

Date: 23/11/2021 Subject: Physics

Topic : Alternating current Class: Standard XII

- 1. In a L-C circuit, $L=0.75~{\rm H}$ and $C=18~\mu{\rm F}$, at the instant when the current in the inductor is changing at a rate of $3.40~{\rm A/s}$. What is the charge on capacitor ?
 - $lack A. 26 \, \mu C$
 - \mathbf{x} B. $^{36}\,\mu\mathrm{C}$
 - ightharpoonup C. $^{46}\,\mu\mathrm{C}$
 - lacktriangle D. $_{56~\mu\mathrm{C}}$

C=18
$$\mu$$
F $\frac{di}{dt} = 3.40 \text{ A/s}$

On applying Kirchhoff's law starting from A,

$$+\frac{q}{C} - L\frac{di}{dt} = 0$$

$$\Rightarrow q = CL rac{di}{dt}$$

$$=18 imes 10^{-6} imes 0.75 imes 3.4$$

$$pprox 4.6 imes 10^{-5}~\mathrm{C} = 46~\mu\mathrm{C}$$

2. Assertion (A): The r.m.s. value of alternating current is defined as the square root of the average of I^2 during a complete cycle.

Reason (R): For sinusoidal a.c.

$$I_{
m rms} = rac{I_0}{\sqrt{2}} .$$

- A. Both (A) and (R) are true, and (R) is the correct explanation of (A)
- **B.** Both (A) and (R) are true, but (R) is not the correct explanation of (A)
- f C. (A) is true but (R) is false
- f D. (A) is false but (R) is true

The r.m.s value of a.c. current is,

$$I_{
m rms}^2 = rac{\displaystyle\int_0^T I^2 dt}{\displaystyle\int_0^T dt}$$

 $I=I_0 \, \sin \, \left(\omega t
ight)$

$$I_{
m rms}^2 = rac{\int_0^T I_0^2 \, \sin^2(\omega t) dt}{\int_0^T dt} = rac{I_0^2}{T} \! \int_0^T \left[rac{1-\cos 2\omega t}{2}
ight] dt$$

$$=\frac{I_0^2}{2T}\!\!\left[\frac{t-\sin2\omega t}{2\omega}\right]_0^T$$

$$\Rightarrow I_{
m rms}^2 = rac{I_0^2}{2}$$

$$\Rightarrow I_{
m rms} = rac{I_0}{\sqrt{2}}$$

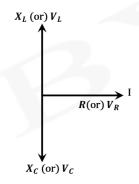
3. Assertion (A): In series LCR circuit resonance can take place.

Reason (R): Resonance takes place iff inductive reactance and capacitive reactances are equal with phase difference 180° .

- A. Both (A) and (R) are true, and (R) is the correct explanation of (A)
- **B.** Both (A) and (R) are true, but (R) is not the correct explanation of (A)
- f C. (A) is true but (R) is false
- lackbox **D.** (A) is false but (R) is true

For resonance condition in LCR circuit,

$$X_L = X_C$$



As we can see, X_L and X_C are in opposite direction. Hence, phase difference between them is $\phi=180^\circ$

4. Assertion (A): In series LCR resonance circuit, the impedance is equal to the ohmic resistance.

Reason (R): At resonance, the inductive reactance is equal and opposite to the capacitive reactance.

- A. Both (A) and (R) are true, and (R) is the correct explanation of (A)
- **B.** Both (A) and (R) are true, and (R) is not the correct explanation of (A)
- f C. (A) is true but (R) is false
- f D. (A) is false but (R) is true

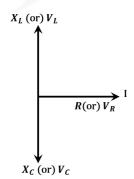
For resonance Condition in LCR circuit,

$$X_L = X_C$$

The net impedance of the circuit is,

$$Z=\sqrt{R^2+(X_L-X_C)^2}$$

$$\Rightarrow Z = R$$



As we can see, X_L and X_C are in opposite direction. Hence, phase difference between them is $\phi=180^\circ$

5. Assertion (A): Power loss in an ideal choke coil will be zero.

Reason (R): Ideal choke coil has zero power factor.

