Date: 21/11/2021 Subject: Mathematics Topic : Application of Derivative

Class: Standard XII

1. The tangent to the curve $y = xe^{x^2}$ is passing through the point (1, e) and also passes through the point :

2. The normal to the curve y(x-2)(x-3) = x+6 at the point where the curve intersects the *y*-axis passes through the point:

$$\begin{array}{c|c} \bigstar & \textbf{A.} & \left(-\frac{1}{2}, -\frac{1}{2}\right) \\ \hline \bigstar & \textbf{B.} & \left(\frac{1}{2}, \frac{1}{2}\right) \\ \hline \bigstar & \textbf{C.} & \left(\frac{1}{2}, -\frac{1}{3}\right) \\ \hline \bigstar & \textbf{D.} & \left(\frac{1}{2}, \frac{1}{3}\right) \\ y &= \frac{x+6}{(x-2)(x-3)} \\ \hline \text{Coordinates of point of intersection with } y\text{-axis is } (0,1) \\ y &= \frac{x+6}{x^2-5x+6} \\ \Rightarrow y' &= \frac{(x^2-5x+6)-(2x-5)(x+6)}{(x^2-5x+6)^2} \\ \Rightarrow y' &= \frac{6-(-30)}{36} = 1 \\ \hline \text{Then, slope of normal at } (0,1) \text{ is } -1 \\ \hline \text{Equation of normal passing through } (0,1) \text{ is } y-1 = -1(x-0) \\ \text{i.e., } x+y = 1 \\ \end{array}$$

Thus, the normal passes through $\left(\frac{1}{2}, \frac{1}{2}\right)$.

3. Let *C* be a curve given by $y(x) = 1 + \sqrt{4x-3}, x > \frac{3}{4}$. If *P* is a point on *C*, such that the tangent at *P* has slope $\frac{2}{3}$, then a point through which the normal at *P* passes, is:

X A.
$$(3, -4)$$

B. $(1, 7)$
X C. $(2, 3)$
X D. $(4, -3)$
 $y = 1 + \sqrt{4x-3}$
 $\frac{dy}{dx} = \frac{1}{2\sqrt{4x-3}} \times 4 = \frac{2}{3}$
 $\Rightarrow x = 3, y = 1 + 3 = 4$
Slope of the normal $= -\frac{3}{2}$
Equation of the normal is,
 $y - 4 = -\frac{3}{2}(x - 3)$
 $\Rightarrow 3x + 2y - 17 = 0$
 \Rightarrow Which passes through $(1, 7)$

IBA'

4. The approximate change in volume V of a cube of side x meters caused by increasing the side by 2% is:

× Α. $0.03x^3$ cubic meter **B.** $0.04x^3$ cubic meter х $0.06x^3$ cubic meter C. D. X $0.08x^3$ cubic meter We have volume $V = x^3$ dV $\Rightarrow dV =$ riangle x $=(3x^2) riangle x$ $=(3x^2)(0.02x)$ $= 0.06x^3m^3$ Thus the approximate change in volume V is $0.06x^3m^3$

5. The approximate value of f(5.001) where $f(x) = x^3 - 7x^2 + 15$, is:

$$\begin{array}{c|c} \checkmark & A. & -34.995 \\ \hline \bigstar & B. & 34.995 \\ \hline \bigstar & B. & 34.995 \\ \hline \bigstar & C. & -35.005 \\ \hline \cr \bigstar & D. & 35.005 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{Firstly break the number 5.001 as } x = 5 \text{ and } \bigtriangleup x = 0.001 \text{ and use the relation} \\ f(x + \bigtriangleup x) = f(x) + \bigtriangleup x f'(x) \\ \hline \\ \text{Consider, } f(x) = x^3 - 7x^2 + 15 \\ \Rightarrow f'(x) = 3x^2 - 14x \\ \Rightarrow f(x + \bigtriangleup x) = f(x) + \bigtriangleup x f'(x) \\ = (x^3 - 7x^2 + 15) + \bigtriangleup x (3x^2 - 14x) \\ \Rightarrow f(5.001) = (5^3 - 7 \times 5^2 + 15) + (3 \times 5^2 - 14 \times 5)(0.001) \\ = (125 - 175 + 15) + (75 - 70)(0.001) \\ = -35 + (5)(0.001) \\ = -35 + 0.005 = -34.995 \\ \end{array}$$

RJ.

