

Date: 11/11/2021 Subject: Physics

Topic : Current Electricity Class: Standard XII

1. A current of 5~A is passing through a metallic wire of cross sectional area $14\times10^{-6}~\mathrm{m^2}.$ If the density of the charge carries in the wire is $5\times10^{26}~\mathrm{C/m^3}$, the drift speed of the electrons.

A.
$$3.46 \times 10^{-3} \text{ ms}^{-1}$$

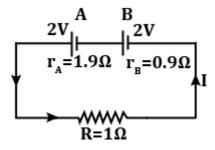
B.
$$4.46 \times 10^{-3} \ ms^{-1}$$

C.
$$5.46 \times 10^{-3} \ ms^{-1}$$

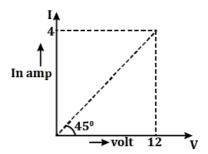
D.
$$6.46 \times 10^{-3} \ ms^{-1}$$

2. A hollow cylinder of length $3~\mathrm{m}$ has inner and outer diameters of $4~\mathrm{mm}$ and $8~\mathrm{mm}$ respectively. The resistance of the cylinder is (specific resistance of the material $= 2.2 \times 10^{-8}~\Omega\mathrm{m}$)

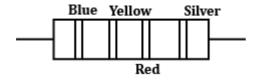
A.
$$1.75 \times 10^{-3} \Omega$$


$$\textbf{B.} \quad 1.25\times 10^{-3}\Omega$$

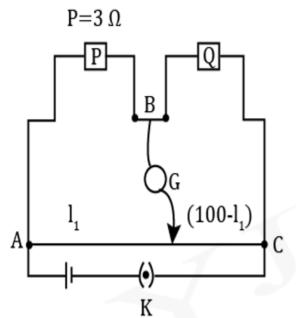
c.
$$1.5 \times 10^{-3}\Omega$$


D.
$$1.95 \times 10^{-3} \Omega$$

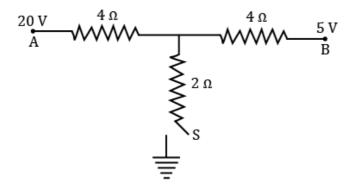
3. Two cells A and B each of 2 V are connected in series to an external resistance R=1 Ω as shown in figure. If the internal resistance of A is $r_A=1.9$ Ω and that of B is $r_B=0.9$ Ω , then the potential difference between the terminals of A is


- **A.** 1.75 V
- **B.** 1.5 V
- **c.** 1.25 V
- D. zero
- 4. The variation of current and voltage in a conductor has been shown in figure. The conductance of the conductor is (Give your answer in Ω^{-1}).

- **A**. $\frac{1}{2}$
- **B.** $\frac{1}{5}$
- **C**. $\frac{1}{3}$
- **D.** $\frac{1}{4}$


- 5. The resistance of a metal wire is 10Ω . A current of 30 mA is flowing in it at $20^{\circ}C$. If the potential difference across its ends is constant and its increased to 120° C, then the current flowing in the wire will be in (mA) (temperature coefficient of resistance is $5 \times 10^{-3} \, {}^{\circ}C^{-1}$.
 - **A**. 10
 - **B**. 15
 - **c**. 20
 - **D**. 40
- 6. In an experiment with potentiometer , to measure the internal resistance of a cell. When it is shunted by 5Ω the null point obtained is at $2~\mathrm{m}$ from one end. When cell is shunted by 20Ω , the null point is obtained at $3~\mathrm{m}$ from the same end. The internal resistance of cell is
 - A. 8Ω
 - B. 6Ω
 - C. $_{4\Omega}$
 - D. 2Ω
- 7. The colour coding on a resistor from the left are blue, yellow, red and silver as shown in figure. The value of resistance is

- **A.** $6400~\Omega~\pm~20$
- B. $6400~\Omega~\pm~10$
- C. $_{4600~\Omega~\pm~10}$
- D. $6400~\Omega~\pm~5$


8. In a meter bridge experiment, resistances are connected as shown in figure. The balancing length l_1 is $55~\mathrm{cm}$. Now an unknown resistance x is connected in series with P and the new balancing length is found to be $75~\mathrm{cm}$. The value of x is

- $\mathbf{A.} \quad \frac{54}{13}\Omega$
- $\mathbf{B.} \quad \frac{20}{11}\Omega$
- **C**. $\frac{48}{11}\Omega$
- $\mathbf{D.} \quad \frac{11}{48}\Omega$

9. As the switch S is closed in the circuit shown in figure, current passing through it will be

- **A.** 4.5 A
- **B.** 6.0 A
- **C.** 8/25 A
- **D.** 25/8 A
- 10. Resistance of a wire is 8Ω .It is stretched in such away that it experiences a longitudinal strain of 400%. The new resistance is
 - A. 400Ω
 - B. 300Ω
 - C. $_{200~\Omega}$
 - **D.** 100Ω

11. In the question given below, a statement of Assertion (A) is given followed by a corresponding statement of Reason (R) just below it. Of the statements mark the correct answer.