- A. Both (A) and (R) are true, and (R) is the correct explanation of (A)
- **B.** Both (A) and (R) are true, and (R) is not the correct explanation of (A)
- **C.** (A) is true but (R) is false
- lackbox **D.** (A) is false but (R) is true

For an ideal choke coil, R = 0

Average power dissipated in an a.c. circuit is,

$$P_{avg} = V_{
m rms} imes I_{
m rms} \cos \, \phi$$

Where, $\cos \phi = \text{Power factor}$ and

$$\cos(\phi) = \frac{R}{Z} = 0 \quad [\because R = 0]$$

$$P_{avg} = \boldsymbol{V}_{\mathrm{rms}} \times \boldsymbol{I}_{\mathrm{\,rms}} \cos \, \phi = 0$$

6. Assertion (*A*): KVL rule can also be applied to an a.c. circuits.

Reason (R): Varying electrostatic field is non-conservative

- **A.** Both (A) and (R) are true, and (R) is the correct explanation of (A)
- **B.** Both (A) and (R) are true, but (R) is not the correct explanation of (A)
- **C.** (A) is true but (R) is false
- lackbrack D. (A) is false but (R) is true
- (i). KVL can be applied for circuits, it can be a.c. (or) d.c. circuit. Basically KVL is energy conservation.
- (ii). Varying electrostatic field can be conservative. But electrostatic field induced by the time varying magnetic field is non conservative.

7. Comprehension:

An alternating voltage of $260~{
m V}$ and $\omega=500~{
m rad~s^{-1}}$ is applied in series ${
m LCR}$ circuit, where $L=0.01~{
m H},~C=4\times10^{-4}~{
m F}$ and $R=10~{
m \Omega}$

- (i) Find the resonance frequency of the circuit (in Hz)-
- \mathbf{X} A. $\underline{25}$
- **B.** $\frac{250}{\pi}$
- \mathbf{x} C. $\frac{40}{\pi}$
- \mathbf{x} D. $\frac{200}{\pi}$

Given,
$$L=0.01~{
m H}~~;~~C=4 imes 10^{-4}~{
m F}$$
 $R=10~\Omega~~;~~V=120~{
m V}~~;~~\omega=500~{
m rad~s}^{-1}$

At the resonance condition,

$$X_L = X_C$$

$$\omega L = rac{1}{\omega C}$$

$$\omega^2=rac{1}{LC}$$

$$\omega = rac{1}{\sqrt{LC}}$$

Substituting the given data gives,

$$\omega = rac{1}{\sqrt{0.01 imes4 imes10^{-4}}}$$

$$\omega = rac{1}{\sqrt{4 imes 10^{-6}}}$$

$$\omega=rac{1}{2 imes10^{-3}}=500$$

$$2\pi f = 500$$

$$f = \frac{500}{2\pi} = \frac{250}{\pi}$$

8. Comprehension:

An alternating voltage of $260~{
m V}$ and $\omega=500~{
m rad~s^{-1}}$ is applied in an series LCR circuit, where $L=0.01~{
m H},~C=4\times10^{-4}~{
m F}$ and $R=10~{
m \Omega}$

- (ii) Find the power supplied by the source is- (in W)-
- **X** A. 1000
- **B**. 6760
- **x** c. 3380
- **x** D. 3000

Given,
$$L=0.01~{
m H}~~;~~C=4 imes10^{-4}~{
m F}$$
 $R=10~\Omega~~;~~V_{rms}=120~{
m V}~~;~~\omega=500~{
m rad~s}^{-1}$

Power in an a.c. circuit is,

$$P=V_{rms}I_{rms}\cos\phi$$

Where,
$$\cos\phi = \frac{R}{Z}$$

$$Z=\sqrt{R^2+(X_L-X_C)^2}$$

$$X_L=\omega L=500 imes 1 imes 10^{-2}=5$$

$$X_C = rac{1}{\omega C} = rac{1}{500 imes 4 imes 10^{-4}} = 5$$

$$\Rightarrow \ \ Z = \sqrt{(10)^2 + (5-5)^2} = 10 \ \Omega$$

$$\Rightarrow \cos \phi = \frac{R}{Z} = \frac{10}{10} = 1$$

$$I_{rms} = rac{V_{rms}}{Z} = rac{260}{10} = 26 \; ext{A}$$

Hence, power dissipated in the circuit is,

$$P=260\times26\times1=6760\;\mathrm{W}$$

9. Comprehension:

A $100~\Omega$ resistance is connected in series with a $4~\mathrm{H}$ inductor. The voltage across the resistor is, $V_R = 2.0 \sin(10^3 t)~\mathrm{V}$.

