Date: 21/11/2021 Subject: Mathematics Topic : Application of Derivative

Class: Standard XII

- 1. The tangent to the curve $y = xe^{x^2}$ is passing through the point (1, e) and also passes through the point :
 - **A.** (2, 3e) **B.** (3, 6e) **C.** $\left(\frac{4}{3}, 2e\right)$ **D.** $\left(\frac{5}{3}, 2e\right)$
- 2. The normal to the curve y(x-2)(x-3) = x+6 at the point where the curve intersects the *y*-axis passes through the point:

A.
$$\left(-\frac{1}{2}, -\frac{1}{2}\right)$$

B. $\left(\frac{1}{2}, \frac{1}{2}\right)$
C. $\left(\frac{1}{2}, -\frac{1}{3}\right)$
D. $\left(\frac{1}{2}, \frac{1}{3}\right)$

- 3. Let *C* be a curve given by $y(x) = 1 + \sqrt{4x-3}$, $x > \frac{3}{4}$. If *P* is a point on *C*, such that the tangent at *P* has slope $\frac{2}{3}$, then a point through which the normal at *P* passes, is:
 - **A.** (3, -4)
 - **B.** (1,7)
 - **C.** (2,3)

- 4. The approximate change in volume V of a cube of side x meters caused by increasing the side by 2% is:
 - **A.** $0.03x^3$ cubic meter
 - **B.** $0.04x^3$ cubic meter
 - **C.** $0.06x^3$ cubic meter
 - **D.** $0.08x^3$ cubic meter
- 5. The approximate value of f(5.001) where $f(x) = x^3 7x^2 + 15$, is:
 - **A.** -34.995
 - **B.** 34.995
 - C. -35.005
 - **D**. 35.005
- 6. A particle moves in a straight line according to the law $v^2 = 4a(x \sin x + \cos x)$ where *v* is the velocity of a particle at a distance *x* from the fixed point. Then the acceleration is
 - A. $2ax \sin x$
 - **B.** $ax \sin x$
 - **C.** $ax \cos x$
 - **D.** $2ax\cos x$

7. Coffee is coming out from a conical filter, with height and diameter both are 15 cm into a cylindrical coffee pot with a diameter 15 cm. The rate at which coffee comes out from the filter into the pot is $100 \text{ cm}^3/\text{min}$.

The rate (in cm/min) at which the level of coffee in the pot is rising at the instance when it is 10 cm, is equal to

- 8. The approximate value of $(25)^{\frac{1}{3}}$ is
 - A. 2.921
 B. 2.923
 C. 2.924
 - **C.** 2.924
 - **D.** 2.926
- 9. A particle moves on a line according to the law $s = at^2 + bt + c$. If the displacement after one second is 16 cm, the velocity after 2 seconds is 24 cm/sec and the acceleration is 8 cm/sec², then (a, b, c)
 - **A.** (4, 8, 4)
 - **B.** (4, 4, 8)
 - **C.** (8, 4, 4)
 - **D.** (8, 8, 4)

10. If the rate of change in the volume of a sphere is equal to the rate of change in its radius, then the radius is equal to

A.
$$\frac{1}{2\pi}$$

B. $\frac{1}{2\sqrt{\pi}}$
C. $\frac{1}{\sqrt{2\pi}}$
D. $\frac{2}{\pi}$

- 11. The normal to the curve $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta \theta \cos \theta)$ at any point θ is such that
 - **A.** it makes a constant angle with the x- axis.
 - **B.** it passes through origin.
 - C. it is at a constant distance from the origin.
 - D. none of these

12. If
$$3x + 2y = 1$$
 acts as a tangent to $y = f(x)$ at $x = \frac{1}{2}$ and if
 $p = \lim_{x \to 0} \frac{x(x-1)}{f\left(\frac{e^{2x}}{2}\right) - f\left(\frac{e^{-2x}}{2}\right)}$, then $\sum_{r=1}^{\infty} p^r =$ _____
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{7}$

- 13. The normal to the curve $x = a(1 + \cos \theta), y = a \sin \theta$ at θ always passes through the fixed point
 - **A.** (*a*, 0)
 - **B.** (0, *a*)
 - **C.** (0,0)
 - **D.** (a, a)

14. If *m* is the slope of a tangent to the curve $e^y = 1 + x^2$, then

- **A.** |m| > 1
- **B.** m > 1
- **C.** m > -1
- **D.** $|m| \leq 1$
- ^{15.} The equation of the tangent to the curve $y = x + \frac{4}{x^2}$, which is parallel to the x- axis, is
 - **A.** y = 8
 - **B.** y = 0
 - **C.** y = 3
 - **D.** y = 2

- 16. The number of tangent(s) to the curve $y = \cos{(x + y)}, -2\pi \le x \le 2\pi$, that is (are) perpendicular to the line 2x y = 3 is
 - **A**. 1
 - **B**. 2
 - **C**. 3
 - **D**. 4
- 17. If 2a + 3b + 6c = 0, then atleast one root of the equation $ax^2 + bx + c = 0$ lies in the interval
 - **A.** (0,1)
 - **B.** (1,2)
 - **C.** (2,3)
 - **D.** (1,3)

18. If $f(x) = x^3 + bx^2 + ax$ satisfies the condition of Rolle's theorem on [1,3]with $c = 2 + \frac{1}{\sqrt{3}}$. Then (a + b) =

A. 0
B. 3
C. -4
D. 5

- 19. Let f be differentiable for all x. If f(1) = -2 and $f'(x) \ge 2$ for all $x \in [1, 6]$, then
 - **A.** f(6) < 8
 - **B.** $f(6) \ge 8$
 - **C.** $f(6) \ge 5$
 - **D.** $f(6) \le 5$
- 20. Given the function $f(x) = x^3 2x^2 x + 1$. Then the value(s) of *c* satisfying the conditions of the mean value theorem for the function on the interval [-2, 2], is
 - **A.** ± 1 **B.** $\frac{2}{3}$ **C.** $-\frac{2}{3}$ **D.** $_2$

