


S c i e n c e  b e h i n d  N o r t h e r n  l i g h t s

Nuclear reaction in the Sun causes the solar flare/storm containing high energy charge
particles to approach towards Earth. Now, because of the shape of Earth’s magnetic field, the
charges particles gets accumulated onto the poles. At the poles, the electrons from
atmospheric gases get excited by gaining the energy from these charged particles and because
of this process of gaining and losing energy, they emit light of different colours.
Our Earth’s magnetic field act as shield to protect us from the wrath of the solar storm. This
magnetic field around the Earth is also known as the magnetosphere.



M a g n e t i c  f i e l d  o f  Ea r t h

Earth is a natural source of magnetic field.

The most prominent cause of this magnetic field is the
molten liquid deep inside the Earth.

The motion of ionized particle i.e., charge particle in
the molten core of Earth constitutes the convection
currents.

In case of the Earth, these currents behave like a coil
and produce magnetic field in surrounding.

This type of formation of current inside the Earth can
be assumed as a bar magnet. Thus, we can imagine
that a bar magnet is placed inside the Earth.



E L E C T R O M A G N E T I S M

E L E C T R O M A G N E T I S M

In case of electrostatics the 
charges are at rest/static.

In case of magnetism the 
charges are at moving.

❖ Electromagnetism is based on the principle that moving charges can produce electric as 
well as magnetic field. 



C h a rge  a t  re s t

𝑖

Current carrying wire is neutral and thus, does not produce any
electric field. Hence, it should not produce any force on a charge
particle.

At rest

+𝒒

Practically, when a charge particle is placed at rest in the vicinity
of the current carrying wire, it is seen that the charge particle
remains at rest. Thus, force on the charge particle due to the
wire, 𝐹𝑞, 𝑤𝑖𝑟𝑒 = 0



M o v i n g  C h a rge  

It is also noticeable that the force acting on the
charge is not along the direction of velocity of the
charge.

𝑖

𝑣

+𝒒

When the positive charge is given some initial
velocity, it is seen that the charge is deflected.
Therefore, there must be a field which exerts force
on the moving charge only and the field is not
electric field.

Practically, it is seen that the force which is acted
on the moving charge particle by the current
carrying wire is dependent on:
▪ Nature of the charge particle (+𝑣𝑒 or −𝑣𝑒)
▪ Velocity of the charge particle
▪ Angle of projection of the charge particle

Experimentally, it is concluded that the field is
similar to the field that a magnet generates.



Hans Christian Oersted
(Denmark,1777-1851)

O e rst e d ’s E x p e r i m e n t

Hans Christian Oersted performed an important
experiment which showed that there was a connection
between electricity and magnetism. In this experiment he
placed a magnetic compass in a current carrying loop.
When current was switched on through the loop, it deflects
compass needle. Since we all know that a magnet attracts
iron, Oersted explained the observation of the experiment
as if the current had produced a magnetic field strong
enough to cause the compass needle to turn.



O e rst e d ’s E x p e r i m e n t

W h e n  S w i t c h  I s  O F F

When the switch is OFF, the needle of the magnetic
compass directs towards the magnetic North and
magnetic South pole of the earth.

W h e n  S w i t c h  I s  O N

When the switch is on, we can see the
deflection in the needle of magnetic compass.



A space around a magnet or a current carrying conductor up to which a moving
charge or another magnet or another conductor can experience a force.

A vector quantity.

CGS Unit: 𝐺𝑎𝑢𝑠𝑠

SI Unit: 𝑇𝑒𝑠𝑙𝑎 =
𝑊𝑒𝑏𝑒𝑟

𝑚2

1 𝐺𝑎𝑢𝑠𝑠 = 10−4 𝑇𝑒𝑠𝑙𝑎

𝑖𝑖

M a g n e t i c  F i e l d



Q u e st i o n S o l u t i o n

If Ԧ𝐴 × 𝐵 = Ԧ𝐶, then find the direction of Ԧ𝐶 for the following cases.

𝐵

Ԧ𝐴 𝐵

Ԧ𝐴

𝐵

Ԧ𝐴
Ԧ𝐴

𝐵



Q u e st i o n S o l u t i o n

𝐵

Ԧ𝐴

Ԧ𝐴

𝐵
𝐵

Ԧ𝐴

𝐵

Ԧ𝐴

Ԧ𝐶
Ԧ𝐶 Ԧ𝐶 Ԧ𝐶

If you keep fingers of your right hand in the direction

of Ԧ𝐴 and curl them along 𝐵 then the direction of

thumb will be the direction of Ԧ𝐶. If you keep fingers of your left hand as shown in the

figure and your index finger along Ԧ𝐴, middle figure

along 𝐵, then the thumb will point towards Ԧ𝐶.



• 𝑑𝐵 ∝ 𝑖

• 𝑑𝐵 ∝ sin 𝜃

• 𝑑𝐵 ∝
1

| Ԧ𝑟|2

• 𝑑𝐵 ∝ 𝑑𝑙

𝑖

𝑃

Ԧ𝑟

𝑑𝑙

𝜃

𝜇𝑜: absolute permeability in free  
space.

B i o t - S ava r t ’s  L a w

𝜇𝑜 = 4𝜋 × 10−7
𝑇 𝑚

𝐴

𝑑𝐵 =
𝜇𝑜
4𝜋

(𝑖𝑑𝑙 × Ԧ𝑟)

| Ԧ𝑟|3

𝑑Ԧ𝑙: Infinitesimal wire segment having
direction same as the current.



• 𝑑𝐵 ∝ 𝑖

• 𝑑𝐵 ∝ sin 𝜃

• 𝑑𝐵 ∝
1

| Ԧ𝑟|2

• 𝑑𝐵 ∝ 𝑑𝑙

𝑖

𝑃

Ԧ𝑟

𝑑𝑙

𝜃

𝜇𝑜: absolute permeability in free  
space.

B i o t - S ava r t ’s  L a w

𝜇𝑜 = 4𝜋 × 10−7
𝑇 𝑚

𝐴

𝑑𝐵 =
𝜇𝑜
4𝜋

(𝑖𝑑𝑙 × Ԧ𝑟)

| Ԧ𝑟|3

𝑑Ԧ𝑙: Infinitesimal wire segment having
direction same as the current.

The law gives the magnetic field generated at a point in vicinity of current
carrying element.



M a g n e t i c  F i e l d  D u e  t o  S t ra i g h t  C u r re n t  C a r r y i n g  C o n d u c t o r

𝑖

𝑃

Ԧ𝑟

𝑑𝑙

𝜃

𝜃2

𝜃1

𝑑𝜃

𝑑

𝑑𝐵 =
𝜇𝑜
4𝜋

(𝑖𝑑𝑙 × Ԧ𝑟)

| Ԧ𝑟|3

𝑃

𝑖

Ԧ𝑟

𝑑𝑙

𝜃

Let the element 𝑑𝑙 subtends an angle 𝑑𝜃 at point 𝑃 and the 
position vector of the element from point 𝑃 is Ԧ𝑟.

Magnetic field at point 𝑃 due to the element 𝑑𝑙 is given by,

Suppose we want to find the magnetic field at point 𝑃 which 
is asymmetrically placed w.r.t the finite wire.   

Consider an element 𝑑𝑙 at distance 𝑙 from the foot of 
the perpendicular 𝑂 drawn from 𝑃.

𝑂

𝑙



𝐵 =
𝜇𝑜 𝑖

4𝜋𝑑
(sin 𝜃1 + sin 𝜃2)

M a g n e t i c  F i e l d  D u e  t o  S t ra i g h t  C u r re n t  C a r r y i n g  C o n d u c t o r

𝑖

𝑃

Ԧ𝑟

𝑑𝑙

𝜃

𝜃2

𝜃1

𝑑𝜃

𝑑

From figure,

While finding 𝐵 due to finite wire, 

only the magnitude of 𝜃1 and 𝜃2
should be inserted in the formula.



D i re c t i o n  o f  M a g n e t i c  F i e l d

Point your thumb in the direction of the current flow
and curl your fingers.

𝑑𝐵 =
𝜇𝑜
4𝜋

(𝑖𝑑𝑙 × Ԧ𝑟)

| Ԧ𝑟|3

Curled fingers give the
direction of magnetic field.

R i g h t  H a n d  T h u m b  R u l e

OR

𝑖



D i re c t i o n  o f  M a g n e t i c  F i e l d E xa m p l e s

𝑖 𝑃

𝑖

𝑃 𝑖

𝑃

Point your thumb in the direction of the
current flow and stretch your fingers
towards the point where you want to find
the magnetic field. Then, you palm will give
you the direction of magnetic field.

Right hand palm rule

𝑃

𝑖
𝑖

𝑃
𝑃𝑖



Q u e st i o n

A straight wire carries a current 𝑖 as shown. Calculate the magnetic field due to the wire at
point 𝑃 located at a distance 𝑑 away from the wire.

30°

𝑃60°

𝑖

𝑑

S o l u t i o n

Given,

We have, 𝐵 =
𝜇𝑜 𝑖

4𝜋𝑑
(sin 𝜃1 + sin 𝜃2)

𝐵 =
𝜇𝑜𝑖 ( 3 + 1 )

8𝜋𝑑



Q u e st i o n

A straight wire carries a current 𝑖 as shown. Calculate the magnetic field due to the wire at
point 𝑃.

30° 𝑃

𝑖

30°𝑎

S o l u t i o n

Given,



Q u e st i o n S o l u t i o n

𝐵 =
𝜇𝑜 𝑖

4𝜋𝑑
(sin 𝜃1 + sin 𝜃2)

𝐵 =
𝜇𝑜𝑖 ( 3 − 1 )

4 3𝜋𝑎

30° 𝑃

𝑖

30°

𝑑

𝑑 = 𝑎 cos 30°

𝑎

𝐵

𝐵 =
𝜇𝑜 𝑖

4𝜋𝑑
(sin 60° + sin −30° )



M a g n e t i c  F i e l d  D u e  t o  S t ra i g h t  C u r re n t  C a r r y i n g  C o n d u c t o r

𝐵 =
𝜇𝑜 𝑖

4𝜋𝑑
(sin 𝜃1 + sin 𝜃2)

I n f i n i t e W i re

𝑖

𝑃
𝑙

𝜃2

𝜃1𝑑

(∵ 𝑙 ≫ 𝑑)𝜃1 = 𝜃2 = 90°

𝐵 =
𝜇𝑜 𝑖

2𝜋𝑑

Magnetic field due to a finite wire at a distance 𝑑 is:

For infinite wire:

Therefore, the magnetic field at point 𝑃 due to the 
infinite wire will be given by:



Magnetic field due to a finite wire at a distance 𝑑 is:

M a g n e t i c  F i e l d  D u e  t o  S t ra i g h t  C u r re n t  C a r r y i n g  C o n d u c t o r

S e m i – I n f i n i t e W i re

𝜃1 = 90°

𝐵 =
𝜇𝑜 𝑖

4𝜋𝑑

𝑖

𝑃𝜃1𝑑

𝜃2 = 0°

𝐵 =
𝜇𝑜 𝑖

4𝜋𝑑
(sin 𝜃1 + sin 𝜃2)

For semi-infinite wire:

Therefore, the magnetic field at point 𝑃 due to the 
semi-infinite wire will be given by:



Q u e st i o n S o l u t i o n

An infinitely long wire carries a current 𝑖 as shown. Find the magnetic field at point 𝑃.

37°

𝑃

𝑎

𝑖



Q u e st i o n S o l u t i o n

𝐵 =
𝜇𝑜𝑖

8𝜋𝑎

37°

𝑃

𝑎

𝑖

Perpendicular distance of wire from the point 𝑃:

From figure,

We have, 𝐵 =
𝜇𝑜 𝑖

4𝜋𝑑
(sin 𝜃1 + sin 𝜃2)

𝑑 = a cos 37° =
4𝑎

5



Q u e st i o n S o l u t i o n

An infinitely long wire carries a current 𝑖 as shown. Find the magnetic field at point 𝑃.

53°

𝑃

𝑎

𝑖



𝐵 =
𝜇𝑜𝑖

12𝜋𝑎

53°

𝑃

𝑎

𝑖

Perpendicular distance of wire from the point 𝑃:

From figure,

We have, 𝐵 =
𝜇𝑜 𝑖

4𝜋𝑑
(sin 𝜃1 + sin 𝜃2)

𝐵 =

Q u e st i o n S o l u t i o n



A square loop of side 𝑎 carries current 𝑖 . Find the magnetic field due to the loop at its
centre 𝑃.

Q u e st i o n S o l u t i o n

𝑃

𝑎

𝑖



Q u e st i o n S o l u t i o n

𝐵 =
2 2𝜇𝑜𝑖

𝜋𝑎

≡ 4 ×
45°

45°

𝑎

2

𝑃
𝑃

𝑎

𝑖

Consider one side of a square loop. We can use formula of finite wire for this side. The total
field is the sum of field due to the four wires.

Given,

Net magnetic field at point 𝑃:



An equilateral triangular loop of side 𝑎 carries current 𝑖 . Find the magnetic field due to
the loop at its centroid 𝑃.

Q u e st i o n S o l u t i o n

𝑃𝑖

𝑎



Q u e st i o n S o l u t i o n

𝐵𝑛𝑒𝑡 =
9𝜇𝑜𝑖

2𝜋𝑎

≡ 3 ×

60°

60°
𝑃𝑖

𝑃
𝑖

𝑎 𝑎

2

Consider one side of a triangular loop. We can use formula of finite wire for this side. The
total field is the sum of field due to the three wires.

Given,

Net magnetic field at point 𝑃:



Two infinitely long wires 𝑊1 and 𝑊2 carry the same current 𝑖 inside the plane as shown.
Calculate the magnetic field at point 𝑃.

Q u e st i o n

𝑑 𝑑

𝑃
𝑊1 𝑊2𝑖 𝑖

𝐵2

𝐵1

𝐵𝑛𝑒𝑡 = 𝑍𝑒𝑟𝑜

S o l u t i o n

Q u e st i o n

As the wires are placed symmetrically
with respect to point 𝑃, the magnitude
of magnetic field due to wires is same.
As the wires are on opposite direction,
direction of field due to then at 𝑃 will
also be opposite.

Thus, field due to wires get cancelled
and the net field at point 𝑃 becomes
zero.



Q u e st i o n S o l u t i o n

3 𝑚

Two infinitely long wires 𝑊1 and 𝑊2 carry the same current 𝑖 inside the plane as shown.
Calculate the magnetic field at point 𝑃 at a distance 3 𝑚 away from the line joining the two
wires.

4 𝑚 4𝑚

𝑃

𝑊1 𝑊2𝑖 𝑖

𝑋

𝑌



𝐵𝑛𝑒𝑡 =
3𝜇𝑜𝑖

25𝜋
along 𝑋 − axis

Q u e st i o n S o l u t i o n

3 𝑚

4𝑚 4𝑚

𝑃

𝑊1 𝑊2𝑖 𝑖

𝐵2

𝐵1

𝑋

𝑌

𝐵𝑛𝑒𝑡

+ ≡

Direction of magnetic field due to
individual wires is shown in the figure.
As the wires are placed symmetrically,
vertical components of the field are
equal and opposite. Thus, vertical
component gets cancelled. Net
magnetic field is,

3 𝑚

5𝑚

37°



An infinitely long plate of width 𝑎 carries a current 𝑖 as shown. Find the magnetic field due
to the plate at a point 𝑃, located at a distance 𝑑 away from one of the ends of the plate.

Q u e st i o n S o l u t i o n

𝑃

𝑑
𝑎

𝑖



Q u e st i o n S o l u t i o n

𝐵 =
𝜇0𝑖

𝑎(2𝜋)
ln 1 +

𝑎

𝑑

𝑑𝑎

𝑃

𝑥

𝑖

𝑑𝑥

Consider a small element of the plate having width
𝑑𝑥 . This element can be assumed as a wire.

