(\because a \neq b)$
$\therefore f$ is one-one function.
For onto :
Let $y \in \mathbb{R}$ such that $f(x)=y$
$\Rightarrow \frac{x+a}{x+b}=y$
$\Rightarrow x+a=x y+y b$
$\Rightarrow x=\frac{a-b y}{y-1}$
$\Rightarrow y \in \mathbb{R}-\{1\}$
$\therefore f$ is onto function.
Hence, f is one-one and onto function, it is bijective function.

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

12. If relation R is defined as $a R b$ if " a is the father of b ". Then R is
x A. reflexive
\times
B. symmetric
\times
C. transitive
D. none of these

Given
$R=\{(a, b) ; a$ is the father of $b\}$
$(i) \because(a, a) \notin R \quad$ [as a can not be father of a]
So, R is not reflexive.
(ii) Now if $a R b$ is true, then a is the father of $b\}$
$\Rightarrow(b, a) \notin R$
[as b cannot be father of a]
So, R is not symmetric.
(iii) Let $(a, b) \in R$ and $(b, c) \in R$

Hence a is father of b and b is father of c
$\Rightarrow(a, c) \notin R$
[as a is not the father of c]
So, R is not transitive.

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

13. Let \mathbb{N} denote the set of natural numbers and R be a relation on $\mathbb{N} \times \mathbb{N}$ defined by $(a, b) R(c, d) \Longleftrightarrow a d(b+c)=b c(a+d)$. Then on $\mathbb{N} \times \mathbb{N}, R$ is
A. An equivalence relation

X B. Reflexive and symmetric relation only
x C. Transitive relation only
x D. Symmetric and transitive relation only
Given $(a, b) R(c, d) \Leftrightarrow a d(b+c)=b c(a+d)$ where $(a, b),(c, d) \in \mathbb{N} \times \mathbb{N}$ $a d(b+c)=b c(a+d)$
$\Rightarrow \frac{b+c}{b c}=\frac{a+d}{a d}$
$\Rightarrow \frac{1}{b}+\frac{1}{c}=\frac{1}{a}+\frac{1}{d}$
$\therefore(a, b) R(c, d) \Leftrightarrow \frac{1}{b}+\frac{1}{c}=\frac{1}{a}+\frac{1}{d}$
As $\frac{1}{b}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b} \forall(a, b) \in \mathbb{N} \times \mathbb{N}$
So, $(a, b) R(a, b)$
$\therefore R$ is reflexive relation.
If $(a, b) R(c, d) \Rightarrow \frac{1}{b}+\frac{1}{c}=\frac{1}{a}+\frac{1}{d}$
$\Rightarrow \frac{1}{d}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}$
$\Rightarrow(c, d) R(a, b)$
$\therefore R$ is symmetric relation.
Let $(a, b),(c, d),(e, f) \in \mathbb{N} \times \mathbb{N}$
Let $(a, b) R(c, d)$ and $(c, d) R(e, f)(a, b) R(c, d) \Rightarrow a d(b+c)=b c(a+d)$
$\Rightarrow \frac{1}{b}+\frac{1}{c}=\frac{1}{a}+\frac{1}{d}$.
$(c, d) R(e, f) \Rightarrow c f(d+e)=d e(c+f)$
$\Rightarrow \frac{1}{d}+\frac{1}{e}=\frac{1}{f}+\frac{1}{c} \cdots$
$(1)+(2) \Rightarrow\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\right)=\left(\frac{1}{a}+\frac{1}{d}+\frac{1}{f}+\frac{1}{c}\right)$
$\frac{1}{b}+\frac{1}{e}=\frac{1}{a}+\frac{1}{f}$
$\Rightarrow(a, b) R(e, f)$
$\therefore R$ is a Transitive relation.
Since R is Reflexive, Symmetric and Transitive relation.
$\therefore R$ is an Equivalence relation.

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

14. Let a relation f defined on $(0, \infty)$ as $f(x)=\left|1-\frac{1}{x}\right|$. Then which among the following is true
x A. $f(-1)=2$
(x) B. f is many-one function
x C. f is one-one function
(D) Relation f is not a function
$f(-1)=2$ is not true as -1 is not an element in domain of relation.
$f(x)=\left|1-\frac{1}{x}\right|$
For $x=1$
$f(x)=\left|1-\frac{1}{1}\right|=0$
But, the co-domain of relation is $(0, \infty)$ which is not including 0 .
So, relation f is not a function.
15. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{\left(e^{x}-e^{-x}\right)}{2}$.

The inverse of the given function is:
(v) A. $f^{-1}(x)=\log _{e}\left(x+\sqrt{x^{2}+1}\right)$
\times
B. $f^{-1}(x)=\log _{e}\left(x-\sqrt{x^{2}+1}\right)$
\times
C. $f^{-1}(x)=\log _{e}\left(x+\sqrt{x^{2}-1}\right)$
\times
D. $f^{-1}(x)=\log _{e}\left(x-\sqrt{x^{2}-1}\right)$

Let $y=f(x)=\left(e^{x}-e^{-x}\right) / 2$
$\Rightarrow 2 y=e^{x}-e^{-x}$
$\Rightarrow e^{2 x}-2 y e^{x}-1=0$
$\Rightarrow e^{x}=\frac{2 y \pm \sqrt{4 y^{2}+4}}{2}=y \pm \sqrt{y^{2}+1}$
$\Rightarrow e^{x}=y+\frac{2}{y^{2}+1}$
($\because y-\sqrt{y^{2}+1}<0$ for all y but e^{x} is always positive)
$\Rightarrow x=\log _{e}\left(y+\sqrt{y^{2}+1}\right)$
$\therefore f^{-1}(x)=\log _{e}\left(x+\sqrt{x^{2}+1}\right)$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