 $\left(i\right)$ Find the expression of circuit current-

A.
$$0.2\sin(1000\ t)\ \text{mA}$$

B.
$$2\sin(100 t) \text{ mA}$$

$$\mathbf{x}$$
 c. $2\sin(1000 t) \text{ mA}$

$$egin{aligned} oldsymbol{\Sigma} & oldsymbol{\mathsf{D}}. \ & 0.2\sin(100~t)~\mathrm{mA} \ & \mathrm{Given}, \, V_R = 2.0\sin(10^3 t)~\mathrm{V}~;~~R = 100~\Omega \ & L = 4~\mathrm{H}~;~~\omega = 10^3 \end{aligned}$$

Current through the resistor will be,

$$I=I_0\sin(10^3t)$$

Where,
$$I_0 = \frac{V_0}{R} = \frac{2}{100} = 2 imes 10^{-2}$$

 $\therefore I = 2 \times 10^{-2} \sin(10^3 t) \text{ A or } 0.2 \sin(1000 t) \text{ mA}$

10. Comprehension:

A $100~\Omega$ resistance is connected in series with a $4~\mathrm{H}$ inductor. The voltage across the resistor is, $V_R=2.0\sin(10^3t)~\mathrm{V}.$

(ii) Find the inductive reactance-

$$oldsymbol{\lambda}$$
 A. $2 imes 10^3~\Omega$

$$oldsymbol{\mathsf{X}}$$
 B. $3 imes 10^3~\Omega$

$$lackbox{ c. } 4 imes 10^3 \, \Omega$$

$$egin{array}{|c|c|c|c|} \hline oldsymbol{\Sigma} & oldsymbol{\mathsf{D}}. & & & 5 imes 10^3 \ \mathrm{Givn}, \ L = 4 \ \mathrm{H} \ \ ; \ \ \omega = 10^3 \ \end{array}$$

Inductive reactance is,

$$X_L = \omega L = 10^3 imes 4$$

$$X_L = 4 imes 10^3~\Omega$$

11. Comprehension:

A $100~\Omega$ resistance is connected in series with a $4~\mathrm{H}$ inductor. The voltage across the resistor is, $V_R=2.0\sin(10^3t)~\mathrm{V}.$

- (iii) Find amplitude of the voltage across the inductor.
- **A**. 40 V
- **x** B. 60 V
- **c**. 80 V
- **x** D. 90 V

The potential drop across the inductor is,

$$V_L = I_0 X_L$$

$$\therefore \ \ I_0 = 2 imes 10^{-2} \ \mathrm{A} \ \ ; \ \ X_L = 4 imes 10^3 \ \Omega$$

$$\therefore V_L = 80 \text{ V}$$

12. If the voltage of a source in an AC circuit is represented by the equation, $\mathcal{E}=220\sqrt{2}\sin(314t)$. Calculate the peak value of the current if the net resistance of the circuit is $220~\Omega$.

Take $\sqrt{2}=1.4$

- ×
- **A.** 1.8 A
- ×
- **B.** 1.6 A
- **(**
- **C.** 1.4 A
- ×
- **D.** 1.2 A

Given:

Voltage, $\mathcal{E} = 220\sqrt{2}\sin(314t)$

Comparing with $\mathcal{E}=\mathcal{E}_0\sin\omega t$, we get, peak value of voltage,

$$\mathcal{E}_0 = 220\sqrt{2}~\mathrm{V}$$

So, peak value of current,

$$i_0 = rac{\mathcal{E}_0}{R} = rac{220\sqrt{2}}{220} = 1.4 ext{ A}$$

- 13. Two alternating currents having the value $I_1=3\sin\omega t$ and $I_2=4\sin(\pi/2-\omega t)$ are superimposed and passed through a hot wire ammeter. Then the reading of the ammeter will be
 - **A.** 5 A
 - lacksquare B. $5/\sqrt{2}$ A
 - \mathbf{x} c. $7/\sqrt{2}$ A
 - **x** D. 7 A