Current per unit width of the plate is
𝑖

𝑎
.

Current in the small element =
𝑖

𝑎
× 𝑑𝑥

Magnetic field due to small element at point 𝑃:

Net magnetic field at 𝑃 due to the plate is given by



Magnetic field at point 𝑃 :

M A G N E T I C  F I E L D  O N  T H E  A X I S  O F  A  C U R R E N T  C A R RY I N G  R I N G

𝑅

𝑋

𝑌

𝑥

𝑃

Ԧ𝑟
𝑖

𝜃

𝑑𝐵

𝑑𝐵

𝑑𝑙

𝑖

𝑑𝑙

Front view Side view



M A G N E T I C  F I E L D  O N  T H E  A X I S  O F  A  C U R R E N T  C A R RY I N G  R I N G

Magnetic field at point 𝑃 :

𝑑𝐵

𝑑𝐵

𝑋

𝑌

𝑃

Ԧ𝑟
𝑖

𝜃

𝑑𝑙

𝑑𝑙
𝑥

𝑅

Consider a current carrying element 𝑑𝑙 at the top-most point of the
coil. The current in the wire is in the anti-clockwise direction from the
viewpoint of 𝑃. Using ‘Biot-savart law’ and ‘Right hand thumb rule’, we
can say that direction of the magnetic field at point 𝑃 on the axis of
the coil due to this element will be in slanted upward direction, as
shown by the pink arrow in the adjacent figure.

90°

Similarly, choose a mirror current carrying element 𝑑𝑙 at the bottom
most point of the coil. Using ‘Biot-savart law’ and ‘Right hand thumb
rule’, we can say that direction of the magnetic field at point 𝑃 on the
axis of the coil due to this element will be in slanted downward
direction, as shown by the blue arrow in the adjacent figure.

The magnetic field vectors due to the element will be,

𝑑𝐵 =
𝜇0
4𝜋

𝑖(𝑑𝑙 × Ԧ𝑟)

Ԧ𝑟 3



𝑑𝐵

𝑑𝐵

𝑃

𝜃

𝜃

𝑑𝐵 cos 𝜃

𝑑𝐵 cos 𝜃

𝑑𝐵 sin 𝜃

𝑑𝐵 sin 𝜃
𝐵𝑌 = 0

Magnetic field at point 𝑃 :

M A G N E T I C  F I E L D  O N  T H E  A X I S  O F  A  C U R R E N T  C A R RY I N G  R I N G

If we divide the magnetic field vectors component-wise, the vertical
components get cancelled and the horizontal components get
added. Therefore, the net magnetic field at point 𝑃 will be along the
axis of the ring and directed away from the centre of the coil (anti-
clockwise current) and the magnitude of the total magnetic field
due to the whole coil at point 𝑃 will be,

𝐵𝑛𝑒𝑡 = 𝐵𝑋 =
𝜇0𝑖𝑅

2

2 𝑅2 + 𝑥2 3/2

𝑑𝐵

𝑑𝐵

𝑋

𝑌

𝑅

𝑥

𝑃

𝑖
𝜃

𝑑𝑙

𝑑𝐵 sin 𝜃

∵ sin 𝜃 =
𝑅

𝑟
=

𝑅

𝑅2 + 𝑟2



D i re c t i o n  o f  m a g n e t i c  f i e l d

Curl fingers of the right hand in the direction
of the current.

Thumb will give the direction of the magnetic
field.

R i g h t  h a n d  t h u m b  r u l e

M A G N E T I C  F I E L D  O N  T H E  A X I S  O F  A  C U R R E N T  C A R RY I N G  R I N G

𝑋

𝑌

𝑅

𝑥

𝑃

Ԧ𝑟
𝑖

𝑑𝑙

𝑃′ 𝐵𝑛𝑒𝑡 𝐵𝑛𝑒𝑡

𝑥

The direction of the magnetic field remains
same on both side of the ring until the
direction of the current changes.

𝑋

𝑌

𝐵𝑛𝑒𝑡 𝐵𝑛𝑒𝑡𝑅

𝑥

𝑃

Ԧ𝑟

𝑑𝑙

𝑃′

𝑥

𝑖
The direction of the magnetic field changes as
the direction of the current flowing through
the ring changes.



For a single loop For 𝑛 loops

𝐵 =
𝜇0𝑖𝑅

2

2 𝑅2 + 𝑥2 3/2
𝐵 =

𝑛𝜇0𝑖𝑅
2

2 𝑅2 + 𝑥2 3/2

𝑥

𝑃

𝑥

𝑃

M A G N E T I C  F I E L D  O N  T H E  A X I S  O F  A  C U R R E N T  C A R RY I N G  R I N G



𝐵 =
𝜇0𝑖𝑅

2

2 𝑅2 + 𝑥2 3/2

𝑖

𝑖

𝑅

𝐵𝑂 =
𝜇0
2

𝑖

𝑅

𝑋

𝑌

𝑅

𝑥

𝑃

Ԧ𝑟
𝑖

M a g n e t i c  f i e l d  a t  t h e  c e n t e r  o f  t h e  c u r re n t  c a r r y i n g  r i n g

M A G N E T I C  F I E L D  O N  T H E  A X I S  O F  A  C U R R E N T  C A R RY I N G  R I N G

At centre, 𝑥 = 0



𝐵 𝑣𝑠 𝑥 p l o t

𝐵 =
𝜇0𝑖𝑅

2

2 𝑅2 + 𝑥2 3/2

M A G N E T I C  F I E L D  O N  T H E  A X I S  O F  A  C U R R E N T  C A R RY I N G  R I N G

𝑥

𝐵

−𝑥

𝐵 =
𝜇0𝑖

2𝑅

𝑥As 𝑥 increases, the magnetic field decreases.

At the centre of the ring, the magnitude of
the magnetic field is maximum.

At 𝑥 → ∞ , the magnitude of the magnetic
field due to the ring is zero.



M A G N E T I C  F I E L D  AT  T H E  C E N T R E  O F  A  C I R C U L A R  A R C

𝐵𝑂 =
𝜇0
4𝜋

𝑖𝜃

𝑅

𝜃𝑅

𝑂

𝑑𝑙Suppose we want to find the magnetic field at the centre of the circular arc
𝑃𝑄 having radius 𝑅. Let the angle subtended by the arc at 𝑂 be 𝜃.

𝑃 𝑄
Consider a small length element 𝑑𝑙. The angle between 𝑑Ԧ𝑙 and 𝑅 is 90° at
each point on the arc.

Therefore, the magnetic field at 𝑂 due to the element 𝑑𝑙 is given by,

According to the direction of current, the magnetic field at 𝑂 is directed
into the plane of the ring i.e., “⨂”.



𝐵𝑂 =
𝜇0
4𝜋

𝑖𝜃

𝑅
General Formula:

CASE 1 : 𝜃 = 2𝜋 (𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑙𝑜𝑜𝑝)

CASE 2 : 𝜃 = 𝜋 (𝑠𝑒𝑚𝑖 − 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑙𝑜𝑜𝑝)

CASE 3 : 𝜃 = 𝜋/2 (𝑞𝑢𝑎𝑟𝑡𝑒𝑟 𝑙𝑜𝑜𝑝)

𝜃𝑅

𝑂

𝑑𝑙

𝐵𝑂 =
𝜇0
2

𝑖

𝑅

𝐵𝑂 =
𝜇0
4

𝑖

𝑅

𝐵𝑂 =
𝜇0
8

𝑖

𝑅

M A G N E T I C  F I E L D  AT  T H E  C E N T R E  O F  A  C I R C U L A R  A R C



Q u e st i o n S o l u t i o n

Consider the following infinite wire and find the magnetic field at point ′𝑂′.

𝑂

𝑅

𝑖

𝑖

𝑖

∞ ∞



Q u e st i o n S o l u t i o n

𝑂

𝑅

𝑖

𝑖

∞

𝐵 =
𝜇0𝑖

2𝜋𝑅
+
𝜇0𝑖

4𝑅

𝜇0𝑖

4𝑅

𝜇0𝑖

4𝜋𝑅

𝜇0𝑖

4𝜋𝑅

𝑖

∞

The configuration given in the figure can be splitted as
shown in the figure. Here, we have two semi-infinite wire
and one semi circular loop.

The magnetic field due to a semi-infinite wire is, 𝐵𝑆𝐼𝑊 =
𝜇0𝑖

4𝜋𝑅

The magnetic field due to a semicircular wire at its centre is, 

𝐵𝑆𝐶𝑊 =
𝜇0𝑖

4𝑅

At point, the field due to all semi-infinite wire and
semicircular wire is directed into the plane of the paper.
Thus, the net magnetic field at point 𝑂 will be,

𝐵 =
𝜇0𝑖

2𝜋𝑅
+
𝜇0𝑖

4𝑅
⨂𝐵 =



Q u e st i o n S o l u t i o n

𝑅

2𝑅

𝑖

𝑖

𝑖 𝑖𝑂

Consider the following wire and find the magnetic field at point ′𝑂′.



Q u e st i o n S o l u t i o n

𝐵 =
𝜇0𝑖

8𝑅

The configuration consists of: (1) A semicircular ring of radius 2𝑅, (2) A
semicircular ring of radius 𝑅 and these two rings are connected by
conducting wires.

Since point 𝑂 is lying on the line of the
connecting wires, the magnetic field due to
them is zero.

The magnetic field due to the semicircular wire of radius 𝑅 at 

its centre is, 𝐵1 =
𝜇0𝑖

4𝑅
⨂

The magnetic field due to the semicircular wire of radius 2𝑅 at 

its centre is, 𝐵2 =
𝜇0𝑖

8𝑅
⨀

Since 𝐵1 > 𝐵2, the direction of net magnetic field at 𝑂 will be “⨂” and since the direction of 𝐵1 and 𝐵2 are opposite 
of each other, the magnitude of net magnetic field at 𝑂 will be,

𝐵 =
𝜇0𝑖

4𝑅
−
𝜇0𝑖

8𝑅
=
𝜇0𝑖

8𝑅

𝑅

2𝑅

𝑖

𝑖

𝑖 𝑖𝑂



Q u e st i o n S o l u t i o n

𝑂

𝑅

𝑖

𝑖

∞∞

𝑋

𝑌

𝑍

𝑖

Consider the following infinite wire and find the magnetic field at point ′𝑂′.



Q u e st i o n S o l u t i o n

𝐵 =
𝜇0𝑖

2𝜋𝑅
− Ƹ𝑗 +

𝜇0𝑖

4𝑅
(−෠𝑘)

𝜇0𝑖

4𝜋𝑅
(− Ƹ𝑗)

𝜇0𝑖

4𝑅
(−෠𝑘)

𝜇0𝑖

4𝜋𝑅
(− Ƹ𝑗)

𝑂

𝑅

𝑖

𝑖

∞∞

𝑋

𝑌

𝑍

𝑖

The configuration given in the figure consists of two semi-infinite
wire and one semi circular loop. The semicircular loop is in 𝑋𝑌 plane.

The magnetic field at point 𝑂 due to a semi-infinite wire is, 

𝐵𝑆𝐼𝑊 =
𝜇0𝑖

4𝜋𝑅
− Ƹ𝑗

The magnetic field due to a semicircular wire at its centre is, 

𝐵𝑆𝐶𝑊 =
𝜇0𝑖

4𝑅
−෠𝑘

The net magnetic field at point 𝑂 will be,

𝐵 =
𝜇0𝑖

2𝜋𝑅
− Ƹ𝑗 +

𝜇0𝑖

4𝑅
(−෠𝑘)

𝐵 =



Q u e st i o n S o l u t i o n

A long, insulated wire is closely wound as a spiral of 𝑁 turns. The spiral has inner radius 𝑎 and 
outer radius 𝑏. A steady current 𝑖 flows through the wire.  Find the magnetic field at the 
center of the spiral.

𝑎
𝑂

𝑖
𝑏



Q u e st i o n S o l u t i o n

𝑎
𝑏 𝑂

𝑑𝑥

𝑖

𝐵 =
𝜇0𝑁𝑖

2(𝑏 − 𝑎)
ln

𝑏

𝑎

Consider an elementary ring of thickness 𝑑𝑥 and radius 𝑥. Therefore,

total number of turns in thickness 𝑑𝑥 is
𝑁

(𝑏 − 𝑎)
𝑑𝑥.

We know that the magnetic field at the centre of a current carrying ring 

of radius 𝑅 and having 𝑁 number of turns is, 𝐵 =
𝜇0𝑁𝑖

2𝑅

Therefore, the magnetic field at the centre of the elementary ring is, 

Therefore, the net magnetic field due to the whole wire at the centre is 
given by, 

The direction of current in the spiral wire suggests that the magnetic 
field will be coming out from the plane of the wire.



Q u e st i o n S o l u t i o n

𝑅

A uniform circular ring and two infinite wires are connected as shown. Find the magnetic
field at the center of the uniform ring.

𝑖 𝑖

𝜃

𝑂



Q u e st i o n S o l u t i o n

𝑅

𝑖 𝑖

𝜃

𝑂

Since point 𝑂 is lying on the line of the of the straight wire, 
the magnetic field at 𝑂 due to the straight wire will be zero.

Let the resistance per unit length of the wire is 𝜆 Ω/𝑚.

The resistance in the upper part of the circle is, 𝑅2 = 𝜆𝑅 2𝜋 − 𝜃

The resistance in the lower part of the circle is, 𝑅1 = 𝜆𝑅𝜃

From the configuration shown in the figure, the resistances are
parallel to each other. Thus, if 𝑖1 and 𝑖2 are the currents
through the lower part and upper part of the ring, respectively,
then,



Q u e st i o n S o l u t i o n

𝐵𝑛𝑒𝑡 = 0

𝑅

𝑖 𝑖

𝜃

𝑂

The magnetic field at 𝑂 due to the lower part of the ring is,

𝐵𝑖1 =
𝜇0
4𝜋

𝑖1𝜃

𝑅
⨀

The magnetic field at 𝑂 due to the upper part of the ring is,

Therefore, the net magnetic field at point 𝑂 is given by,



Q u e st i o n S o l u t i o n

Suppose a current carrying straight wire of length 𝑙 = 2𝜋𝑅 is converted into a 𝑛-sided
polygon. Find
(a) The magnetic field at the centre of the polygon.
(b) The magnetic field at the centre of the polygon if 𝑛 → ∞.

𝑙 = 2𝜋𝑅



Q u e st i o n S o l u t i o n

The magnetic field at 𝑂 due to 𝑛 -sided polygon is, 𝐵𝑛𝑒𝑡 = 𝑛 × 𝐵1

Total angle subtended at 𝑂 = 
2𝜋

𝑛
. Therefore, half-angle is, 𝜃 =

𝜋

𝑛

The net magnetic field at point 𝑂 due to one side of the polygon is, 𝑙1 =
𝑙

𝑛

𝑂
Where 𝐵1 is the magnetic field due to one side of the polygon

For one side of the polygon

Length, 𝑙1 =
𝑙

𝑛
=

2𝜋𝑅

𝑛 𝑑

𝜃

Therefore, tan𝜃 =
ൗ𝑙1
2

𝑑
=

𝜋𝑅

𝑛𝑑
𝑑 =

𝜋𝑅

𝑛
cot 𝜃 𝑑 =

𝜋𝑅

𝑛
cot

𝜋

𝑛

𝐵1 =
𝜇0𝑖

4𝜋𝑑
2 sin 𝜃

Therefore, the net magnetic field at point 𝑂 due to whole polygon is,

𝐵𝑛𝑒𝑡 =
𝜇0𝑛𝑖

4𝜋
𝜋𝑅
𝑛
cot

𝜋
𝑛

2 sin
𝜋

𝑛 𝐵𝑛𝑒𝑡 =
𝜇0𝑖

2𝑅

tan
𝜋
𝑛

𝜋
𝑛

sin
𝜋
𝑛

𝜋
𝑛



Q u e st i o n S o l u t i o n

𝑙1 =
𝑙

𝑛

𝑂

𝑑

𝜃

We know that:  lim
𝑥 →0

tan 𝑥

𝑥
= 1 and lim

𝑥 →0

sin 𝑥

𝑥
= 1

Let 𝑥 =
𝜋

𝑛
. Thus, for “𝑛 → ∞”, “𝑥 → 0”

Therefore, for “𝑛 → ∞”, the expression of magnetic field becomes:

𝐵𝑛𝑒𝑡 =
𝜇0𝑖

2𝑅

Hence, the 𝑛-sided polygon becomes a circle for “𝑛 → ∞”.