16. Which among the following relations on \mathbb{Z} is an equivalence relationA. $\quad x R y \Leftrightarrow|x|=|y|$
\times
B. $\quad x R y \Leftrightarrow x \geq y$
\times
C. $x R y \Leftrightarrow x>y$
x
D. $\quad x R y \Leftrightarrow x<y$

Let's consider $x R y \Leftrightarrow|x|=|y|$
Now, $|x|=|x|$
$\Rightarrow x R x$
Hence, R is reflexive.
Now, let $x R y \Rightarrow|x|=|y|$
or $|y|=|x|$ as equality commutative
$\Rightarrow y R x$
Hence, R is symmetric.
Checking for transitive,
Let (x, y) and (y, z) satisfies R
Now, $x R y, y R z$
$\Rightarrow|x|=|y|,|y|=|z|$
$\Rightarrow|x|=|z|$
$\Rightarrow x R z$
$\therefore(x, z)$ satisfies R
Hence, R is transitive.
Hence, R is an equivalence relation.
R is not symmetric relation as $3 \geq 2$ does not implies $2 \geq 3$. Hence R is not an equivalence relation.
R is not symmetric relation as $3>2$ does not implies $2>3$. Hence R is not an equivalence relation.
R is not symmetric relation as $1<3$ is true but $3<1$ is not true. Hence R is not an equivalence relation.

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

17. Let S be the set of all triangles and R^{+}be the set of all positive real numbers. If the relation f defined from S to R^{+}such that $f(\triangle)=$ area of triangle, $\triangle \in S$, then which of the following is true about relation f
x A. f is not a function
(B. relation f is a many-one function
\times
C. If $\triangle_{1} \cong \triangle_{2}$, then $f\left(\triangle_{1}\right) \neq f\left(\triangle_{2}\right)$
x D. None of the above
Relation f is a function as a triangle can't have two different values of it's area.
f is not one-one as many triangles exist for same area.
18. If a relation R is defined on set of real numbers as $x R y \Longleftrightarrow x-y+\sqrt{2}$ is an irrational number, then the relation R is
A. a reflexive relation
\times
B. a symmetric relation
x C. a transitive relation
x D. both reflexive and transitive relation
$x R y \Longleftrightarrow x-y+\sqrt{2}$ is irrational, $x, y \in \mathbb{R}$
(i) R is reflexive relation as $x-x+\sqrt{2}=\sqrt{2}$ is irrational.
(ii) R is not symmetric relation as $(\sqrt{2}, 1) \in R$ but $(1, \sqrt{2}) \notin R$
(iii) R is not transitive relation as $(\sqrt{2}, 1) \in R$ and $(1,2 \sqrt{2}) \in R$ but $(\sqrt{2}, 2 \sqrt{2}) \notin R$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

19. Consider the functions $f(x)= \begin{cases}x+1, & x \leq 1 \\ 2 x+1, & 1<x \leq 2\end{cases}$
$g(x)=\left\{\begin{array}{l}x^{2}, \quad-1 \leq x<2 \\ x+2,2 \leq x \leq 3\end{array}\right.$

Domain of $f(g(x))$ is
× A. $[0, \sqrt{2}]$
\times
B. $[-1,2]$C. $[-1, \sqrt{2}]$
\times
D. $[\sqrt{2}, \sqrt{2}]$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

$f(g(x))=\left\{\begin{array}{cc}g(x)+1 & g(x) \leq 1 \\ 2 g(x)+1 & 1<g(x) \leq 2\end{array}\right.$

Now from graph of $g(x)$,
$g(x) \leq 1$
$\Rightarrow x \in[-1,1]$
and $g(x) \in(1,2] \Rightarrow x \in(1, \sqrt{2}]$
$\therefore f(g(x))=\left\{\begin{array}{cc}g(x)+1, & x \in[-1,1] \\ 2 g(x)+1, & x \in(1, \sqrt{2}]\end{array}\right.$
$=\left\{\begin{array}{cc}x^{2}+1, & x \in[-1,1] \\ 2 x^{2}+1, & x \in(1, \sqrt{2}]\end{array}\right.$
So, domain of $f(g(x))=[-1, \sqrt{2}]$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

20.

Consider the functions $f(x)= \begin{cases}x+1, & x \leq 1 \\ 2 x+1, & 1<x \leq 2\end{cases}$
$g(x)=\left\{\begin{array}{l}x^{2}, \quad-1 \leq x<2 \\ x+2,2 \leq x \leq 3\end{array}\right.$

Range of the function $f(g(x))$ is
(A. $[1,5]$
\times
B. $[2,3]$C. $[1,2] \cup(3,5]$
\times
D. $[1,5]-\{3\}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

$f(g(x))=\left\{\begin{array}{cc}g(x)+1 & g(x) \leq 1 \\ 2 g(x)+1 & 1<g(x) \leq 2\end{array}\right.$

Now from graph of $g(x)$,
$g(x) \leq 1$
$\Rightarrow x \in[-1,1]$
and $g(x) \in(1,2] \Rightarrow x \in(1, \sqrt{2}]$
$\therefore f(g(x))=\left\{\begin{array}{cc}g(x)+1, & x \in[-1,1] \\ 2 g(x)+1, & x \in(1, \sqrt{2}]\end{array}\right.$
$=\left\{\begin{array}{cc}x^{2}+1, & x \in[-1,1] \\ 2 x^{2}+1, & x \in(1, \sqrt{2}]\end{array}\right.$
For $-1 \leq x \leq 1$
$x^{2} \in[0,1] \Rightarrow x^{2}+1 \in[1,2]$
For $1<x \leq \sqrt{2}$
$2 x^{2}+1 \in(3,5]$
\therefore range is $[1,2] \cup(3,5]$