Given:

$$I_1=3\sin\omega t$$
, and

$$I_2 = 4\sin(\pi/2 - \omega t)$$

So, peak value of net AC,

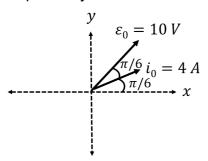
$$I_0 = \sqrt{I_{0_1}^2 + I_{0_2}^2 + 2I_{0_1}I_{0_2}\cos(\Delta\phi)}$$

$$\Rightarrow I_0 = \sqrt{3^2 + 4^2 + 2(3)(4)\cos(\pi/2)}$$

$$\Rightarrow I_0 = 5~\mathrm{A}$$

$$\therefore I_{rms} = rac{I_0}{\sqrt{2}} = rac{5}{\sqrt{2}} ext{A}$$

14. The phasor diagram for a component (other than a resistor) connected to an AC source, at an instant, is shown below. The value of voltage across the component and current flowing through the circuit, at this instant, respectively is -



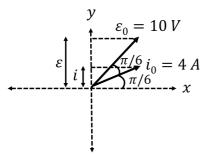
A.
$$5\sqrt{3} \text{ V}, 2\sqrt{3} \text{ A}$$

B.
$$5 \text{ V}, 2\sqrt{3} \text{ A}$$

$$lacktriangle$$
 C. $2\sqrt{3} \, \mathrm{V, 2 \, A}$

D.
$$5\sqrt{3} \, \mathrm{V}, 2 \, \mathrm{A}$$

The value of voltage and current at any instant can be calculated from phasor diagram by calculating components of \mathcal{E}_0 and i_o along the y-axis respectively.



Therefore, the current flowing in the circuit at this instant is,

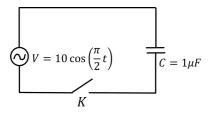
$$i=i_0\sinrac{\pi}{6}{=4 imesrac{1}{2}{=2}}$$
 A

The voltage across the element at this instant is,

$$\mathcal{E} = \mathcal{E}_0 \sin \left(rac{\pi}{6} + rac{\pi}{6}
ight) = 10 \sin rac{\pi}{3} = 5\sqrt{3} \; ext{V}$$

Hence, option (D) is the correct answer.

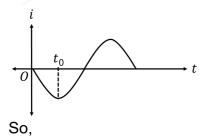
15. An AC voltage source described by $V=10\cos\left(\frac{\pi}{2}t\right)$ is connected to a $1~\mu\mathrm{F}$ capacitor as shown in the figure. The key K is closed at t=0. The time t>0 after which the magnitude of current reaches its maximum value for the first time is -



- **✓** A. 1 s
- **x** B. 2 s
- **x** C. 3 s
- **x** D. 4 s

Current will lead the voltage function by $\pi/2$.

Voltage function is a cos function. Therefore, current function will be $-\sin$ function.



$$t_0=rac{T}{4}=rac{2\pi/\omega}{4}=rac{\pi}{2\omega}=rac{\pi}{2 imesrac{\pi}{2}}=1~\mathrm{s}$$

16. Applied AC voltage is given as, $V=V_0\sin(\omega t)$. Corresponding to this voltage, match the following two columns.