S O L E N O I D

Base

Helical Coil

A solenoid is a type of electromagnet.

It is used to generate a controlled magnetic field through a coil wound into a tightly
packed helix.



M a g n e t i c  f i e l d  a t  p o i n t 𝑃 p re s e n t  o n  t h e  a x i s  o f  t h e  s o l e n o i d

𝑛 = 𝑛𝑜. 𝑜𝑓 𝑡𝑢𝑟𝑛𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝑛 =
𝑁

𝑙

𝑁 = 𝑡𝑜𝑡𝑎𝑙 𝑡𝑢𝑟𝑛𝑠

S O L E N O I D

We can assume a spring or helix as a configuration of solenoid provided the pitch of the helix 
is infinitesimal.

The solenoid can also be assumed as composition of infinite number of rings provided the
distance between each ring is very small.

The magnetic field inside the solenoid is nearly uniform and the field outside the solenoid is
negligible.



M a g n e t i c  f i e l d  a t  p o i n t 𝑃 p re s e n t  o n  t h e  a x i s  o f  t h e  s o l e n o i d

S O L E N O I D

𝑃

𝑅

𝑙

𝑑𝑥

𝜃
𝑥

𝑅
𝜃1

𝜃2
𝑑𝜃

Consider a ring element of the solenoid of
thickness 𝑑𝑥 at distance 𝑥 from the point 𝑃.
Let the angles made by extreme points of
solenoid with axis at point 𝑃 be 𝜃1 and 𝜃2 and
the angle made by ring element be 𝑑𝜃.

𝑃 𝑥

𝑑𝐵 =
𝜇0𝑖0𝑅

2

2 𝑅2 + 𝑥2
3
2

=
𝜇0𝑛𝑖 𝑑𝑥 𝑅2

2 𝑅2 + 𝑥2
3
2

𝑛 =
𝑁

𝑙

Number of turns of wire in ring element,

𝑛𝑟𝑖𝑛𝑔 =
𝑁

𝑙
× 𝑑𝑥 = 𝑛𝑑𝑥

Therefore, total current in the ring element is, 
𝑖0 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑟𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 × (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑒𝑎𝑐ℎ 𝑡𝑢𝑟𝑛)

𝑖0 = 𝑛𝑑𝑥 × 𝑖 𝑖 = Current flowing through solenoid

We know the magnetic field due to ring at an
axial point, so for ring element ;

𝑖0
𝑅



M a g n e t i c  f i e l d  a t  p o i n t 𝑃 p re s e n t  o n  t h e  a x i s  o f  t h e  s o l e n o i d

𝑑𝐵 =
𝜇0𝑖𝑅

2

2 𝑅2 + 𝑥2 3/2
. 𝑛𝑑𝑥 … (1)

𝑃

𝜃

𝑥

𝑅

S O L E N O I D

𝑃

𝑅

𝑙

𝑑𝑥

𝜃
𝑥

𝑅
𝜃1

𝜃2
𝑑𝜃

From figure,

tan 𝜃 =
𝑅

𝑥
⇒ 𝑥 = 𝑅 cot 𝜃

Differentiating, 𝑑𝑥 = 𝑅(− 𝑐𝑜𝑠𝑒𝑐2𝜃 𝑑𝜃)

Substituting the value of 𝑥 and 𝑑𝑥 in equation (1),

𝑑𝐵 =
𝜇0𝑖𝑅

2

2 𝑅2 + 𝑅 cot 𝜃 2
3
2

. 𝑛(−𝑅 𝑐𝑜𝑠𝑒𝑐2𝜃 𝑑𝜃)

⇒ 𝑑𝐵 =
𝜇0𝑖𝑅

2

2𝑅3 𝑐𝑜𝑠𝑒𝑐2𝜃
3
2

. 𝑛(−𝑅 𝑐𝑜𝑠𝑒𝑐2𝜃 𝑑𝜃) ∵ (1 + cot2 𝜃 = 𝑐𝑜𝑠𝑒𝑐2𝜃)

⇒ 𝑑𝐵 = −
𝜇0𝑛𝑖 sin 𝜃 𝑑𝜃

2



𝑃

𝑅

𝑙

M a g n e t i c  f i e l d  a t  p o i n t P  p re s e n t  o n  t h e  a x i s  o f  t h e  s o l e n o i d

𝜃
𝑥

𝑅
𝜃1

𝜃2

𝐵 =
𝜇0𝑛𝑖

2
cos 𝜃2 − cos 𝜃1

S O L E N O I D

𝑑𝐵 = −
𝜇0𝑛𝑖 sin 𝜃 𝑑𝜃

2

Integrating for net magnetic field:

𝐵𝑛𝑒𝑡 = ∫ 𝑑𝐵 = −
𝜇0𝑛𝑖

2
න
𝜃1

𝜃2

sin 𝜃 𝑑𝜃

𝐵𝑛𝑒𝑡 = −
𝜇0𝑛𝑖

2
− cos 𝜃 𝜃1

𝜃2

𝐵𝑛𝑒𝑡 =
𝜇0𝑛𝑖

2
[cos 𝜃2 − cos 𝜃1]

This formula will give magnitude of magnetic field and the
direction can be found by using Right hand thumb Rule.



E xa m p l e s : D e t e r m i n i n g  va l u e  o f  𝜃1 a n d  𝜃2

𝑃𝑃

30°60°

𝜃1 = 30°

𝜃2 = 120°

𝜃1 = 150°

𝜃2 = 120°

𝐵 =
𝜇0𝑛𝑖

2
cos 𝜃2 − cos 𝜃1

S O L E N O I D

𝑃

30°
60°

The angles 𝜃1 and 𝜃2 should 
be taken from same side.



I D E A L  S O L E N O I D

𝑙 ≫ 𝑅 ⇒ long solenoid

A solenoid can be called as an ideal solenoid if the following conditions are satisfied:

𝑛 = 𝑁/𝑙 is a very large number
⇒ wire is very closely wound.

𝑃

𝑅

𝑙

𝑃
𝜃1

𝜃2

For ideal solenoid (length: infinite, radius: small, winding of wires: very tight), the field
inside the solenoid is uniform and the field outside the solenoid is zero.



𝐵 =
𝜇0𝑛𝑖

2
cos 𝜃2 − cos 𝜃1

𝑃

𝑅

𝑙

𝑃
𝜃1

𝜃2

𝐵 = 𝜇0𝑛𝑖

M a g n e t i c  f i e l d  d u e  t o  a n  I d e a l  s o l e n o i d  ( 𝑙 >> 𝑅)

I D E A L  S O L E N O I D

For ideal solenoid,



𝜃1 ≈ 90° and 𝜃2 ≈ 180°

𝐵 =
𝜇0𝑛𝑖

2

𝐵 =
𝜇0𝑛𝑖

2
cos 𝜃2 − cos 𝜃1

𝑃

𝑅

𝑙

M a g n e t i c  f i e l d  a t  o n e  e n d  o f  a n  i d e a l  s o l e n o i d

I D E A L  S O L E N O I D

𝐵



𝐵 =
𝜇0𝑛𝑖

2

𝐵 = 𝜇0𝑛𝑖𝐵

𝑙

𝐵 =
𝜇0𝑛𝑖

2
cos 𝜃2 − cos 𝜃1

𝐵 𝑣𝑠 𝑥 p l o t

𝑥

I D E A L  S O L E N O I D

For an ideal solenoid, field is almost
constant inside. At the points near
its end, variation in field is seen and
it becomes half at the ends. The
variation is shown in adjacent graph.



+𝑚

−𝑚

Pole 
Strength

𝑙 𝑀 = 𝑚𝑙

Magnetic 
moment

S

N

N N

N

S S

S

REPULSION

ATTRACTION

P R O P E R T I E S  O F  M A G N E T I C  F I E L D  L I N E S  

M a g n e t s

Like poles repel each other and
unlike poles attract each other.



NS

P R O P E R T I E S  O F  M A G N E T I C  F I E L D  L I N E S  

Magnetic field lines originates
from North pole and goes in
South pole outside the magnet.

Field lines travel from South pole
to North pole inside the magnet.



Outside the magnet, field lines travel from north to south pole.

Magnetic field lines always exist in closed loops. (Different from Electric Field lines)

Inside the magnet, field lines travels from south to north pole.

Tangent at any point on magnetic field line gives the direction of magnetic field only
and not the direction of the magnetic force.

P R O P E R T I E S  O F  M A G N E T I C  F I E L D  L I N E S  

Two magnetic field lines can never intersect each other.

Number of field lines coming in or going out from a pole are directly proportional to
the pole strength.

Density of the number of field lines represents the intensity of magnetic field at that 
point.



S H A P E  O F  M A G N E T I C  F I E L D  L I N E S

𝑖
𝑖

Straight Wire

Circular Ring

Apply right hand thumb 
rule to find the direction 
of magnetic field.



Real solenoid

Ideal solenoid

S H A P E  O F  M A G N E T I C  F I E L D  L I N E S



A m p e re ’s  C i rc u i t a l  L a w

ර𝐵. 𝑑𝑙 = 𝜇0 𝑖𝑖𝑛

𝐵 ∶ Magnetic field due to all the wires (inside or
outside)

While assuming the loop, assume the sense
of rotation of loop also. This will decide the
positive and negative sign of current. Here,
the sense of rotation along the loop is
chosen in such a way that upward direction
becomes positive.

The magnetic field created by an electric current is proportional to the size of that electric 
current with a constant of proportionality equal to the permeability of free space.

Example:

Current 𝑖𝑖𝑛 is only due to the wires passing
through loop i.e., (𝑖1, 𝑖2, 𝑖3)

𝑖𝑖𝑛 =



A m p e re ’s  C i rc u i t a l  L a w

ර𝐵. 𝑑𝑙 = 𝜇0 𝑖𝑖𝑛

𝑖3𝑖2
𝑖4

𝑖1
𝑖5

𝑑𝑙

𝐵

Ampere’s Loop

𝐵 ∶ Magnetic field due to all
the wires (inside or
outside)

The line integral of 𝐵. 𝑑Ԧ𝑙 along any closed path in a region is equal to 𝜇0 times the total

current crossing the enclosed area.



A m p e re ’s  C i rc u i t a l  L a w

𝑖2𝑖1

Draw Ampere’s Loop

Use right hand thumb rule

Consider 𝑑Ԧ𝑙

Closed line integral of 𝐵. 𝑑Ԧ𝑙 for the loop

Ampere’s loop

𝑖1 → +𝑣𝑒 𝑖2 → −𝑣𝑒

𝑑Ԧ𝑙

ර𝐵. 𝑑𝑙 = 𝜇0 (𝑖1 − 𝑖2 − 𝑖3)

𝑖3 → −𝑣𝑒



A m p e re ’s  C i rc u i t a l  L a w

It is valid everywhere, but we can calculate magnetic field using ampere’s circuital

law only when following conditions are satisfied:

Infinite long wire (Thin & Thick)

highly symmetrical current distribution



A m p e re ’s  C i rc u i t a l  L a w

𝑂

𝐵

𝑟

M a g n e t i c  f i e l d  d u e  t o  a  l o n g  s t ra i g h t  c u r re n t  c a r r y i n g  w i re  

𝑂

𝐵

𝑟𝑖

Top View

𝑑𝑙

𝐵 =
𝜇0𝑖

2𝜋𝑟

Ampere’s Loop

• 𝐵 || 𝑑𝑙

𝑖



A m p e re ’s  C i rc u i t a l  L a w

M a g n e t i c  f i e l d  d u e  t o  h o l l o w  c u r re n t  c a r r y i n g  i n f i n i t e l y  l o n g  w i re  

𝑖

𝑟

𝑅

𝑟

Inside the wire:

𝐵 = 0

Outside the wire:

𝐵 =
𝜇0𝑖

2𝜋𝑟

Ampere’s Loop



A m p e re ’s  C i rc u i t a l  L a w

𝑟
For 𝑟 < 𝑅;

For 𝑟 = 𝑅;
For 𝑟 > 𝑅; 𝐵 =

𝜇0𝑖

2𝜋𝑟

𝐵(𝑟)

𝑅

𝐵 =
𝜇0𝑖

2𝜋𝑅

𝐵 = 0

M a g n e t i c  f i e l d  d u e  t o  h o l l o w  c u r re n t  c a r r y i n g  i n f i n i t e l y  l o n g  w i re  



A m p e re ’s  C i rc u i t a l  L a w

𝑖

𝑟

𝑅

𝑟

Inside the wire:

𝐵 =
𝜇𝑜𝑗𝑟

2

Outside the wire:

𝐵 =
𝜇𝑜𝑖

2𝜋𝑟

M a g n e t i c  f i e l d  d u e  t o  s o l i d  c u r re n t  c a r r y i n g  i n f i n i t e l y  l o n g  w i re  

Ampere’s Loop

= Current density



A m p e re ’s  C i rc u i t a l  L a w

For 𝑟 < 𝑅;

For 𝑟 = 𝑅;
For 𝑟 > 𝑅; 𝐵 =

𝜇0𝑖

2𝜋𝑟

𝐵 =
𝜇𝑜𝑗𝑟

2

𝐵(𝑟)

𝑅

𝐵 =
𝜇0𝑖

2𝜋𝑅

𝑟

M a g n e t i c  f i e l d  d u e  t o  s o l i d  c u r re n t  c a r r y i n g  i n f i n i t e l y  l o n g  w i re  



Q u e st i o n S o l u t i o n

An infinitely long wire of radius 𝑅 is carrying current in it. If current density inside the wire
is varying as 𝐽 = 𝐽0 𝑟 then calculate the magnetic field at a distance 𝑟 𝑟 < 𝑅 .

𝐽

𝑟

𝑅



Q u e st i o n S o l u t i o n

𝐵 × 2𝜋𝑟 = 𝜇0න
0

𝑟

𝐽0 𝑥 × 2𝜋𝑥 × 𝑑𝑥

𝐽

ර𝐵. 𝑑𝑙 = 𝜇0 𝑖𝑖𝑛

𝑟

𝑅

𝑥



A cylinder of radius 4𝑅 having cavity of radius 𝑅 (as shown in the figure) is carrying current
of density 𝐽. What will be the magnetic field at a distance 8𝑅 from the axis?

Q u e st i o n S o l u t i o n

4𝑅 𝑅

8𝑅

𝐽 𝐽 𝐽

2𝑅

4𝑅 𝑅



8𝑅 6𝑅

Q u e st i o n S o l u t i o n

𝐵 =
11𝜇0𝐽𝑅

12

4𝑅 𝑅

2𝑅

4𝑅 𝑅

8𝑅



A cylinder of radius 4𝑅 having cavity of radius 𝑅 is carrying current density 𝐽. What will be
the magnetic field at point 𝑃 which is at a distance 2𝑅 from the axis as shown in figure?

Q u e st i o n S o l u t i o n

2𝑅 2𝑅

𝑃
4𝑅

𝑅



2𝑅 2𝑅

Q u e st i o n S o l u t i o n

2𝑅 4𝑅

𝐵 =
7𝜇0𝐽𝑅

8

𝑃 𝑃 𝑃



A cylinder of radius 4𝑅 have a cavity of radius 𝑅. It is carrying current of density 𝐽. What will
be the magnetic field at a point 𝑃 as shown?