BYJU'S The Learning App

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

6. A particle moves in a straight line according to the law $v^2 = 4a(x \sin x + \cos x)$ where *v* is the velocity of a particle at a distance *x* from the fixed point. Then the acceleration is

7. Coffee is coming out from a conical filter, with height and diameter both are 15 cm into a cylindrical coffee pot with a diameter 15 cm. The rate at which coffee comes out from the filter into the pot is $100 \text{ cm}^3/\text{min}$.

The rate (in $\rm cm/min$) at which the level of coffee in the pot is rising at the instance when it is 10 cm, is equal to

ΒY.

8. The approximate value of $(25)^{\frac{1}{3}}$ is

9. A particle moves on a line according to the law $s = at^2 + bt + c$. If the displacement after one second is 16 cm, the velocity after 2 seconds is 24 cm/sec and the acceleration is 8 cm/sec², then (a, b, c)

• A.
$$(4, 8, 4)$$

• B. $(4, 4, 8)$
• C. $(8, 4, 4)$
• D. $(8, 8, 4)$
We have,
 $s = at^2 + bt + c$
when $t = 1$, $a + b + c = 16$
 $v = \frac{ds}{dt} = 2at + b$
when $t = 2$, $4a + b = 24$
acceleration $= \frac{dv}{dt} = 2a = 8 \Rightarrow a = 4, b = 8, c = 4$

BYJU'S The Learning App

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

10. If the rate of change in the volume of a sphere is equal to the rate of change in its radius, then the radius is equal to

$$\begin{array}{c|c} \bigstar & \textbf{A.} & \frac{1}{2\pi} \\ \hline \bigstar & \textbf{B.} & \frac{1}{2\sqrt{\pi}} \\ \hline \bigstar & \textbf{B.} & \frac{1}{2\sqrt{\pi}} \\ \hline \bigstar & \textbf{C.} & \frac{1}{\sqrt{2\pi}} \\ \hline \bigstar & \textbf{D.} & \frac{2}{\pi} \\ \hline \end{matrix} \\ \hline \textbf{Volume of sphere, } V = \frac{4}{3}\pi r^3 \\ \hline \textbf{Given, } & \frac{dV}{dt} = \frac{dr}{dt} \\ \Rightarrow \frac{4\pi}{3} \times 3r^2 \times \frac{dr}{dt} = \frac{dr}{dt} \\ \Rightarrow r^2 = \frac{1}{4\pi} \Rightarrow r = \frac{1}{2\sqrt{\pi}} \end{array}$$

11. The normal to the curve $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta - \theta \cos \theta)$ at any point θ is such that

A. it makes a constant angle with the x- axis. B. it passes through origin. C. it is at a constant distance from the origin. D. none of these $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta - \theta \cos \theta)$ $\frac{dy}{d\theta} = a\theta \sin \theta$ $\frac{dx}{d\theta} = a\theta \cos \theta$ $\Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \tan \theta$

 \therefore Slope of the normal = $-\cot \theta$

Therefore, equation of the normal is $y - a(\sin \theta - \theta \cos \theta) = -\frac{\cos \theta}{\sin \theta}(x - a(\cos \theta + \theta \sin \theta))$ $y \sin \theta - a \sin^2 \theta + a\theta \sin \theta \cos \theta = -x \cos \theta + a \cos^2 \theta + a\theta \sin \theta \cos \theta$ $\Rightarrow x \cos \theta + y \sin \theta = a.$ As θ varies, inclination is not constant. It does not pass through (0, 0)

Its distance from the origin is $\left| \frac{a}{\sqrt{\cos^2 \theta + \sin^2 \theta}} \right| = a$ is constant