Column I	Column II
$egin{aligned} a. \ I &= I_0 \sin(\omega t) \ b. \ I &= -I_0 \cos(\omega t) \ c. \ I &= I_0 \sin(\omega t + \pi/6) \end{aligned}$	p. only R circuit q . only L circuit r . may be RC circuit

A.
$$a \rightarrow p; \ b \rightarrow q; \ c \rightarrow r$$

B.
$$a \rightarrow q; \ b \rightarrow p; \ c \rightarrow r$$

C.
$$a \rightarrow p; \ b \rightarrow r; \ c \rightarrow q$$

D.
$$a \rightarrow r; \ b \rightarrow q; \ c \rightarrow p$$

Given:

$$V=V_0\sin(\omega t)$$

In pure resistive circuit, current and voltage remains in the phase.

$$\Rightarrow I = I_0 \sin(\omega t)$$

$$\therefore a o p$$

In pure inductive circuit, voltage leads ahead the current by $\pi/2$.

$$\Rightarrow I = I_0 \sin(\omega t - \pi/2) = -I_0 \cos(\omega t)$$

$$\therefore b o q$$

In AC RC circuit, current lead the voltage by some phase.

$$\Rightarrow I = I_0 \sin(\omega t + \phi)$$

$$\therefore c \rightarrow r$$

- 17. An AC source rated $100~{\rm V}~(rms)$ supplies a current of $10~{\rm A}~(rms)$ to a circuit. The average power delivered by the source is
 - **A.** may be 1000 W
 - **B.** may be less than 1000 W
 - lacksquare **C.** Both options (A) and (B)
 - **D.** may be greater than 1000 W

The average power delivered by the source is given by:

$$P_{avg} = V_{rms}I_{rms}\cos \phi$$

Where $\cos \phi$ is the power factor of the circuit.

Given,
$$V_{rms}=100~\mathrm{V}$$
 and $I_{rms}=10~\mathrm{A}$

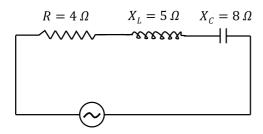
$$\Rightarrow P_{avg} = 100 imes 10\cos\phi = 1000\cos\phi$$

The value of $\cos \phi$ lies between [-1, 1].

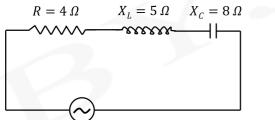
Therefore, power delivered by the source would be either equal to $1000~\mathrm{W}$ or less than $1000~\mathrm{W}$ depending on the elements connected in the circuit.

Hence, option (C) is the correct answer.

18. For the given AC RLC circuit, at a particular frequency of the AC source, the current -



- lacksquare **A.** Lead the voltage by $an^{-1}(3/4)$
- f x **B.** Lead the voltage by $an^{-1}(5/8)$
- f C. Lag the voltage by $an^{-1}(3/4)$
- f x D. Lag the voltage by $tan^{-1}(5/8)$



Suppose, the AC source voltage is given by,

$$V=V_m\sin(\omega t)$$

Then, the AC in the circuit is,

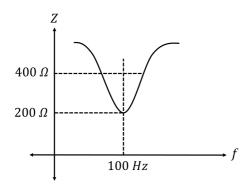
$$I=I_m\sin(\omega t+\phi)$$

So,

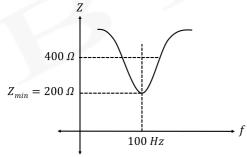
$$an \phi = rac{X_C - X_L}{R} = rac{8 - 5}{4} = rac{3}{4}$$

$$\Rightarrow \phi = an^{-1}(3/4)$$

19. For the given curve between impedance (Z) and frequency (f) of a series LCR circuit, the value of resistance is -



- \mathbf{A} . $100 \,\Omega$
- ightharpoonup B. $200 \,\Omega$
- \mathbf{x} c. $_{300\,\Omega}$
- lacktriangleright D. $_{400\,\Omega}$



At resonance, $Z_{\min} = R$.

From figure, $Z_{
m min}=R=200~\Omega$

Hence, option (B) is the correct answer.

- 20. In an ideal transformer, number of turns in the primary coil are 140 and those in the secondary coil are 280. If current in the primary coil is 4 A, then that in the secondary coil is
 - **x** A. _{4 A}
 - **⊘** B. _{2 A}
 - **x** C. 6 A
 - **x** D. 8 A

For an ideal transformer,

$$rac{N_P}{N_S} = rac{\mathcal{E}_P}{\mathcal{E}_S} = rac{I_S}{I_P}$$

$$\Rightarrow I_S = rac{N_P I_P}{N_S} = rac{140 imes 4}{280} = 2 ext{ A}$$

Hence, option (B) is the correct answer.