Q u e st i o n S o l u t i o n

𝑃

𝜃1 𝜃2

𝑟1 𝑟24𝑅
𝑅

𝑙



𝑃

𝜃1

𝑟1 𝑟24𝑅
𝑅

Q u e st i o n S o l u t i o n

𝑃

𝜃1

𝑟1

𝜃2

𝑟2

𝑃

(𝐵∥)𝑙= 0 (𝐵⊥)𝑙=
𝜇0𝑗𝑙

2

𝑙

𝜃2



A m p e re ’s  C i rc u i t a l  L a w

M a g n e t i c  f i e l d  d u e  t o  i d e a l  S o l e n o i d

−+

𝑖

A solenoid is a type of electromagnet, the purpose of which is to generate a controlled

magnetic field through a coil wound into a tightly packed helix.

A solenoid can be called as an ideal one if the 
following conditions are satisfied :

• 𝑙 ≫ 𝑅 ⇒ long solenoid

• 𝑛 = 𝑁/𝐿 is a very large number

⇒ turns are very closely wound.



A m p e re ’s  C i rc u i t a l  L a w

𝐵

𝐵 = 0𝐴 𝐵

𝐶𝐷

M a g n e t i c  f i e l d  d u e  t o  S o l e n o i d

𝑙

𝐵 =
𝜇0𝑛𝑖

2
cos 0° − cos 180° =

𝜇0𝑛𝑖

2
1 − (−1)

𝜃1 ≈ 0° 𝑎𝑛𝑑 𝜃2 ≈ 180°

𝐵 = 𝜇0𝑛𝑖

𝐵 =
𝜇0𝑛𝑖

2
cos 𝜃1 − cos 𝜃2

(Infinitely long, 𝑙 >> 𝑅)

M a g n e t i c  f i e l d  d u e  t o  i d e a l  S o l e n o i d

Number of turns per unit length
along the length of the solenoid

(Outside solenoid)න
𝐴

𝐵

𝐵. 𝑑𝑙 = 0

(𝐵 ⊥ 𝑙)

න
𝐵

𝐶

𝐵. 𝑑𝑙 = 0

(𝐵 ⊥ 𝑙)

න
𝐷

𝐴

𝐵. 𝑑𝑙 = 0



+−

A toroid is essentially a solenoid that is bent into the shape of circle.

𝑖

𝑖

M a g n e t i c  f i e l d  d u e  t o  To ro i d

𝑅 𝑑

A m p e re ’s  C i rc u i t a l  L a wA m p e re ’s  C i rc u i t a l  L a w

Inside toroid :𝐵 = 0 Outside toroid : 𝐵 = 0



+−

𝑖

𝑖

M a g n e t i c  f i e l d  d u e  t o  To ro i d

𝑅 𝑑

Ampere’s Loop

𝐵𝑂 =
𝜇0𝑁𝑖

2𝜋𝑅

𝑁 =Total number of turns

A m p e re ’s  C i rc u i t a l  L a w

𝐵𝑂 = 𝜇0𝑛𝑖

𝑛 = Number of turns per unit length
along the length of the solenoid

Magnetic field within toroid



M a g n e t i c  f i e l d  d u e  t o  i n f i n i t e  s h e e t  c a r r y i n g  c u r re n t  

A m p e re ’s  C i rc u i t a l  L a w

𝐵𝑂 =
𝜇0𝜆

2



Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

M a g n e t i c  fo rc e :

As the force is always perpendicular to velocity,

work done by it is zero. As the work done is zero,

only direction of velocity changes and its

magnitude remains same.

Ԧ𝐹 = 𝑞( Ԧ𝑣 × 𝐵)

M a g n i t u d e : | Ԧ𝐹| = 𝑞| Ԧ𝑣| 𝐵 sin 𝜃

Direction of force is same as ( Ԧ𝑣 × 𝐵) if 𝑞 is +𝑣𝑒.

Direction of force is opposite to ( Ԧ𝑣 × 𝐵) if 𝑞 is −𝑣𝑒.

Here, 𝜃 is the angle between Ԧ𝑣 and 𝐵.

• |𝐹| ∝ 𝑞

• |𝐹| ∝ | Ԧ𝑣|

• |𝐹| ∝ |𝐵|

• |𝐹| ∝ sin 𝜃
O b s e r va t i o n :

𝐼

𝑣

𝐵𝑞

Ԧ𝐹𝑚 = 𝑞( Ԧ𝑣 × 𝐵)



Q u e st i o n

If a charge particle has the velocity in west direction inside the magnetic field as shown,
then find the direction of magnetic force.

𝑣

𝑁

𝑆

𝑊 𝐸

𝐵

𝑞

S o l u t i o n

North direction

Thus, direction of force is same as ( Ԧ𝑣 × 𝐵).

Here, the charge 𝑞 is +𝑣𝑒.

As Ԧ𝑣 is directed towards West and 𝐵 is

coming out of the plane of paper, Ԧ𝑣 × 𝐵

is directed towards North.



Q u e st i o n

If a magnetic field is acting in the west-south direction and velocity of the charge particle is
inside the plane as shown, then find the direction of magnetic force.

𝐵

𝑣 (Velocity inside the 
plane direction) 

𝑞

𝑁

𝑆

𝑊 𝐸

S o l u t i o n

Thus, direction of force is same as ( Ԧ𝑣 × 𝐵).

Here, the charge 𝑞 is +𝑣𝑒.

As Ԧ𝑣 is directed inside the screen and 𝐵

is towards South-West, Ԧ𝑣 × 𝐵 is directed

towards North-West.

North-west direction



Q u e st i o n

If a magnetic field is acting inside the plane and velocity of the charge particle is in west-
south direction as shown, then find the direction of magnetic force.

𝑣

𝐵

−𝒒

𝑁

𝑆

𝑊 𝐸

−𝑞

S o l u t i o n

Thus, direction of force is opposite to ( Ԧ𝑣 × 𝐵).

Here, the charge 𝑞 is −𝑣𝑒.

As Ԧ𝑣 is directed towards South-West and 𝐵 is

moving in the plane of paper, Ԧ𝑣 × 𝐵 is directed

towards South-East. As the force is opposite to

Ԧ𝑣 × 𝐵 , it will be directed towards North-West.

North-west direction



Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

C a s e  1 : W h e n  𝑣 i s  p a ra l l e l /a n t i p a ra l l e l t o 𝐵

When the velocity of the charge is parallel

or antiparallel to the direction of

magnetic field, the force acting on it will

be zero and the path of the particle will

be a straight line.

𝐵

𝑣

𝑣

𝑞𝑞

𝑞𝑞

| Ԧ𝐹| = 𝑞| Ԧ𝑣| 𝐵 sin 𝜃

Ԧ𝐹𝑚 = 𝑞( Ԧ𝑣 × 𝐵)



Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

Ԧ𝐹𝑚 = 𝑞( Ԧ𝑣 × 𝐵)

Direction of magnetic force will change due to change
in direction of velocity.

Magnitude of magnetic force is always fixed and given

by | Ԧ𝐹𝑚| = 𝑞𝑣𝐵

Magnetic force is always perpendicular to velocity,
therefore charge particle will execute the uniform
circular motion.

𝑞

𝐵

𝑣

𝑞𝑣𝐵
𝑅

𝑞



𝑞

𝐵

𝑣

𝑞𝑣𝐵
𝑅

𝑞

Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

𝑚𝑣2

𝑅

The magnetic force provides necessary centripetal

force for UCM. Thus, the radius of circle can be

obtained as:

𝑞𝑣𝐵 =
𝑚𝑣2

𝑅
𝑅 =

𝑚𝑣

𝑞𝐵

Time period of the uniform circular motion is given by

𝑇 =
2𝜋𝑅

𝑣
𝑇 =

2𝜋𝑚

𝑞𝐵

Time period is independent of velocity



Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

Frequency of the uniform circular motion is given by,

𝑓 =
1

𝑇
𝑓 =

𝑞𝐵

2𝜋𝑚

Angular frequency of the uniform circular motion is
given by,

𝜔 =
2𝜋

𝑇

𝑇 =
2𝜋𝑚

𝑞𝐵

𝜔 =
𝑞𝐵

𝑚

𝑞

𝐵

𝑣

𝑞𝑣𝐵
𝑅

𝑞

𝑚𝑣2

𝑅



Q u e st i o n S o l u t i o n

In a magnetic field of 2 𝑇, an alpha particle and an electron are released with the same
velocity. Find the ratio of radii of their circular trajectories.
Given that 𝑚𝛼 = 7294 ×𝑚𝑒.

𝜶

𝐵

𝑣

𝑅𝛼

𝒆−

𝐵

𝑣

𝑅𝑒

Alpha particle Electron

𝜶

𝒆−



Q u e st i o n S o l u t i o n

𝑅 =
𝑚𝑣

𝑞𝐵
𝐵1 = 𝐵2 = 2 𝑇
𝑚𝛼 = 7294 ×𝑚𝑒

Given :

𝑅𝛼
𝑅𝑒

= 3647

𝒆− 𝑣

𝑅𝑒

Electron

𝜶

𝐵

𝑣

𝑅𝛼

Alpha particle

𝜶

𝒆−
Radius of circle
for Alpha particle:

Radius of circle for electron:

… . . (1)

… . (2)

Dividing equation 1 by (2);



Q u e st i o n

A charge particle of mass 𝑚 placed at the origin as shown where magnetic field 𝐵 = 𝐵0 Ƹ𝑖 and

velocity Ԧ𝑣 = 𝑣0 Ƹ𝑗. Find the position vector Ԧ𝑟 𝑡 = 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 + 𝑧෠𝑘 after time 𝑡.

𝑥

𝑦

𝑧

𝐵0

𝑣0

𝑞

S o l u t i o n

As ( Ԧ𝑣 × 𝐵) is directed along −𝑣𝑒 𝑧-axis, the circle will

be in 𝑦 − 𝑧 plane.

We know, the radius of circle, 𝑅 =
𝑚𝑣

𝑞𝐵

Hence, the coordinate of centre of circle, (0, 0, −
𝑚𝑣

𝑞𝐵
)

At time 𝑡 , consider the particle moves to 𝜃 = 𝜔𝑡 ,

where 𝜔 =
𝑞𝐵

𝑚
.

Thus, value of 𝑥 will always be zero in position vector.



𝑥

𝑦

𝑧

𝐵0

𝑣0

𝑧

𝑦

𝑥

𝐵0
𝑣0

𝑅

𝜔𝑡

𝑡 = 0

𝑡 = 𝑡

𝑅 =
𝑚𝑣

𝑞𝐵 𝜔 =
𝑞𝐵

𝑚

𝑥 = 0, 𝑦 =
𝑚𝑣

𝑞𝐵
sin

𝑞𝐵

𝑚
𝑡, 𝑧 = −

𝑚𝑣

𝑞𝐵
1 − cos

𝑞𝐵

𝑚
𝑡

𝑞

𝑞

From figure,

𝑦 = 𝑅 sin 𝜃 =
𝑚𝑣

𝑞𝐵
sin

𝑞𝐵

𝑚
𝑡

𝑅

𝑃(𝑥, 𝑦, 𝑧)

𝑧 = − 𝑅 − 𝑅 cos𝜔𝑡 = −
𝑚𝑣

𝑞𝐵
[1 − cos

𝑞𝐵

𝑚
𝑡



𝑥

𝑦

𝑧

𝐵0

𝑣0

𝑞

Q u e st i o n

A charge particle of mass 𝑚 placed at the origin as shown where magnetic field

𝐵 = −𝐵0 Ƹ𝑗 and velocity Ԧ𝑣 = 𝑣0 ෠𝑘. Find the position vector Ԧ𝑟 𝑡 = 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 + z෠𝑘 after time 𝑡.

S o l u t i o n

Here, the directions of magnetic field and velocity are

changed. Rest of the problem is same as previous.

As ( Ԧ𝑣 × 𝐵) is directed along +𝑣𝑒 𝑥 -axis, the circle will

be in 𝑥 − 𝑧 plane.

We know, the radius of circle, 𝑅 =
𝑚𝑣

𝑞𝐵

Hence, the coordinates of centre of circle, (
𝑚𝑣

𝑞𝐵
, 0, 0)

Thus, value of 𝑦 will always be zero in position vector.



𝑡 = 0

−𝑦

𝑥

𝑧

𝐵0

𝑣0

𝑅

𝜔𝑡

𝑡 = 𝑡

𝑥 =
𝑚𝑣

𝑞𝐵
1 − cos

𝑞𝐵

𝑚
𝑡 , 𝑦 = 0, 𝑧 =

𝑚𝑣

𝑞𝐵
sin

𝑞𝐵

𝑚
𝑡

𝑥

𝑦

𝑧

𝐵0

𝑣0

𝑞
𝑞

At time 𝑡, consider the particle moves to 𝜃 = 𝜔𝑡, where 𝜔 =
𝑞𝐵

𝑚
.

𝑃(𝑥, 𝑦, 𝑧)

From figure, 𝑥 = 𝑅 − 𝑅 cos𝜔𝑡 =
𝑚𝑣

𝑞𝐵
[1 − cos

𝑞𝐵

𝑚
𝑡

𝑧 = 𝑅 sin𝜔𝑡 =
𝑚𝑣

𝑞𝐵
sin

𝑞𝐵

𝑚
𝑡



Q u e st i o n

S o l u t i o n

A charged particle of mass 𝑚 enters a magnetic field 𝐵 with velocity 𝑣0 as shown. Find the
deviation and time spent by the charged particle in the magnetic field.

𝑣0
𝑞

𝐵

→ ∞

S o l u t i o n

Velocity of particle is perpendicular to magnetic field.

The force acts on in upward direction. Hence, particle

moves in circular path in magnetic field. It completes a

semi-circle and then moves in straight line as magnetic

field in not present.

As the particle completes semicircular path in magnetic

field, the deviation is 180° or 𝜋 rad.



𝑡 =
𝜋𝑚

𝑞𝐵
, 180° devaition

𝑣0

𝐹𝑚

𝑅

𝐵

→ ∞

𝑞𝑞

We have,

Thus, time spent by particle,



Q u e st i o n

A charged particle of mass 𝑚 enters a magnetic field 𝐵 with velocity 𝑣0 at an angle 𝜃 as
shown. Find the time spent by the charged particle in the magnetic field.

𝑣0
𝜃

𝑞

𝐵

→ ∞

S o l u t i o n

Velocity of particle is perpendicular to magnetic field.

Hence the force acts along Ԧ𝑣 × 𝐵 as shown in the

figure. Centre of the circle lies on the line along the

direction of force at radius,
𝐹𝑚



𝑡 =
𝑚

𝑞𝐵
(𝜋 − 2𝜃)

𝜃

𝑣0
𝜃90° − 𝜃

90° − 𝜃
𝑅

𝑞𝑞

𝐵

→ ∞

From figure, angular displacement of particle inside magnetic field is (𝜋 − 2𝜃).

We have,



Q u e st i o n S o l u t i o n

A charge particle of mass 𝑚 enter in the magnetic field 𝐵 with velocity 𝑣0 at an angle 𝜃 as
shown. Find the time spent in the magnetic field by the charge particle.

𝑣0
𝜃 𝐵

→ ∞

𝑞𝑞



Q u e st i o n S o l u t i o n

𝑡 =
𝑚

𝑞𝐵
(𝜋 + 2𝜃)

𝑣0
𝜃

90° − 𝜃
90° − 𝜃 𝑅

𝐵

→ ∞

𝑞𝑞 𝐹𝑚

Velocity of particle is perpendicular to magnetic field.

Hence the force acts along Ԧ𝑣 × 𝐵 as shown in the

figure. Centre of the circle lies along the direction of

force with radius,

From figure, angular displacement of particle inside

magnetic field is, = (𝜋 + 2𝜃).