12. If
$$3x + 2y = 1$$
 acts as a tangent to $y = f(x)$ at $x = \frac{1}{2}$ and if
 $p = \lim_{x \to 0} \frac{x(x-1)}{f\left(\frac{e^{2x}}{2}\right) - f\left(\frac{e^{-2x}}{2}\right)}$, then $\sum_{r=1}^{\infty} p^r =$ ______
 \checkmark A. $\frac{1}{2}$
 \checkmark B. $\frac{1}{3}$
 \checkmark C. $\frac{1}{6}$
 \checkmark D. $\frac{1}{7}$
Slope of $3x + 2y = 1$ is $\frac{-3}{2}$
 $\Rightarrow f'\left(\frac{1}{2}\right) = \frac{-3}{2}$
Using L-Hospital's rule we will get
 $p = \lim_{x \to 0} \frac{2x-1}{f'\left(\frac{e^{2x}}{2}\right)e^{2x} + f'\left(\frac{e^{-2x}}{2}\right)e^{-2x}} = \frac{-1}{\frac{-3}{2} - \frac{3}{2}}$
 $= \frac{-1}{-3} = \frac{1}{3} \Rightarrow \sum_{r=1}^{\infty} p^r = \frac{\frac{1}{3}}{1 - \left(\frac{1}{3}\right)} = \frac{1}{2}$

13. The normal to the curve $x = a(1 + \cos \theta), y = a \sin \theta$ at θ always passes through the fixed point

The equation of the normal at $[a(1 + \cos \theta), a \sin \theta]$ is

 $egin{aligned} (y-a\sin heta)&=rac{\sin heta}{\cos heta}[x-a(1+\cos heta)]\ y\cos heta-a\sin heta\cos heta&=x\sin heta-a\sin heta-a\sin heta\cos heta\ y\cos heta&=(x-a)\sin heta \end{aligned}$

Using family of lines we get fixed point = (a, 0)

14. If *m* is the slope of a tangent to the curve $e^y = 1 + x^2$, then

^{15.} The equation of the tangent to the curve $y = x + \frac{4}{x^2}$, which is parallel to the x- axis, is

A.
$$y = 8$$

B. $y = 0$
C. $y = 3$
C. $y = 3$
D. $y = 2$
 $\frac{dy}{dx} = 0$
 $\Rightarrow 1 - \frac{8}{x^3} = 0$
 $\Rightarrow x = 2$
 $y = 2 + \frac{4}{2^2}$
 $\Rightarrow y = 3$
Equation of Tangent at (2, 3) is
 $y - 3 = 0(x - 2) \Rightarrow y = 3$

16. The number of tangent(s) to the curve $y = \cos{(x + y)}, -2\pi \le x \le 2\pi$, that is (are) perpendicular to the line 2x - y = 3 is

$$\begin{array}{c|cccc} & \textbf{X} & \textbf{A.} & 1 \\ \hline \checkmark & \textbf{B.} & 2 \\ \hline \checkmark & \textbf{C.} & 3 \\ \hline & \textbf{X} & \textbf{C.} & 3 \\ \hline & \textbf{X} & \textbf{D.} & 4 \\ \hline & \frac{dy}{dx} = -\sin(x+y)\left(1+\frac{dy}{dx}\right) \\ & \text{Substituting } \frac{dy}{dx} = -\frac{1}{2} \text{ we get} \\ & \sin(x+y) = 1 \\ & \Rightarrow y = \cos(x+y) = 0 \\ & \Rightarrow \sin x = 1 \Rightarrow x = \frac{\pi}{2}, \frac{-3\pi}{2} \\ & \text{No. of points } = 2 \end{array}$$

