Date: 09/11/2021 Subject: Mathematics Topic : Relations and Functions

Class: Standard XII

- 1. Let *A* be a non-empty set such that $A \times A$ has 9 elements and (-1, 0), (0, 1) are elements of $A \times A$, then A =
 - **A.** $\{-1, 0, 2\}$
 - **B.** $\{-1, 0, 1\}$
 - **C.** $\{-2, 0, 1\}$
 - **D.** Cannot be determined
- 2. Let $\mathbb N$ denote the set of all natural numbers. Define two binary relations on $\mathbb N$ as

 $R_1=\{(x,y)\in\mathbb{N} imes\mathbb{N}:2x+y=10\}$ and $R_2=\{(x,y)\in\mathbb{N} imes\mathbb{N}:x+2y=10\}.$ Then

- **A.** Both R_1 and R_2 are transitive relations.
- **B.** Range of R_2 is $\{1, 2, 3, 4\}$.
- **C.** Range of R_1 is $\{2, 4, 8\}$.
- **D.** Both R_1 and R_2 are symmetric relations.
- 3. If the function $f: B \to [-5, \infty)$ defined by $f(x) = x^2 4x + 5$ is one-one function, then *B* is
 - **A.** $[2,\infty)$
 - **B.** $[0,\infty)$
 - C. $[-5,\infty)$
 - **D.** $[-1,\infty)$

- 4. Consider the set $A = \{1, 2, 3\}$ and the relation on A as $R = \{(1, 2), (1, 3)\}$, then R is
 - A. a reflexive relation
 - B. a symmetric relation
 - C. a transitive relation
 - D. None of the above
- 5. The number of solution(s) of the equation $|x 3| = x^3$ is
 - **A**. 1
 - **B**. 0
 - **C**. 2
 - **D**. 3

6. Let $f(x) = \frac{x^2 - 1}{x}$, $g(x) = \frac{x + 2}{x - 3}$ then domain of $\frac{f(x)}{g(x)}$ is

- A. $\mathbb{R}-\{0,-2\}$
- **B.** $\mathbb{R} \{-2, 0, 3\}$
- **C**. _ℝ
- **D.** $\mathbb{R}-\{0,-3\}$
- 7. The function $f:\mathbb{R} o\mathbb{R}$ defined by f(x)=|(x-1)(x-2)| is
 - A. One-one function
 - B. Many-one function
 - C. Constant function
 - D. None of these

- 8. Let $A = \{1, 2, 3\}$ and R, S be two relations on A given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}, S = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$ then $R \cup S$ is
 - A. Reflexive, symmetric and transitive relation
 - B. reflexive and transitive relation only
 - **C.** not a transitive relation
 - D. Reflexive relation but not Symmetric relation
- 9. Let $f(x) = (1 + b^2)x^2 + 2bx + 1$ and let m(b) be the minimum value of f(x). As *b* varies, the range of m(b) is
 - **A.** [0, 1] **B.** $\left[0, \frac{1}{2}\right]$ **C.** $\left[\frac{1}{2}, 1\right]$ **D.** (0, 1]

10. The domain of $f(x)=\sqrt{rac{4-x^2}{[x]+2}}$ is

(where [.] represents the greatest integer function)

- **A.** $(-\infty, 1)$
- **B.** $(-\infty, -2) \cup [-1, 2]$
- C. $(-\infty,-1)\cup[2,\infty)$
- D. $(-\infty,1)\cup[2,\infty)$

- 11. Let the function $f : \mathbb{R} \{-b\} \to \mathbb{R} \{1\}$ be defined by $f(x) = \frac{x+a}{x+b}, a \neq b$, then
 - **A.** *f* is one–one but not onto function
 - **B.** *f* is onto but not one–one function
 - **C.** *f* is bijective function
 - **D.** *f* is neither one–one nor onto function
- 12. If relation R is defined as aRb if "a is the father of b ". Then R is
 - A. reflexive
 - B. symmetric
 - C. transitive
 - **D.** none of these
- 13. Let \mathbb{N} denote the set of natural numbers and R be a relation on $\mathbb{N} \times \mathbb{N}$ defined by

 $(a,b)R(c,d) \Longleftrightarrow ad(b+c) = bc(a+d).$ Then on $\mathbb{N} imes \mathbb{N}, R$ is

- **A.** An equivalence relation
- **B.** Reflexive and symmetric relation only
- C. Transitive relation only
- **D.** Symmetric and transitive relation only

- ^{14.} Let a relation *f* defined on $(0, \infty)$ as $f(x) = \left|1 \frac{1}{x}\right|$. Then which among the following is true
 - **A.** f(-1) = 2
 - **B.** *f* is many-one function
 - **C.** f is one-one function
 - **D.** Relation f is not a function

15. Let
$$f : \mathbb{R} \to \mathbb{R}$$
 be defined by $f(x) = \frac{(e^x - e^{-x})}{2}$.
The inverse of the given function is:

A. $f^{-1}(x) = \log_e(x + \sqrt{x^2 + 1})$

B.
$$f^{-1}(x) = \log_e(x - \sqrt{x^2 + 1})$$

C.
$$f^{-1}(x) = \log_e(x + \sqrt{x^2 - 1})$$

D.
$$f^{-1}(x) = \log_e(x - \sqrt{x^2 - 1})$$

16. Which among the following relations on \mathbb{Z} is an equivalence relation

- A. $xRy \Leftrightarrow |x| = |y|$
- $\textbf{B.} \quad xRy \Leftrightarrow x \geq y$
- $\textbf{C.} \quad xRy \Leftrightarrow x > y$
- **D.** $xRy \Leftrightarrow x < y$

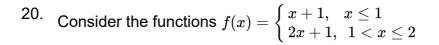
- 17. Let *S* be the set of all triangles and R^+ be the set of all positive real numbers. If the relation *f* defined from *S* to R^+ such that $f(\triangle) =$ area of triangle, $\triangle \in S$, then which of the following is true about relation *f*
 - **A.** *f* is not a function
 - **B.** relation *f* is a many-one function
 - **C.** If $riangle_1 \cong riangle_2$, then $f(riangle_1)
 eq f(riangle_2)$
 - **D.** None of the above
- 18. If a relation *R* is defined on set of real numbers as $xRy \iff x y + \sqrt{2}$ is an irrational number, then the relation *R* is
 - A. a reflexive relation
 - **B.** a symmetric relation
 - **C.** a transitive relation
 - **D.** both reflexive and transitive relation

19. Consider the functions $f(x) = egin{cases} x+1, & x \leq 1 \\ 2x+1, & 1 < x \leq 2 \end{cases}$

$$g(x) = egin{cases} x^2, & -1 \leq x < 2 \ x+2, & 2 \leq x \leq 3 \end{cases}$$

Domain of f(g(x)) is

A. $[0, \sqrt{2}]$ B. [-1, 2]C. $[-1, \sqrt{2}]$ D. $[\sqrt{2}, \sqrt{2}]$



$$g(x) = egin{cases} x^2, & -1 \leq x < 2 \ x+2, & 2 \leq x \leq 3 \end{cases}$$

Range of the function f(g(x)) is

A. [1,5]

- **B.** [2,3]
- **C.** $[1,2] \cup (3,5]$
- **D.** $[1,5] \{3\}$