We have,



𝑞

Q u e st i o n S o l u t i o n

A charge particle of mass 𝑚 enter in the magnetic field 𝐵 with velocity 𝑣0 as shown. Find
the deviation of the charge particle. Given that 𝑡 < 𝑅.

𝑡

𝑣0

𝑅 𝑣0𝜃

𝐵
𝑞



Q u e st i o n S o l u t i o n

𝜃 = sin−1
𝑞𝐵𝑡

𝑚𝑣0

Velocity of particle is perpendicular to magnetic field.

Hence the force acts along Ԧ𝑣 × 𝐵 as shown in the figure. Centre

of the circle lies on the direction of force at radius,

As the width of magnetic field space (𝑡) is less than the radius of

circle, particle can not complete the semi-circular path. It exit

from magnetic field at angle 𝜃 with horizontal as shown in figure.

From figure, when particle exits magnetic field,

𝐹𝑚



Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

E l e c t ro n  G u n

An electron gun is a source of focused and accelerated electron beam

Power source heats up the
filament coil and electrons are
emitted by thermionic emission.

A battery is connected across
the vacuum tube through which
accelerated electrons move out.

From energy balance between
points 𝐴 and 𝐵,

Thus, electron gun provides highly accelerated
electrons that are used for experiments.



Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

E l e c t ro n  G u n

An electron gun is a source of focused and accelerated electron beam

Power source heats up the
filament coil and electrons are
emitted by thermionic emission.

A battery is connected across
the vacuum tube through which
accelerated electrons move out.

From energy balance between
points 𝐴 and 𝐵,

Thus, electron gun provides highly accelerated
electrons that are used for experiments.



𝑣 =
2𝑒𝑉

𝑚

Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

E l e c t ro n  G u n

Velocity of an electron of mass 𝑚
accelerated through the potential 𝑉 is 
given by, 

𝑉

𝐸

Vacuum tube

𝑒−



𝑣 =
2𝑞𝑉

𝑚

Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

E l e c t ro n  G u n

When an electron is accelerated through 
the potential 𝑉, its energy become 𝑒𝑉.

When a charged particle of mass 𝑚 and
charge 𝑞 is accelerated through the
potential 𝑉, its velocity is given by,

𝑞𝑉 =
1

2
𝑚𝑣2……(1)

𝑉

𝐸

Vacuum tube

𝑒−

Momentum of the particle,

From equation (1),



Q u e st i o n S o l u t i o n

An alpha particle of mass 𝑚 is accelerated through a potential 𝑉 and falls perpendicularly in
a magnetic field 𝐵 with velocity 𝑣. Find the radius of its trajectory.

𝜶

𝐵

𝑣𝜶

𝑅



Q u e st i o n S o l u t i o n

We know that an Alpha particle is a nucleus of Helium atom. When two electrons are 
removed from the He atom, it becomes positively charged alpha particle.

𝑅 =
1

𝐵

𝑚𝑉

𝑒

𝜶

𝐵

𝑣𝜶

𝑅

Charge on Alpha particle, 𝑞 = 2𝑒

As the particle is projected perpendicular to magnetic field, it moves in circular trajectory.

Momentum of the particle,

Radius of the trajectory,



Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

M a s s  s p e c t ro m e t r y

Mass spectrometry is an analytical technique that is used to measure 
the mass-to-charge ratio of ions by measuring radius practically.

Mass spectrometry is used to segregate the two isotopes of same material. 

Isotopes have different no. of neutrons and same no. of protons. 

When the isotopes are accelerated by same potential and projected 
perpendicular to the 𝐵, they travel in circular path with different radii.  

As the potential is same and 
masses are different,

Radius of trajectories,

Isotopes are segregated as they travel in different paths.

𝐵

𝑚1𝑚2

𝑚1

𝑚2

𝑅2

𝑅1



Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

M a s s  s p e c t ro m e t r y

Practically, a magnetic field space of thickness 𝑡 and a
𝑍𝑛𝑆 screen is used. The particle is slightly deviated in
the field and then moves in straight line to screen.
Distance between screen (𝐷) and the magnetic field
space is more compared to thickness of field.

As the deviation (𝜃) is small, sin 𝜃 is also small.

We have,

From figure,



Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

W h e n  a n g l e  b e t we e n  𝐵 a n d  𝑣 i s  𝜃

𝑣|| = 𝑣 cos 𝜃𝑣┴ = 𝑣 sin 𝜃

𝑣┴

𝑣||

𝑣

𝜃

𝑦
Helical Path with 
constant pitch

Pitch

𝑞𝑞
𝑥

𝐵

Magnetic force on the charge particle is

𝐹𝑚 = 𝑞𝑣𝐵 sin 𝜃

Radius of the circle is given by

𝑅 =
𝑚𝑣 sin 𝜃

𝑞𝐵
𝑅 =

𝑚𝑣┴

𝑞𝐵

𝑣┴ imparts circular motion whereas the 𝑣||
helps for linear motion. The resultant path 

becomes helical with constant pitch. Particle 
touches 𝑥-axis after every helix. 

Components of velocity:



Fo rc e  o n  a  m o v i n g  c h a rge  i n  m a g n e t i c  f i e l d

W h e n  a n g l e  b e t we e n  𝐵 a n d  𝑣 i s  𝜃

𝑣|| = 𝑣 cos 𝜃𝑣┴ = 𝑣 sin 𝜃

Pitch (𝑃) of the circle is given by

𝑃 = 𝑣 cos 𝜃
2𝜋𝑚

𝑞𝐵
𝑃 = 𝑣|| × 𝑇

Time period of the particle is

𝑇 =
2𝜋𝑚

𝑞𝐵
𝑇 is independent of 𝜃

𝑞

𝑣┴

𝑣||

𝑣

𝜃
𝑥

𝑦

Pitch

𝐵

𝑞

Helical Path with 
constant pitch



Q u e st i o n S o l u t i o n

A charged particle 𝑞 starts from origin (0, 0) with a velocity of Ԧ𝑣 = 𝑣1 Ƹ𝑖 + 𝑣2 Ƹ𝑗 in uniform

magnetic field 𝐵 = 𝐵𝑜 Ƹ𝑖. Find the position vector Ԧ𝑟 𝑡 = 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 + 𝑧෠𝑘 as a function of time 𝑡.

𝑣2

Ԧ𝑣

𝐵𝑣1(0,0)
𝑥

𝑦



Q u e st i o n S o l u t i o n

Here, the magnetic field is along 𝑥 − axis.

Given, Ԧ𝑣 = 𝑣1 Ƹ𝑖 + 𝑣2 Ƹ𝑗

As 𝑣1 is parallel to magnetic field, it leads to linear motion

For the helical motion of particle in given conditions,

At time 𝑡, the distance covered by particle in 𝑥- direction,

𝑣2

Ԧ𝑣

𝐵𝑣1(0,0)

0

𝑥

𝑦

𝑣2 is perpendicular to magnetic field which leads to circular 
motion with radius,  



𝑥 = 𝑣1𝑡 ; 𝑦 =
𝑚𝑣2
𝑞𝐵𝑜

sin
𝑞𝐵𝑜
𝑚

𝑡 ; 𝑧 =
−𝑚𝑣2
𝑞𝐵𝑜

1 − cos
𝑞𝐵𝑜
𝑚

𝑡

From the figure,

𝑦-coordinate at time 𝑡,

𝑧-coordinate at time 𝑡,



LO R E N T Z  F O R C E

𝑖
𝒒

𝑣

𝑣

The particle in the adjacent setup deviates due to a force.
1. For us the particle seems to be moving with velocity 𝑣 in

upward direction, so we will say particle is experiencing magnetic
force. 𝐹𝑚 = 𝑞( Ԧ𝑣 × 𝐵)

2. But, for an observer in lift moving with same velocity in
upward direction, velocity of particle is zero (in upward direction).
Still the observer will see particle moving away from him. Why?
इस आदमी के लिए Deviation का कारण Magnetic force नही ीं है

Electrostatic force है । 𝐹𝐸 = 𝑞𝐸



LO R E N T Z  F O R C E

𝑖

Lorentz Force is a force on electrically charged particles due to
electromagnetic field. It is simply the sum of electric and magnetic force.

Ԧ𝐹𝑛𝑒𝑡 = 𝑞𝐸 + 𝑞( Ԧ𝑣 × 𝐵)

𝒒

𝑣

𝑣

Electrostatic Force and Magnetic
Force depends on reference frame.

Lorentz Force does not depend on
reference frame.



Ԧ𝐹𝑛𝑒𝑡 = 𝑞𝐸𝑜 𝑞 moves in a straight line along the direction of electric field with 
an acceleration.

𝑞 a t  re s t

𝐸𝑜
𝐵𝑜𝑦

𝑥

Mass (𝑚)

𝐹𝐸 𝑣𝑥

𝑞𝑞

When the particle is at rest, magnetic force is 
zero. As only electrostatic force acts on it, the 
particle moves in straight line motion (along 𝑥).

Acceleration of particle, 𝑎 =
𝐹

𝑚
=

𝑞𝐸𝑜

𝑚

Velocity of particle, 𝑣 = 𝑎𝑡 =
𝑞𝐸𝑜

𝑚
𝑡

Distance travelled in time 𝑡,                                                                 

𝑣 = 0 +
1

2
𝑎𝑡2 =

1

2

𝑞𝐸𝑜

𝑚
𝑡2

As it starts moving in 𝑥 direction, 𝐵 will be parallel 
to 𝑣, magnetic force is zero. 



𝑞 m o v i n g  i n  p a ra l l e l  o r  a n t i - p a ra l l e l  t o  b o t h  𝐸 & 𝐵

Ԧ𝐹𝑛𝑒𝑡 = 𝑞𝐸𝑜

𝐸𝑜
𝐵𝑜

𝑦

𝑥

𝑢

𝑢
𝑞𝑞

𝑞

As velocity is parallel to magnetic field, magnetic 
force is zero. As only electrostatic force acts on 
it, the particle moves in straight line motion

Acceleration of particle, 𝑎 =
𝐹

𝑚
=

𝑞𝐸𝑜

𝑚

Velocity of particle, 𝑣 = 𝑢 + 𝑎𝑡 = 𝑢 +
𝑞𝐸𝑜

𝑚
𝑡

Distance travelled in time 𝑡, when it is projected 

parallel to electric field initially, 𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2

When particle is project in anti-parallel direction, velocity becomes zero due to negative 
acceleration and particle changes the direction. Let the particle changes direction at time 𝑡′.

As the velocity becomes zero 
when direction is changed,



𝑞 m o v i n g  i n  p e r p e n d i c u l a r  t o  b o t h  𝐸 & 𝐵

𝐸𝑜
𝐵𝑜

𝑦

𝑥

𝑣𝑜

𝐹𝐸 𝑣𝑥𝑞

The electrostatic force acting on the charge: Ԧ𝐹𝐸 = 𝑞𝐸0 Ƹ𝑖

At 𝑡 = 0 , since the velocity of the charged particle and

magnetic field are perpendicular to each other, Ԧ𝑣 × 𝐵 =

Ԧ𝑣 𝐵 sin 90° −෠𝑘 = −𝑞𝑣0𝐵෠𝑘.

The velocity of the charged particle will remain 𝑣0 for the
whole process because the velocity generated due to the
electrostatic force always acts parallel to magnetic field in this
case.

Ԧ𝐹𝑛𝑒𝑡 = 𝑞𝐸𝑜 Ƹ𝑖 − 𝑞𝑣𝑜𝐵𝑜 ෠𝑘Therefore, the net force on the charged particle is,

Since 𝑣0 is constant, the particle will execute UCM under the action of magnetic field alone with
constant radius and the radius is given by,

𝑅 =
𝑚𝑣𝑜
𝑞𝐵𝑜



𝑞 m o v i n g  i n  p e r p e n d i c u l a r  t o  b o t h  𝐸 & 𝐵
𝑦

𝑥

𝑧 𝐹𝐸

𝑣𝑜

𝑣𝑥

𝐸𝑜

𝐵𝑜

𝐹𝑀

𝑞

The acceleration of the charged particle along the 𝑥-axis is 
produced by the electrostatic force on it. Therefore,

Ƹ𝑖

Since the initial velocity of the charged particle along the 𝑥-axis
is zero i.e., 𝑢𝑥 = 0, the velocity of the particle at any instant of
time 𝑡 is given by,

Hence, the displacement of the particle along the 𝑥-axis in time 𝑡 is given by,

Thus, the motion of the particle due to electric field alone will be a straight line motion with
acceleration 𝑎.



𝑞 m o v i n g  i n  p e r p e n d i c u l a r  t o  b o t h  𝐸 & 𝐵

If we combine the two types of motion due to magnetic field
and electric field individually, then the resultant motion will
be a helix with increasing pitch, as shown in the figure. The
pitch increases due to the acceleration of the particle.

At any instant of time, the 𝑦 and 𝑧 coordinate of the helical
path followed by the particle will be:

Where 𝑅 =
𝑚𝑣0

𝑞𝐵0
and 𝜔 =

𝑞𝐵0

𝑚

o

𝑃3

The 𝑃1 i.e., the 1st pitch of helical path is nothing but the distance
covered by the particle in the direction of electric field in time 0 to 𝑇.
Therefore,



𝑞 m o v i n g  i n  p e r p e n d i c u l a r  t o  b o t h  𝐸 & 𝐵

𝑃3

The 𝑃2 is the 2nd pitch of helical path and it denotes
the distance covered by the particle in the direction
of electric field in time 𝑇 to 2𝑇. Therefore,

The 𝑃2 is the 3rd pitch of helical path and it denotes
the distance covered by the particle in the direction
of electric field in time 2𝑇 to 3𝑇. Therefore,



𝑞 m o v i n g  a t  a n  a n g l e  𝜃 w i t h  b o t h  𝐸 & 𝐵

𝐸𝑜
𝐵𝑜

𝜃

𝑣⊥ = 𝑣𝑜 sin 𝜃

𝑣|| = 𝑣𝑜 cos 𝜃

𝑣𝑜

𝑦

𝑥

𝑞

Let a charge particle is projected in the presence of both electric and
magnetic field at an angle 𝜃 with 𝑥-axis, as shown in the figure. For
simplicity, lets assume for an instant that the electric field is absent.

The perpendicular component of the velocity i.e., 𝑣⊥ = 𝑣𝑜 sin 𝜃 is
responsible for UCM because this component of the velocity is
perpendicular to the magnetic field 𝐵𝑜.

The parallel component of the velocity i.e., 𝑣|| = 𝑣𝑜 cos 𝜃 is responsible

for linear translational motion because this component of the velocity is
parallel to the magnetic field.

In absence of electric field, if we combine these two types of motion, then the resultant motion will be a helix 
with uniform pitch.

The magnetic force on the charge particle, 𝐹𝑚 = 𝑞𝑣0𝐵0 sin 𝜃



𝑞 m o v i n g  a t  a n  a n g l e  𝜃 w i t h  b o t h  𝐸 & 𝐵

𝐸𝑜
𝐵𝑜

𝜃

𝑣𝑜

𝑦

𝑥

𝑞

Now, let us apply the electric field parallel to the magnetic field. 

The electrostatic force on the particle is, Ԧ𝐹𝐸 = 𝑞𝐸 and this force

reinforces 𝑣|| and produces acceleration Ԧ𝑎 =
𝑞𝐸0

𝑚
Ƹ𝑖 in the particle.

Consequently, the pitch of the helix increases.

𝑣⊥ = 𝑣𝑜 sin 𝜃

𝑣|| = 𝑣𝑜 cos 𝜃Since 𝑣⊥ = 𝑣𝑜 sin 𝜃 is perpendicular to both Ԧ𝐹𝐸 and Ԧ𝐹𝑀, it remains
same for the whole process but 𝑣|| changes due to the acceleration

produced by the electric field.

If we combine the two types of motion due to magnetic field and
electric field individually, then the resultant motion will be a helix with
increasing pitch.