17. If 2a + 3b + 6c = 0, then atleast one root of the equation $ax^2 + bx + c = 0$ lies in the interval

• A.
$$(0,1)$$

• B. $(1,2)$
• C. $(2,3)$
• D. $(1,3)$
Given, $2a + 3b + 6c = 0$
Let $f'(x) = ax^2 + bx + c$
 $f(x) = \frac{ax^3}{3} + \frac{bx^2}{2} + cx + d$
 $\Rightarrow f(x) = \frac{2ax^3 + 3bx^2 + 6cx + 6d}{6}$
Now, $f(1) = \frac{2a + 3b + 6c + 6d}{6} = \frac{6d}{6} = d$
and $f(0) = \frac{6d}{6} = d$
 $\therefore f(0) = f(1)$
 $\Rightarrow f'(x)$ will vanish at least once between

⇒ f'(x) will vanish atleast once betweeen 0 and 1 (by Rolle's theorem) ∴ atleast one of the roots of the equation $ax^2 + bx + c = 0$ lies between 0 and 1

18. If $f(x) = x^3 + bx^2 + ax$ satisfies the condition of Rolle's theorem on [1, 3] with $c = 2 + \frac{1}{\sqrt{3}}$. Then (a + b) =Α. X 0 Β. 3 **C.** _4 × D. 5 $f(x) = x^3 + bx^2 + ax$ $\Rightarrow f(1) = a + b + 1 \cdots (i)$ $f(3) = 3a + 9b + 27 \cdots (ii)$ $f(1) = f(3) \Rightarrow a + 4b + 13 = 0 \cdots (iii)$ $\Rightarrow f'(c) = 0,$ $\Rightarrow 3c^2 + 2bc + a = 0$ putting the value of c $a \Rightarrow 3\left(4+rac{1}{3}+rac{4}{\sqrt{3}}
ight)+2b\left(2+rac{1}{\sqrt{3}}
ight)+a=0$ $\Rightarrow 13+4\sqrt{3}+4b+rac{2b}{\sqrt{3}}+a=0$ Comparing with (iii), we get $4\sqrt{3} + \frac{2b}{\sqrt{3}} = 0$ $\Rightarrow b = -6$ Putting b in(iii) $\Rightarrow a = 11$ $\therefore a+b=5$

19. Let f be differentiable for all x. If f(1) = -2 and $f'(x) \ge 2$ for all $x \in [1, 6]$, then

Given that f(1) = -2 and $f'(x) \ge 2 \forall x \in [1, 6]$ Lagrange's mean value theorem states that if f(x) be continuous on [a, b]and differentiable on (a, b) then there exists some c between a and b such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

Given that f is differentiable for all x. Therefore Lagrange's mean value theorem can be applied.

Therefore,
$$f'(c) = \frac{f(6) - f(1)}{6 - 1} \ge 2$$

 $\Rightarrow f(6) - f(1) \ge 10$
 $\Rightarrow f(6) - (-2) \ge 10$
 $\Rightarrow f(6) \ge 10 - 2$
 $\Rightarrow f(6) \ge 8$

20. Given the function $f(x) = x^3 - 2x^2 - x + 1$. Then the value(s) of *c* satisfying the conditions of the mean value theorem for the function on the interval [-2, 2], is

The given function is a cubic polynomial and, hence, it is continuous and differentiable everywhere. Therefore the LMVT is applicable to this function. $f(-2) = (-2)^3 - 2 \cdot (-2)^2 - (-2) + 1$

f(-2) = -8 - 8 + 2 + 1 = -13 $f(2) = 2^3 - 2 \cdot 2^2 - 2 + 1$ f(2) = 8 - 8 - 2 + 1 = -1 $f'(x) = 3x^2 - 4x - 1$

According to LMVT, we have: $f'(c) = \frac{f(b) - f(a)}{b - a}$ $\Rightarrow 3c^2 - 4c - 1 = \frac{-1 - (-13)}{2 - (-2)},$ $\Rightarrow 3c^2 - 4c - 1 = 3,$ $\Rightarrow 3c^2 - 4c - 4 = 0$ $\Rightarrow (3c + 2)(c - 2) = 0 \Rightarrow c = -\frac{2}{3}, 2$ Only one root $c_1 = -\frac{2}{3}$ belongs to the open interval (-2, 2)