Assertion (A): Potentiometer is much better than a voltmeter for measuring emf of cell.

Reason (R): A potentiometer draws no current while measuring emf of a cell.

- A. Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'.
- B. Both 'A' and 'R' are true and 'R' is not the correct explanation of 'A'
- C. 'A' is true and 'R' is false
- D. 'A' is false and 'R' is true
- 12. In the question given below, a statement of Assertion (A) is given followed by a corresponding statement of Reason (R) just below it. Of the statements mark the correct answer.

Assertion (A): In meterbridge experiment a high resistance is connected in series with the galvanometer.

Reason (R): As resistance increases, current through the circuit increases.

- A. Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'.
- B. Both 'A' and 'R' are true and 'R' is not the correct explanation of 'A'
- C. 'A' is true and 'R' is false
- D. 'A' is false and 'R' is true

13. In the question given below, a statement of Assertion (A) is given followed by a corresponding statement of Reason (R) just below it. Of the statements mark the correct answer.

Assertion (A): Terminal voltage of a cell is greater than emf of the cell, during charging of the cell.

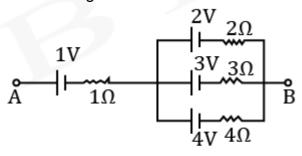
Reason (R): The emf of a cell is always greater than its terminal voltage.

- A. Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'.
- B. Both 'A' and 'R' are true and 'R' is not the correct explanation of 'A'
- C. 'A' is true and 'R' is false
- D. 'A' is false and 'R' is true
- 14. In the question given below, a statement of Assertion (A) is given followed by a corresponding statement of Reason (R) just below it. Of the statements mark the correct answer.

Assertion (A): At any junction of a network , the algebraic sum of various currents is zero.

Reason (R): At steady state, there is no accumulation of charges at the junction.

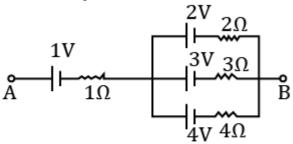
- A. Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'.
- B. Both 'A' and 'R' are true and 'R' is not the correct explanation of 'A'
- C. 'A' is true and 'R' is false
- D. 'A' is false and 'R' is true

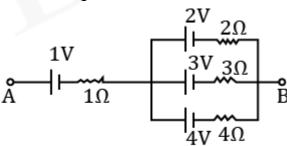


15. Assertion (A): A piece of copper and other of germanium are cooled from room temperature to $100~\mathrm{K}$. Conductivity of copper increases and that of germanium decreases.

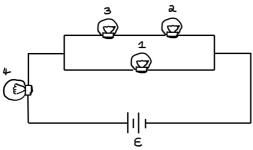
Reason (R): Copper has positive temperature coefficient where as germamium has negative temperature coefficient.

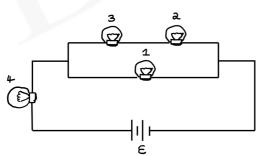
Study both the statements carefully and then Select your answers, according to the codes given below


- **A.** Both A and R are true and R is the correct explanation of A.
- **B.** Both A and R are true and R is not the correct explanation of A
- **C.** A is true and R is false
- **D.** A is false and R is true
- 16. The circuit given below consists of cells with their internal resistance,


- (i) The equivalent emf between the terminals A and B is
 - **A.** $\frac{24}{13}$ V
 - **B.** $\frac{37}{13}$ V
 - **C**. $\frac{36}{13}$ V
 - **D.** $\frac{49}{13}$ V

17. The circuit given below consists of cells with their internal resistance


- $\left(ii\right)$ The equivalent internal resistance of the combination is
 - $\mathbf{A.} \quad \frac{24}{13}\Omega$
 - $\mathbf{B.} \quad \frac{13}{24} \Omega$
 - $\mathbf{C.} \quad \frac{25}{13}\Omega$
 - $\mathbf{D.} \quad \frac{13}{12}\Omega$
- 18. The circuit given below consists of cells with their internal resistance


- (iii) If the polarity of cell of $4~{
 m V}$ is reversed, the equivalent emf between the terminals A and B is
 - **A.** $\frac{1}{13}$ V
 - **B.** $\frac{37}{13}$ V
 - **C**. $\frac{25}{13}$ V
 - **D.** $\frac{12}{13}$ V

19. All bulbs consume same power. The resistance of bulb 1 is 36Ω .

- (i) What is the resistance of bulb 3?
 - A. 4Ω
 - B. 9Ω
 - **c**. 12Ω
 - D. 18Ω
- 20. All bulbs consume same power. The resistance of bulb 1 is $36~\Omega$.

- (ii) What is the voltage output of the battery , if the power of each bulb is $4~\mathrm{W}$?
 - **A.** $_{12}\,{
 m V}$
 - B. $_{16\,\mathrm{V}}$
 - $\textbf{C.} \quad _{24 \text{ V}}$
 - D. $_{32\,\mathrm{V}}$