Since the initial velocity of the particle along the 𝑥-axis is 𝑣|| = 𝑣𝑜 cos 𝜃, thus, the velocity of the particle along 𝑥-

axis at any instant will be: 



𝑅 =
𝑚𝑉𝑜 sin 𝜃

𝑞𝐵

𝑞 m o v i n g  a t  a n  a n g l e  𝜃 w i t h  b o t h  𝐸 & 𝐵

𝑇 =
2𝜋𝑚

𝑞𝐵

𝜃

𝑦

𝑥

𝑧
𝐹𝐸

𝑣𝑜
𝐹𝑀

𝐸𝑜

𝐵𝑜

𝑞

𝑣𝑜 sin 𝜃

𝑣𝑜 cos 𝜃

Hence, the displacement of the particle along the 𝑥-axis in time 𝑡 is
given by,

Since the perpendicular component of the velocity i.e., 𝑣⊥ = 𝑣𝑜 sin 𝜃
is responsible for UCM, the radius of the circle will be:

Since the time period doesn’t not depend upon the velocity, it is 
given by,



𝑞 m o v i n g  a t  a n  a n g l e  𝜃 w i t h  b o t h  𝐸 & 𝐵

If the charge particle is projected in the presence of both electric and
magnetic field at an angle 𝜃 with – 𝑣𝑒 𝑥-axis, as shown in the figure, then
𝑣|| = 𝑣𝑜 cos 𝜃 and the acceleration produced by the electric field will be

opposite of each other. Thus, the pitch of the helical path will decrease
at first along the – 𝑣𝑒 𝑥-axis and then due to the dominance of the
acceleration produced by electric force, the pitch starts increasing along
+ 𝑣𝑒 𝑥-axis.

𝐸𝑜
𝐵𝑜

𝜃

𝑣𝑜

𝑦

𝑥

𝑞

𝑣⊥ = 𝑣𝑜 sin 𝜃

𝑣|| = 𝑣𝑜 cos 𝜃



Q u e st i o n S o l u t i o n

A charged particle of mass 𝑚 starts moving with an initial velocity 𝑣o at an angle 𝜃 with
both electric and magnetic field as shown. Find speed as a function of 𝑥.

𝐸𝑜
𝐵𝑜

𝜃

𝑣o

𝑦

𝑥

𝑞



Q u e st i o n S o l u t i o n

𝑊𝐷𝑀 +𝑊𝐷𝐸 =
1

2
𝑚𝑣𝑓

2 −
1

2
𝑚𝑣o

2

Applying work energy theorem, we get,

𝐸𝑜
𝐵𝑜

𝜃

𝑣𝑜

𝑦

𝑥

𝑞

𝑣⊥ = 𝑣𝑜 sin 𝜃

𝑣|| = 𝑣𝑜 cos 𝜃

We know that the path of the charge
particle will be a helix with increasing
pitch, aa shown in the figure.

Along 𝑥 -axis the velocity will change
due to the action of electrostatic force
on the particle.

Now, work done by the magnetic field is always zero i.e., 𝑊𝐷𝑀 = 0

And, if the particle gets displaced by 𝑥 in the direction of electric field, then the work done by the electric field is 
always zero i.e., 𝑊𝐷𝐸 = 𝑞𝐸0𝑥



Q u e st i o n S o l u t i o n

Substituting the values of work done by magnetic field and electric field in 
the work energy theorem, we get,

𝑣𝑓 =
2 𝑞𝐸o𝑥 +

1
2
𝑚𝑣o

2

𝑚



The net force acting on the charge particle:

Direction Force Acceleration

Along 𝑥-axis 𝐹𝑥 = 𝑞𝐸0 − 𝑞𝑣𝑦𝐵0 𝑎𝑥 =
𝑞𝐸0 − 𝑞𝑣𝑦𝐵0

𝑚

Along 𝑦-axis 𝐹𝑦 = 𝑞𝑣𝑥𝐵0 𝑎𝑦 =
𝑞𝑣𝑥𝐵0
𝑚

Therefore, 𝑥 − component of acceleration depends on 𝑦 − component of velocity and vice-versa.



We have: 𝑎𝑥 =
𝑞𝐸0−𝑞𝑣𝑦𝐵0

𝑚
and 𝑎𝑦 =

𝑞𝑣𝑥𝐵0

𝑚
. Thus, 

𝑑𝑣𝑥
𝑑𝑡

=
𝑞𝐸0 − 𝑞𝑣𝑦𝐵0

𝑚

𝑑𝑣𝑦

𝑑𝑡
=
𝑞𝑣𝑥𝐵0
𝑚

Differentiating 
𝑑𝑣𝑥

𝑑𝑡
w.r.t 𝑡, we get,

𝑑2𝑣𝑥
𝑑𝑡2

+
𝑞𝐵0
𝑚

2

𝑣𝑥 = 0

[Substituting the value of 
𝑑𝑣𝑦

𝑑𝑡
]

It represents an equation of SHM with angular velocity 𝜔 =
𝑞𝐵0

𝑚



𝑑2𝑣𝑥
𝑑𝑡2

+
𝑞𝐵0
𝑚

2

𝑣𝑥 = 0

Steps to find 𝑥 and 𝑦 coordinate

Find 𝑣𝑥 Find 𝑥

Substitute 𝑣𝑥 in 𝑎𝑦

Find 𝑎𝑦

Find 𝑣𝑦 Find 𝑦



𝑥 =
𝑚𝐸o

𝑞𝐵o
2 1 − cos𝜔𝑡

𝑦 =
𝑞𝐸o𝑡

𝑚𝜔
−

𝑞𝐸o
𝑚𝜔2

sin𝜔𝑡

𝑦

𝑥

2𝑚𝐸o

𝑞𝐵o
2

cycloid

𝑞

Cycloid



Q u e st i o n A n s w e r

In a non-zero uniform Electric field 𝐸 and Magnetic field 𝐵, a particle (𝑞,𝑚) is moving with
constant velocity. Which of the following is/are true ?

a

b

c

d

𝐵 must be ⊥ 𝐸

Ԧ𝑣 must be ⊥ 𝐸

Ԧ𝑣 must be ⊥ 𝐵

All the three must be ⊥ to each other



Q u e st i o n A n s w e r

Ԧ𝐹𝑛𝑒𝑡 = 𝑞𝐸 + 𝑞( Ԧ𝑣 × 𝐵)

Since the particle is moving with constant velocity, we can say that the net force on the particle must be 
zero.

The net force on the particle is given by,

Thus, option a and option b are correct answers.



Ve l o c i t y  S e l e c t o r

𝐸

𝐹𝐸

𝐹𝑀
𝑣

+ + + + + + + + + + + + + + + + +

− − − − − − − − − − − − − − − − −

𝑞𝑞𝑞𝑞

If 𝐹𝑛𝑒𝑡 = 0, both the forces will be equal and opposite to each
other and hence, the charged particle will move undeflected
through the fields. Therefore,

Ԧ𝑣 𝑟𝑒𝑞 =
𝐸

𝐵

This condition is used to select charged particles of a
particular velocity out of a beam containing charges moving
with different speeds (irrespective of their charge and mass).



Ve l o c i t y  S e l e c t o r

Ԧ𝑣 = Ԧ𝑣 𝑟𝑒𝑞 =
𝐸

𝐵

Ԧ𝑣 > Ԧ𝑣 𝑟𝑒𝑞

Ԧ𝑣 < Ԧ𝑣 𝑟𝑒𝑞𝐸
𝐹𝐸

𝐹𝑀
𝑣

+ + + + + + + + + + + + + +

− − − − − − − − − − − − − − −

𝑞𝑞𝑞𝑞

path 𝐼

path 𝐼𝐼

path 𝐼𝐼𝐼

If Ԧ𝐹𝑀 > Ԧ𝐹𝐸 , the net force on the particle is in
upward direction. Therefore, the condition of
velocity so that the particle follow path 𝐼 can be
obtained as follows:

Ԧ𝐹𝑀 > Ԧ𝐹𝐸 ⇒ 𝑞 Ԧ𝑣 𝐵 > 𝑞 𝐸 ⇒ Ԧ𝑣 >
𝐸

𝐵

If Ԧ𝐹𝐸 = Ԧ𝐹𝑀, the net force on the particle is zero.
Therefore, the condition of velocity so that the
particle follow path 𝐼𝐼 can be obtained as :

Ԧ𝐹𝐸 = Ԧ𝐹𝑀 ⇒ 𝑞 𝐸 = 𝑞 Ԧ𝑣 𝐵 ⇒ Ԧ𝑣 =
𝐸

𝐵

If Ԧ𝐹𝐸 > Ԧ𝐹𝑀, the net force on the particle is in downward direction. Therefore, the condition of velocity so that

the particle follow path 𝐼𝐼𝐼 can be obtained as : Ԧ𝐹𝐸 > Ԧ𝐹𝑀 ⇒ 𝑞 𝐸 > 𝑞 Ԧ𝑣 𝐵 ⇒ Ԧ𝑣 <
𝐸

𝐵



Ԧ𝑣

𝑑𝐵 =
𝜇0
4𝜋

𝑖(𝑑𝑙 × Ԧ𝑟)

Ԧ𝑟 3

C u r re n t  C a r r y i n g  C o n d u c t o r  v s  M o v i n g  C h a rge

𝑖
𝑃

Ԧ𝑟𝑑𝑙
𝜃

𝑞

𝑑𝐵 =
𝜇0
4𝜋

𝑞( Ԧ𝑣 × Ԧ𝑟)

Ԧ𝑟 3

𝑃

Ԧ𝑣

Ԧ𝑣𝑑𝑡 = 𝑑𝑙 Ԧ𝑟
𝜃

𝑑𝐵 =
𝜇0
4𝜋

𝑖(𝑑𝑙 × Ԧ𝑟)

Ԧ𝑟 3

𝑑Ԧ𝑙 = Ԧ𝑣𝑑𝑡



Calculate the magnetic field at point 𝑃 due to a charge 𝑞 moving with velocity 𝑣.

𝐵 =
3𝜇0
8𝜋

𝑞𝑣

𝑟2
⊗

Q u e st i o nQ u e st i o n

S o l u t i o n

𝑞

𝑃

Ԧ𝑣

𝑟
60°

𝐵 =
𝜇0
4𝜋

𝑞( Ԧ𝑣 × Ԧ𝑟)

Ԧ𝑟 3

Applying ‘Right hand thumb rule’ according to the direction of the velocity of the
charge, we have found that the magnetic field at 𝑃 is directed into the plane of the
paper.



Fo rc e  o n  O n e  M o v i n g  C h a rge  d u e  t o  A n o t h e r  M o v i n g  C h a rge

Ԧ𝐹21(𝑚) = 𝑞2 Ԧ𝑣2 ×
𝜇0
4𝜋

𝑞1( Ԧ𝑣1 × Ԧ𝑟)

Ԧ𝑟 3

𝑞1

Ԧ𝑣1

Ԧ𝑟
𝜃

Ԧ𝑣2

𝑞2

The magnetic field produced by the charge 𝑞1 moving with velocity Ԧ𝑣1 at the
location of 𝑞2 is given by,

Therefore, the force on the charge 𝑞2 due to 𝐵1 is given by,

Ԧ𝐹21 = 𝑞2 Ԧ𝑣2 × 𝐵1



Fo rc e  o n  O n e  M o v i n g  C h a rge  d u e  t o  A n o t h e r  M o v i n g  C h a rge

Electric Force vs Magnetic Force:

Ԧ𝐹21 𝐸 =

Ԧ𝐹21 𝑚 =

Electrostatic force on 2 due to 1 =

The magnetic field due to charge 1 at the location of 2 is, 

Magnetic force on 2 due to 1=

𝑞

Ԧ𝑣1

Ԧ𝑟

90°
Ԧ𝑣2

𝑞
1 2

Ԧ𝐹21 𝐸

Ԧ𝐹21 𝑚

=
𝑐

𝑣

2

Ԧ𝐹21 𝐸 ≫ Ԧ𝐹21 𝑚



Fo rc e  o n  O n e  M o v i n g  C h a rge  d u e  t o  A n o t h e r  M o v i n g  C h a rge

Hence, magnetic force is not mandatorily an action-reaction force.

𝑞

Ԧ𝑣1

Ԧ𝑟

90° Ԧ𝑣2

𝑞
1

2

The magnetic field due to charge 1 at the location of charge 2 is, 

Magnetic force on charge 2 due to charge 1 is,

The magnetic field due to charge 2 at the location of charge 1 is,  

𝐵 =
𝜇0
4𝜋

𝑞( Ԧ𝑣 × Ԧ𝑟)

Ԧ𝑟 3
Because and the direction of both Ԧ𝑣 and Ԧ𝑟 are same for charge 2.

Magnetic force on charge 1 due to charge 2 is,



C yc l o t ro n

Energy of charged particle on right plate is 1 𝑒𝑉.

𝑉 0

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑞𝑉

Energy of charged particle on left plate is 0.

World’s largest Cyclotron

University of BritishColumbia inVancouver

Very high energy particles are required for
experiments. As very high voltage have practical
limitations, a special setup known as cyclotron is
used for generating high speed charge particles.



C yc l o t ro n

AC supply:

𝑖 = 𝑖0 sin(𝜔𝑡) 𝑉 = 𝑉0 sin(𝜔𝑡)

Frequency of AC supply in our house is 50 𝐻𝑧.

Representation of AC current

Intensity of AC current becomes zero twice in a cycle.

It is a current supply in form of sinusoidal wave wherein polarity changes
with a constant frequency.



+ −

Exit port 

Dees

𝐷1 𝐷2

−

Deflection 
plate 

C yc l o t ro n

Cyclotron is a machine that uses both electric field and magnetic field in combination to
accelerate charged particles or ions to high energy.

The electric field accelerates the particles
whereas magnetic field rotates it through Dees
(𝐷1 and 𝐷2). The particles travel from the edge of
one Dee to other and gets accelerated due to the
electric field. As soon as the charge particles
enter into the other Dee, it gets rotated due to
the magnetic field and come to the edge of the
same Dee again. Instantly, the polarity of electric
field is reversed (for this reason AC supply is
used) and particle is accelerated again. This cycle
is repeated till particle gains required energy.
With each cycle, radius of rotation increases and
with the help of deflection plate, particles are
taken out for experiments.

Energy gained by particle,



C yc l o t ro n

𝑅1

𝑅3
𝑅2

𝑅1

𝑅2 =

𝑅3 =

Radius of Trajectory:

The gap (𝑅𝑛+1 − 𝑅𝑛) between every successive trajectory decreases in the process.

Radius 𝑅 of every successive trajectory increases in the process.

As speed of particle increases to very high value, its mass decreases. Synchrotron is
used to cover this limitation.



C yc l o t ro n

𝑇 =

Time period of revolution of charged particle
in uniform magnetic field:

Time period of AC current:

𝑇 =

Time period of revolution of charged particle within cyclotron and time period of AC
current are kept same to design cyclotron.



Fo rc e  o n  C u r re n t  c a r r y i n g  W i re  d u e  t o  m a g n e t i c  F i e l d

𝐹𝑛𝑒𝑡 = 𝑖𝑑𝑙𝐵

𝑙

𝑖

𝑑𝑙

𝑣𝑑
𝐴

Angle between drift velocity and magnetic field is 90° 𝐵
When the velocity of charge is perpendicular to
magnetic field, force acting on it is, 𝐹 = 𝑒𝑣𝑑𝐵. For a
wire kept in magnetic field, force acts on each
electron and thus, the wire experiences a force.

𝑣𝑑 = Drift velocity of electron.

Now, consider small length of wire 𝑑𝑙. Number of free
electrons in this section is, .

Force acting on small length of wire 𝑑𝑙,

∵ (𝑖 = 𝑛𝑒𝐴𝑣𝑑)

𝑛 = Number of free electrons per 
unit volume

𝐴 = Cross sectional area of wire

General case: For any angle 𝜃 between 𝑑Ԧ𝑙 and 𝐵

The direction of 𝑑𝑙 should be taken along the direction of current



Fo rc e  o n  C u r re n t  c a r r y i n g  W i re  d u e  t o  m a g n e t i c  F i e l d

Ԧ𝐹𝑛𝑒𝑡 = 𝑖(𝑑𝑙 × 𝐵)

Random shaped wire in uniform magnetic field

Consider a wire with three segments 𝑙1, 𝑙2 and 𝑙3 perpendicular to the
magnetic field as shown in the figure.

Force on the wire,

As the magnetic field is constant,

Displacement vector from 
initial point to final point

For random shaped wire and variable magnetic field, net force is calculated by integration of force on a
small element.



Calculate the magnetic force ( Ԧ𝐹𝑛𝑒𝑡) on current carrying wire of length 𝑙 placed in a

magnetic field 𝐵 at an angle 37° as shown.

𝑙

𝑖

𝐵
37°

Ԧ𝐹𝑛𝑒𝑡 = 𝑖𝑙𝐵 sin 37° ⊗

Q u e st i o nQ u e st i o n

S o l u t i o n

As the magnetic field is constant and wire is straight,

𝐹𝑛𝑒𝑡 = 𝑖𝑙𝐵 sin 𝜃 = 𝑖𝑙𝐵 sin 37°

The direction of force is inwards of the screen.



Q u e st i o n

Calculate the magnetic force ( Ԧ𝐹𝑛𝑒𝑡) on current carrying wires of length 𝑙1, 𝑙2, 𝑙3 and 𝑙4
joined together and placed in a magnetic field 𝐵 as shown.

S o l u t i o n

Ԧ𝐹𝑛𝑒𝑡 = 𝑖(Ԧ𝑙1 + Ԧ𝑙2 + Ԧ𝑙3 +⋯) × 𝐵

Ԧ𝐹𝑛𝑒𝑡 = 𝑖(Ԧ𝑙 × 𝐵)

It is valid when 𝐵 and 𝑖 are constant.

As the magnetic field is constant, force is
calculated from displacement vector.

Ԧ𝑙



Calculate the magnetic force ( Ԧ𝐹𝑛𝑒𝑡) on a current carrying wire placed in a magnetic field 𝐵

as shown. (Consider 𝐵 is constant)

Ԧ𝐹𝑛𝑒𝑡 = 5𝑖𝐵

S o l u t i o nS o l u t i o n

Q u e st i o n

Net force,

Ԧ𝐹𝑛𝑒𝑡 = 𝑖(Ԧ𝑙 × 𝐵)

Here,

Ԧ𝑙 = 5 − 2 Ԧ𝑖 + 7 − 3 Ԧ𝑗 = 3Ԧ𝑖 + 4Ԧ𝑗

Ԧ𝑙 = 32 + 42 = 5

[Since the angle between Ԧ𝑙 and 𝐵 is 90°]



Calculate the magnetic force ( Ԧ𝐹𝑛𝑒𝑡) on a current carrying semicircular wire of radius 𝑅

placed in a magnetic field 𝐵 as shown. (Consider 𝐵 is constant)

Ԧ𝐹𝑛𝑒𝑡 = 2𝑖𝑅𝐵 ↑

𝐵
𝑅

𝑖

S o l u t i o n

Net force,

Ԧ𝐹𝑛𝑒𝑡 = 𝑖(Ԧ𝑙 × 𝐵)

Here,

Ԧ𝑙 = 2𝑅

Ԧ𝐹𝑛𝑒𝑡 = 𝑖2𝑅𝐵

Q u e st i o n



Calculate the magnetic force ( Ԧ𝐹𝑛𝑒𝑡) on a current carrying wire of length 𝑙 placed at a
distance 𝑎 from another infinite current carrying wire as shown.

Ԧ𝐹𝑛𝑒𝑡 = 𝑖2𝑙
𝜇0𝑖1
2𝜋𝑎

←

S o l u t i o nS o l u t i o n

𝑖1 𝑎
𝑙

𝑖2

Magnetic field at finite wire due to infinite wire,

As the field is constant, force on finite wire is,

Q u e st i o n

𝑖2



Fo rc e  b e t w e e n  Tw o  I n f i n i t e  C u r re n t  C a r r y i n g  W i re s

𝐹𝑜𝑟𝑐𝑒

𝐿𝑒𝑛𝑔𝑡ℎ
=
𝜇0𝑖1𝑖2
2𝜋𝑑

Due to this force, two parallel current carrying wires having current 𝑖 in the same
direction attract each other. Example: Electric wires between the poles. An insulator is
placed between two high tension power lines to counter the attractive force between
them.

𝑖1
𝑑

𝑖2

Magnetic field at wire 2 due
to wire 1,

Force per unit length on wire
2 due to this magnetic field,

Magnetic field at wire 1 due to
wire 2,

Force per unit length on wire 2
due to this magnetic field,

The magnitude of force on both the wires is same.

1 2



Fo rc e  b e t w e e n  Tw o  I n f i n i t e  C u r re n t  C a r r y i n g  W i re s

𝐹𝑜𝑟𝑐𝑒

𝐿𝑒𝑛𝑔𝑡ℎ
=
𝜇0𝑖1𝑖2
2𝜋𝑑

Two parallel current carrying wires having
current 𝑖 in the opposite direction repel each
other.

𝑖1
𝑑

𝑖2

The magnitude of force is same as previous
case but the direction is opposite.



Q u e st i o n S o l u t i o n

Calculate the magnetic force ( Ԧ𝐹𝑛𝑒𝑡) on a current carrying wire of length 𝑙 placed at a
distance 𝑎 from another infinite current carrying wire as shown.

𝑖1 𝑎
𝑙

𝑖2



Q u e st i o n S o l u t i o n

Ԧ𝐹𝑛𝑒𝑡 =
𝜇0𝑖1𝑖2
2𝜋

ln
(𝑙 + 𝑎)

𝑎
↑

𝑖1 𝑎
𝑙

𝑖2

𝑥Thus, the magnetic field along the length of the finite
wire is variable.

Consider a small element of length 𝑑𝑥 on the finite
wire at distance 𝑥 from the infinite wire.

Magnetic field at this location,

Force on the element of the finite wire,

The direction of force remains same as element is
changed. Hence, Integrating for net force on the
wire,



Q u e st i o n

Calculate the magnetic force ( Ԧ𝐹𝑛𝑒𝑡) on current carrying closed square loop placed in a

magnetic field 𝐵 as shown. (Consider 𝐵 is constant)

𝐵

𝑖

𝐵

𝐴 𝐷

𝐶

𝑖

𝑖

𝑖

S o l u t i o n

As the wire is closed, the displacement vector is a
null vector. Thus, force on the wire is zero.

Though the net force on loop is zero, it need not to
be zero on individual segments.



Fo rc e  o n  C l o s e d  C u r re n t  C a r r y i n g  L o o p

Net magnetic force ( Ԧ𝐹𝑛𝑒𝑡) is zero in a closed current carrying loop placed in uniform
magnetic field, but not zero in any segment of the loop.

𝐵

𝑖

𝐵

𝐴 𝐷

𝐶

𝑖

𝑖

𝑖

𝑖

Ԧ𝐹𝑛𝑒𝑡 = 0Ԧ𝐹𝑛𝑒𝑡 = 0



Ques t i on So lu t i on

Calculate the magnetic force ( Ԧ𝐹𝑛𝑒𝑡) on a current carrying closed square loop of side 𝑙
placed at a distance 𝑎 from another infinite current carrying wire as shown.

𝑖2

𝑖1 𝑎

𝑙



Ques t i on So lu t i on

Ԧ𝐹𝑛𝑒𝑡 =
𝜇0𝑖1𝑖2𝑙

2𝜋

1

𝑎
−

1

𝑎 + 𝑙

𝑖2

𝑖1 𝑎

𝑙

Here, the loop is closed but magnetic field is not constant.

𝐷

𝐶𝐵

𝐴

Magnetic field at wire 𝐴𝐵:

Magnetic field at wire 𝐶𝐷:

As the field on wires AD and 𝐵𝐶 is same, force acting on
them is equal and opposite. Hence this force cancel out.
As the magnetic field at wire 𝐴𝐵 is more than wire 𝐶𝐷,
and the force acting on these wires is in opposite
direction, net force is acting leftwards.

Force on the wire 𝐴𝐵:

Force on the wire 𝐶𝐷:

Net force on the loop:



Ques t i on So lu t i on

Find the direction of net magnetic force ( Ԧ𝐹𝑛𝑒𝑡) on a current carrying wire placed at a
distance 𝑎 from another infinite current carrying wire as shown.

a

b

c

d

↑

→

↖

↗

𝑖
𝑎

𝑖1
𝑖2



Ques t i on So lu t i on

𝑖
𝑎

𝑖1
𝑖2

The direction of magnetic field is same for both
segments of wire, but its magnitude is more for
wire segment 𝐴𝐵. Thus, .

𝐵

𝐴 𝐶

From figure, 𝑦-component of force adds whereas
𝑥 -components is facing opposite for the two
segments.

Thus, if upper is north, net force will be directed
towards North-West direction. Thus, option c
is correct.



Ques t i on So lu t i on

Calculate the magnetic force ( Ԧ𝐹𝑛𝑒𝑡) on a current carrying wire of length 𝑙 placed at a
distance 𝑎 from another infinite current carrying wire as shown.

𝑖1 𝑎

𝑖2

𝜃

𝑙



Ques t i on So lu t i on

𝑖1 𝑎

𝑖2

𝜃

Ԧ𝐹𝑛𝑒𝑡 =
𝜇0𝑖1𝑖2
2𝜋

න
0

𝑙 𝑑𝑥

(𝑎 + 𝑥 cos 𝜃 )

Ԧ𝑙 can be broken into components when magnetic
field is uniform in the region.

Magnetic field at the element: 𝐵 =
𝜇0𝑖1

2𝜋(𝑎+𝑥 cos 𝜃)

Force on the element 𝑑𝑥:

Integrating for the wire,

Here, magnetic field is non uniform. Take a small
element of length 𝑑𝑥 at length 𝑥 from lower end of
finite wire as shown in figure.



Ԧ𝑙 can be broken into components when magnetic field is uniform in the region. For
varying magnetic field, we can write the components of force on an element and then
integrate it as shown in the example below:



Ques t i on So lu t i on

𝑖

𝑉

Two frictionless rods 𝐴 and 𝐵 with zero resistance are separated by a distance 𝑙 and placed
in a magnetic field. These rods are connected to an external circuit as shown. If another rod
𝐶 of mass 𝑚, length 𝑙 and resistance 𝑅 is placed on these rods, then find the force on the
rod 𝐶.

𝑙

𝑑

𝐵 ×𝑟 𝐴

𝐵

𝐶



𝐹

Ques t i on So lu t i on

𝐹 =
𝑉𝑙𝐵

𝑅 + 𝑟

𝑖

𝑉 𝑙

𝑑

𝐵 ×𝑟

𝐹

𝐴

𝐵

𝐶

𝐵
×

The equivalent circuit is shown below.

Current flowing through the circuit,

As the rod is kept in uniform magnetic field, force acting on it is,

𝐹 = 𝑖𝑙𝐵 =
𝑉𝑙𝐵

𝑅 + 𝑟

Acceleration of the rod:

Velocity at distance 𝑥:



Ques t i on So lu t i on

𝑚

Ԧ𝐹
𝑙

𝑀,𝑅

A rod of mass𝑀 and resistance 𝑅 is connected to a block of mass𝑚 as shown. What should
be the strength of magnetic field so that the given arrangement is able to pick up the mass
𝑚 with an acceleration 𝑎.

𝑟

𝑖

𝑉



𝐵 =
[𝑚 𝑎 + 𝑔 +𝑀𝑎](𝑅 + 𝑟)

𝑉𝑙

Ques t i on So lu t i on

𝑚

𝑙
Ԧ𝐹

𝑀, 𝑅 𝑎

𝑟

𝑖

𝑉

The magnetic force acts on the rod and weight force on the mass. Let the net acceleration of
system be 𝑎 as shown.

Writing force equations in vertical
and horizontal direction,

Adding equation (1) and (2),

Where, current in the circuit is, 𝑖 =
𝑉

𝑅 + 𝑟

Putting in equation (3), magnetic field is,

…..(3)



Ques t i on So lu t i on

Ԧ𝐹
𝑙

𝑑

𝐵 ×

A frictionless rod is placed over two rails of resistance 𝜆
Ω

𝑚
. This arrangement is connected

to an external circuit as shown. Find the value of velocity in terms of 𝑥.

𝑥

𝑚,𝑅

𝑖

𝑟

𝑉



Ques t i on So lu t i on

𝑣 =
𝐵𝑙𝑉

𝑚𝜆
𝑙𝑛

𝑅 + 𝑟 + 2𝜆𝑥

𝑅 + 𝑟

𝑖

Ԧ𝐹
𝑙

𝑑

𝐵 ×𝑟 𝑥

𝑚,𝑅
𝑉

At a time 𝑡, let the rod is moved through distance 𝑥. The equivalent circuit is shown in figure.

Force on the rod:

Acceleration:

Rearranging and integrating for velocity,



Magnet i c  Moment

𝑙𝑔

+𝑚 −𝑚

𝑚- Pole strength

𝑀 = 𝑚𝑙𝑔

Direction of magnetic moment (𝑀) is from
South to North

Magnetic moment indicates the power of
the magnet

𝑙𝑚

𝑙𝑔- Geometric length

𝑙𝑚- Magnetic length

We define magnetic moment for current
carrying loops because current carrying
loops acts as magnets,



Magnet i c  Moment

𝑖

Current carrying loop is equivalent to a magnet



Magnet i c  Moment Fo r  a  Cu r ren t  Ca r r y i ng  Loop

To find the direction of area vector Ԧ𝐴, curl fingers of  
right-hand in the direction of current. The thumb gives 

the direction of Ԧ𝐴.

𝑀 = 𝑖 Ԧ𝐴

𝐴

𝑖

Examples:



Ques t i on So lu t i on

A square loop of side 5 𝑚 is carrying current 𝑖 as shown. Find the magnetic moment of the
loop.

37°

𝑖

𝑦

𝑧

𝑥
𝐴

𝐵

𝐶

𝐷



Ques t i on So lu t i on

𝑀 = 𝑖 Ԧ𝐴

𝑀 = 𝑖(20෠𝑘 − 15 Ƹ𝑖)

(0,5,0)

(4,0,3)

37°

𝑖

𝑦

𝑧

𝑥
𝐴

𝐵

𝐶

𝐷

From the figure, area vector is,

We have,

Given,



𝑖

𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

90°

90°

Ques t i on So lu t i on

Find the magnetic moment of the current carrying loop as shown.

𝑏

𝑎

𝑎 𝑏

𝑦

𝑧 𝑥



Ques t i on So lu t i on

𝑀𝑛𝑒𝑡 = 𝑖𝑎𝑏(− Ƹ𝑗 − ෠𝑘)

We can rearrange loop in two planes by adding current elements in opposite direction between
𝐵𝐸 as shown:

Net moment is the vector sum of both components.



𝑦

𝑧

𝑥

Ques t i on So lu t i on

A cube of side 𝑎 has a current carrying loop as shown. Find the magnetic moment of the
loop.

𝑖

𝑎



Ques t i on So lu t i on

𝑀 = 𝑖𝑎2 Ƹ𝑖 −
𝑖𝑎2

2
Ƹ𝑗 − 𝑖𝑎2 ෠𝑘

𝑦

𝑧

𝑥

𝑖

𝑎

Rearrange the circuit as shown. Three loops are formed. Net moment is the sum of three
components.

𝑀 = 𝑀𝑦𝑧 +𝑀𝑥𝑦 +𝑀𝑥𝑧 = 𝑖𝑎2 Ƹ𝑖 −
𝑖𝑎2

2
Ƹ𝑗 − 𝑖𝑎2 ෠𝑘



An electron is moving in circular path of radius 𝑅 with speed 𝑣. Find the magnetic field at
the center of the circular path.

Ques t i on

𝑅
𝑚𝑒

𝑣

So lu t i on

𝐵 =
𝜇0𝑒𝑣

4𝜋𝑅2



An electron is moving in circular path of radius 𝑅 with speed 𝑣. Find the magnetic field at
the center of the circular path.

Ques t i on

𝑅
𝑚𝑒

𝑣

So lu t i on

We know that the magnetic field created by a charge moving with velocity 𝑣 at a 
distance 𝑟 is, 

𝐵 =
𝜇0
4𝜋

𝑞 Ԧ𝑣 × Ԧ𝑟

Ԧ𝑟 3

Since we are required to find the magnetic field at the centre of the circular path, 

For the given case,

Therefore, the magnetic field at the centre of the circular path becomes,

1st method:



Ques t i on So lu t i on

𝑅
𝑚𝑒

𝑣

𝐵 =
𝜇0
4𝜋

𝑒𝑣

𝑅2
×

Since the moving charge is electron, its charge is negative and hence, 𝑞 Ԧ𝑣 × 𝐵 =

−𝑒 Ԧ𝑣 × 𝐵 will be directed into plane of motion of the electron. 

2nd method:

Since the electron is moving with velocity 𝑣, the time period of the period motion of 

the electron will be, 𝑇 =
2𝜋𝑅

𝑣

Therefore, current formed by the electron due to its motion is,

We know that the magnetic field at the centre of a current carrying loop of radius 𝑅 is, 𝐵 =
𝜇0𝑖

2𝑅

Therefore, the magnetic field at the centre of the circular path will be,



𝑅
𝑚𝑒

𝑣

Gyromagne t i c  r a t i o

𝑀: Magnetic moment 

𝐿: Angular momentum 

𝑀

𝐿
=

𝑞

2𝑚

Due  to  r evo lu t i on  o f  a  cha rged  pa r t i c l e

It is defined as the ratio of Magnetic moment and Angular Momentum.

Since the electron is moving with velocity 𝑣 in anticlockwise direction, current is
established in the clockwise direction and the magnitude of the current is given
by,

The magnetic moment is given by,

The angular momentum is, [Since Ԧ𝑟 ⊥ Ԧ𝑣 and Ԧ𝑟 = 𝑅]

The ratio of magnetic moment to angular momentum is given by,



Ques t i on

A ring of radius 𝑅 carrying charge 𝑄 is rotating about its axis with an angular velocity 𝜔.

Find the magnetic field at the center.

So lu t i on

𝑅𝑄

𝜔

𝑚
Total charge of the ring = 𝑄

Angular velocity of the ring = 𝜔 Frequency, 𝑓 =
𝜔

2𝜋

Therefore, the current established by the electron is, 

We know that the magnetic field at the centre of a current carrying loop of radius 𝑅 is, 𝐵 =
𝜇0𝑖

2𝑅

Therefore, the magnetic field at the centre of the ring will be, 𝐵 =
𝜇0𝑄𝜔

4𝜋𝑅

𝐵 =
𝜇0𝑄𝜔

4𝜋𝑅



Gyromagne t i c  r a t i o

Due  to  r evo lu t i on  o f  a  cha rged  r i ng

𝑅𝑄

𝜔

𝑚

𝑀: Magnetic moment 

𝐿: Angular momentum 

𝑀

𝐿
=

𝑄

2𝑚

Magnetic moment:

Angular momentum:

Total charge of the ring = 𝑄

Angular velocity of the ring = 𝜔

Thus, frequency, 𝑓 =
𝜔

2𝜋

Therefore, the current established by the electron is, 



Ques t i on

Calculate the ratio of magnetic moment and angular momentum of a charged non-
conducting disc rotating with an angular velocity 𝜔 about its center.

𝑄

𝑹

𝒙

𝒅𝒙

𝝎

So lu t i on

Consider an elemental ring of radius 𝑥 and thickness 𝑑𝑥, as shown in the figure.

The circular plate has radius 𝑅 and charge 𝑄. Thus, the surface charge density of 

the plate is, 𝜎 =
𝑄

𝜋𝑅2

The angular momentum of the disc:

Therefore, the charge of the elemental ring is,

Since the ring is rotated with angular velocity 𝜔, therefore, the current produced by the elemental ring is given by,



Ques t i on So lu t i on

𝑄

𝑹

𝒙

𝒅𝒙

𝝎

𝑀

𝐿
=

𝑄

2𝑚

The magnetic moment of the elemental ring will be,

Hence, total magnetic moment of the plate will be,

Therefore, the ratio 
𝑀

𝐿
becomes:

Short trick to find the magnetic moment of the 
given disc:



The ratio of magnetic moment to angular momentum =
𝑄

2𝑚
.

If the charge is positive, then directions of 𝑀 and 𝐿 is same.

If the charge is negative, then the directions of 𝑀 and 𝐿 are opposite. 

Gyromagne t i c  r a t i o

This ratio is a constant. 



Ques t i on

Calculate the magnetic moment of a charged non-conducting sphere rotating with an
angular velocity 𝜔 about its center.

𝑚,𝑄

𝑹

𝜔

𝑀 =
𝑄𝑅2𝜔

5

So lu t i on

If the magnetic moment of the sphere is denoted by 𝑀, then,

Moment of ine2rtia of the sphere about the rotation axis passing through its 

diameter, 𝐼 =
2

3
𝑚𝑅2

Total charge of the sphere = 𝑄

Angular velocity of the sphere = 𝜔

Therefore, angular momentum of the sphere, 𝐿 = 𝐼𝜔 =
2

5
𝑚𝑅2𝜔



Torque  on  a  Cur rent Car r y i ng  Loop

𝑎
𝑏

𝑖

𝑖𝑎𝐵

𝑖𝑎𝐵

𝑖𝑏𝐵

𝑖𝑏𝐵

𝐵

Ԧ𝐹𝑛𝑒𝑡 = 0 Ԧ𝜏𝑛𝑒𝑡 = 0

Magnetic force on each side of the loop gets
cancelled by the magnetic force acting on the
opposite side of the loop. Hence, net magnetic
force on the loop is zero.

Since all the opposite pair of forces are acting on
the same on line, the net torque on the loop is also
zero.

In this case, the direction of magnetic moment (𝑀)

of the loop and the direction of magnetic field (𝐵) is
same.



Torque  on  a  Cur rent Car r y i ng  Loop

𝑖𝑏𝐵

𝑖𝑏𝐵

𝑎

𝜃

𝐵

𝜃

𝑖𝑙𝐵

𝑖𝑙𝐵 𝑖𝑏𝐵

𝑖𝑏𝐵

𝐵

If we rotate the loop by an angle 𝜃 in a plane to perpendicular to its initial plane, then the force on each side of
the loop remains same as previous and hence, the net force on the loop is still zero. But there is a separation
between the line of action of opposite pair of force ‘𝑖𝑏𝐵’ as shown by the side view of the loop and hence, they
form a couple.

Side view of the loop



Torque  on  a  Cur rent Car r y i ng  Loop

𝜏 = 𝑖𝑎𝑏𝐵 sin 𝜃 Ԧ𝜏 = 𝑀 × 𝐵

𝑖𝑏𝐵

𝑖𝑏𝐵

𝑎

𝜃

𝐵

Since the opposite pair of force ‘𝑖𝑏𝐵 ’ form a couple, they will
produce a non-zero torque in the system. Thus, the magnitude of
the torque will be:



𝐵

Torque  on  a  Cur rent Loop TORQUE ON AN ELECTRIC DIPOLE

𝐸

𝑞𝐸

𝑞𝐸

𝜃

𝑂

𝑝
𝑙

Ԧ𝜏𝑛𝑒𝑡 = Ԧ𝑝 × 𝐸Ԧ𝜏 = 𝑀 × 𝐵



𝐵
𝜃

𝑀

𝐵
𝜃

𝑀

Torque  on  a  Cur rent Car r y i ng  Loop

Ԧ𝜏 = 𝑀 × 𝐵

The effect of net torque is to align 𝑀 with 𝐵 from smaller angle side.

𝐵

𝐵
𝑀

𝐵
𝑀



𝑀

Unstable equilibrium

𝑀

𝜃 = 0° 𝜃 = 180°

𝐵

Torque  on  a  Cur rent Car r y i ng  Loop

Ԧ𝜏 = 𝑀 × 𝐵

Stable equilibrium

In this case, if we rotate the magnetic dipole from
this equilibrium position, the dipole will align itself
along the direction of the magnetic field i.e., the
dipole will regain its initial alignment.

In this case, if we rotate the magnetic dipole from this
equilibrium position, the dipole will flip and align itself
along the direction of the magnetic field i.e., the dipole
will not regain its initial alignment.



Unstable equilibrium

𝜃 = 0° 𝜃 = 180°

𝐵

Torque  on  a  Cur rent Car r y i ng  Loop

Ԧ𝜏 = 𝑀 × 𝐵

Stable equilibrium

𝑖

𝐵

𝑖

×
𝑀 𝑀



𝐵

Torque  on  a  Cur rent Car r y i ng  Loop

Ԧ𝜏 = 𝑀 × 𝐵

Stable equilibrium

𝑖

T ime  pe r i od  o f  Angu la r  SHM

If 𝜏 = −𝑘𝜃

𝑇 = 2𝜋
𝐼

𝑘

𝐼 is moment of Inertia



Ques t i on

A current carrying ring of mass 𝑚 is placed inside a magnetic field 𝐵 as shown. If the ring is
slightly rotated and released, then find the time period of the oscillation.

𝑅
𝑖𝑖

𝐴𝑂𝑅

𝐵

So lu t i on

The magnetic moment of the loop is 𝑀 = 𝑖 𝜋𝑅2 and according to the
direction of the current, the direction of the magnetic moment will be
coming out of the plane of paper.

Thus, the direction of magnetic moment of the ring and the direction of 
magnetic field is same. Hence, the  ring will possess stable equilibrium.

If we rotate the ring by a small angle 𝜃, the ring will execute angular SHM 
and the torque on the ring :

…..(1)

We know that if any rigid body execute angular SHM and the body has 
moment of inertia 𝐼 about the axis of rotation, then, the expression of 
the torque on the body and the time period of oscillation are:

…………(2)



Ques t i on So lu t i on

𝑇 =
2𝜋𝑚

𝑖𝐵

𝐵

𝑖𝑖

𝐴𝑂𝑅

𝑅

Comparing equation (1) and (2), we get,

𝐾 = 𝑀𝐵

The moment of inertia of the ring about the given axis of rotation (𝐴𝑂𝑅) is 
given by,

Therefore, the time period of oscillation becomes,

=
2𝜋𝑚

𝑖𝐵



Ques t i on So lu t i on

A current carrying ring of mass 𝑚 is placed inside a magnetic field 𝐵𝑜 as shown. Find the
angular acceleration at this instant.

𝑅

𝑖

𝑖

So lu t i on
The magnetic moment of the loop is 𝑀 = 𝑖 𝜋𝑅2 and according to the
direction of the current, the direction of the magnetic moment will be
pointing into the plane of paper.

Therefore, the angle between 

Therefore, the magnitude of the torque on the ring will be,

Since the direction of Ԧ𝜏 denotes the location of axis of
rotation, the A.O.R for the given ring will as shown in the
figure.



Ques t i on So lu t i on

𝛼 =
2𝜋𝑖𝐵

𝑚

𝑅

𝑖

𝑖

If the body is free to rotate, then it will rotate about an axis passing
through its Center of mass and parallel to the torque

𝐴. 𝑂. 𝑅

w
The moment of inertia of the ring about the given axis of rotation (𝐴. 𝑂. 𝑅) 
is given by,

If the angular acceleration of the ring is 𝛼, then,



Ques t i on So lu t i on

A rectangular loop 𝑃𝑄𝑅𝑆 made from a uniform wire of length 𝑎, width 𝑏 and mass 𝑚. It is free to
rotate about the arm 𝑃𝑄, which remains hinged along the horizontal line taken as 𝑦-axis. Take the

vertically upward direction as the 𝑧-axis. A uniform magnetic field 𝐵 = 3 Ƹ𝑖 + 4෠𝑘 𝐵𝑜 exists in this

region. The loop is held in the 𝑥-𝑦 plane and a current 𝑖 is passed through it. The loop is now
released and is found to stay in the horizontal position in equilibrium.
a. What is the direction of the current 𝑖 in 𝑃𝑄?

b. Find the magnetic force on the arm 𝑅𝑆.
c. Find the expression for 𝐼 in terms of 𝐵𝑜, 𝑎, 𝑏 and 𝑚.

𝑥

𝑦

𝑧

𝑃 𝑄

𝑅𝑆



Ques t i on So lu t i on

𝑥

𝑦

𝑧

𝑃 𝑄

𝑅𝑆

𝑎

𝑏

𝑎

View from 𝑆𝑅 side of the 
loop towards – 𝑣𝑒 𝑥-axis

View from 𝑃𝑆 side of the 
loop towards +𝑣𝑒 𝑦-axis

Component division of 
the magnetic field

Assume that the current in the loop is 𝑖 which is either clockwise or,
anticlockwise. This means the magnetic moment of the loop 𝑀 = 𝑖𝑎𝑏
will either be parallel to 𝑧-axis (If current in anticlockwise from 𝑃 to 𝑆𝑅𝑄)
or antiparallel to 𝑧-axis (If current in clockwise from 𝑃 to 𝑄𝑅𝑆).

Since the 𝑧-component of the magnetic field i.e., 4𝐵0 𝑇𝑒𝑠𝑙𝑎 is either parallel or antiparallel to the magnetic
moment 𝑀, the torque on the loop produced by it is zero.

Since the 𝑥-component of the magnetic field i.e., 3𝐵0 𝑇𝑒𝑠𝑙𝑎 is perpendicular to the magnetic moment 𝑀, the

torque on the loop produced by it: 𝜏𝐵 = 𝑀𝐵 = 𝑖𝑎𝑏 3𝐵0



Ques t i on So lu t i on

𝑥

𝑦

𝑧

𝑃 𝑄

𝑅𝑆

a. Current in loop 𝑃𝑄𝑅𝑆 is clockwise from 𝑃 to 𝑄𝑅𝑆

𝑎

𝑏

𝑎

View from 𝑆𝑅 side of the 
loop towards – 𝑣𝑒 𝑥-axis

View from 𝑃𝑆 side of the 
loop towards +𝑣𝑒 𝑦-axis

Component division of 
the magnetic field

The torque on the loop due to the gravitational force, 𝜏𝑦 = 𝑚𝑔
𝑎

2
and 

the direction of this torque is along +𝑣𝑒 𝑦-axis. 

This torque 𝜏𝑦 should be balanced by the torque 𝜏𝐵 due to 𝑥-component of the magnetic field in order to stay the 

loop in the  horizontal position in equilibrium. For this purpose, the direction of 𝜏𝐵 should be along −𝑣𝑒 𝑦-axis. It is 
possible only if magnetic moment 𝑀 is antiparallel to 𝑧-axis (i.e., current in clockwise from 𝑃 to 𝑄𝑅𝑆).



Ques t i on So lu t i on

𝑥

𝑦

𝑧

𝑃 𝑄

𝑅𝑆

b. Ԧ𝐹 = 𝐵𝑜𝑖𝑏(3෠𝑘 − 4 Ƹ𝑖) c. 𝐼 =
𝑚𝑔

6𝑏𝐵𝑜

𝑏

𝑏

𝑎

According to the direction of the current in the arm 𝑅𝑆, its length is 
denoted as: 

Therefore, the magnetic force on the arm 𝑅𝑆 is given by,

= 𝐵𝑜𝑖𝑏(3෠𝑘 − 4 Ƹ𝑖)

𝑐 Equating the torque 𝜏𝐵 and 𝜏𝑦, we get,


