BYJU'S Study Planner for Board Term I (CBSE Grade 12)

Date: 21/11/2021
Subject: Mathematics
Topic : Application of Derivative
Class: Standard XII

1. The tangent to the curve $y=x e^{x^{2}}$ is passing through the point $(1, e)$ and also passes through the point :
\times A. $(2,3 e)$
x B. $(3,6 e)$C. $\left(\frac{4}{3}, 2 e\right)$
x
D. $\left(\frac{5}{3}, 2 e\right)$

Given curve, $y=x e^{x^{2}}$
And its slope of tangent $=\frac{d y}{d x}$

$$
\begin{aligned}
\frac{d y}{d x} & =x \cdot 2 x \cdot e^{x^{2}}+e^{x^{2}} \\
& =2 x^{2} e^{x^{2}}+e^{x^{2}} \\
& =e^{x^{2}}\left(1+2 x^{2}\right)
\end{aligned}
$$

At point $(1, e), \frac{d y}{d x}=3 e$
For given point $(1, e)$ equation of the tangent is
$(y-e)=3 e(x-1)$
Hence, the point $\left(\frac{4}{3}, 2 e\right)$ lies on the above line.

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

2. The normal to the curve $y(x-2)(x-3)=x+6$ at the point where the curve intersects the y-axis passes through the point:
(A. $\left(-\frac{1}{2},-\frac{1}{2}\right)$
(v)
B. $\left(\frac{1}{2}, \frac{1}{2}\right)$
x
C. $\left(\frac{1}{2},-\frac{1}{3}\right)$
\times
D. $\left(\frac{1}{2}, \frac{1}{3}\right)$
$y=\frac{x+6}{(x-2)(x-3)}$
Coordinates of point of intersection with y-axis is $(0,1)$
$y=\frac{x+6}{x^{2}-5 x+6}$
$\Rightarrow y^{\prime}=\frac{\left(x^{2}-5 x+6\right)-(2 x-5)(x+6)}{\left(x^{2}-5 x+6\right)^{2}}$
$\left.\Rightarrow y^{\prime}\right|_{x=0}=\frac{6-(-30)}{36}=1$
Then, slope of normal at $(0,1)$ is -1
Equation of normal passing through $(0,1)$ is $y-1=-1(x-0)$
i.e., $x+y=1$

Thus, the normal passes through $\left(\frac{1}{2}, \frac{1}{2}\right)$.

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

3. Let C be a curve given by $y(x)=1+\sqrt{4 x-3}, x>\frac{3}{4}$. If P is a point on C, such that the tangent at P has slope $\frac{2}{3}$, then a point through which the normal at P passes, is:
x A. $(3,-4)$
B. $(1,7)$
\times
C. $(2,3)$
\times
D. $(4,-3)$
$y=1+\sqrt{4 x-3}$
$\frac{d y}{d x}=\frac{1}{2 \sqrt{4 x-3}} \times 4=\frac{2}{3}$
$\Rightarrow x=3, y=1+3=4$
Slope of the normal $=-\frac{3}{2}$
Equation of the normal is,
$y-4=-\frac{3}{2}(x-3)$
$\Rightarrow 3 x+2 y-17=0$
\Rightarrow Which passes through $(1,7)$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

4. The approximate change in volume V of a cube of side x meters caused by increasing the side by 2% is:
x A. $0.03 x^{3}$ cubic meter
\times
B. $0.04 x^{3}$ cubic meterC. $0.06 x^{3}$ cubic meter
x
D. $0.08 x^{3}$ cubic meter

We have volume $V=x^{3}$
$\Rightarrow d V=\left(\frac{d V}{d x}\right) \triangle x$
$=\left(3 x^{2}\right) \triangle x$
$=\left(3 x^{2}\right)(0.02 x)$
$=0.06 x^{3} m^{3}$
Thus the approximate change in volume V is $0.06 x^{3} \mathrm{~m}^{3}$
5. The approximate value of $f(5.001)$ where $f(x)=x^{3}-7 x^{2}+15$, is:
A. -34.995
\times
B. 34.995
\times
C. -35.005
\times
D. 35.005

Firstly break the number 5.001 as $x=5$ and $\triangle x=0.001$ and use the relation
$f(x+\triangle x)=f(x)+\triangle x f^{\prime}(x)$
Consider, $f(x)=x^{3}-7 x^{2}+15$
$\Rightarrow f^{\prime}(x)=3 x^{2}-14 x$
$\Rightarrow f(x+\triangle x)=f(x)+\triangle x f^{\prime}(x)$
$=\left(x^{3}-7 x^{2}+15\right)+\triangle x\left(3 x^{2}-14 x\right)$
$\Rightarrow f(5.001)=\left(5^{3}-7 \times 5^{2}+15\right)+\left(3 \times 5^{2}-14 \times 5\right)(0.001)$
$=(125-175+15)+(75-70)(0.001)$
$=-35+(5)(0.001)$
$=-35+0.005=-34.995$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

6. A particle moves in a straight line according to the law $v^{2}=4 a(x \sin x+\cos x)$ where v is the velocity of a particle at a distance x from the fixed point. Then the acceleration is
x A. $2 a x \sin x$
x B. $a x \sin x$
(C. $a x \cos x$
(v)
D. $2 a x \cos x$

Given: $v^{2}=4 a(x \sin x+\cos x)$
We know, Acceleration $=\frac{d v}{d t}$
$\Rightarrow 2 v \frac{d v}{d t}=4 a\left(x \cos x \frac{d x}{d t}+\sin x \frac{d x}{d t}-\sin x \frac{d x}{d t}\right)$
$\Rightarrow \frac{d v}{d t}=2 a x \cos x\left(\because \frac{d x}{d t}=v\right)$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

7. Coffee is coming out from a conical filter, with height and diameter both are 15 cm into a cylindrical coffee pot with a diameter 15 cm . The rate at which coffee comes out from the filter into the pot is $100 \mathrm{~cm}^{3} / \mathrm{min}$.

The rate (in $\mathrm{cm} / \mathrm{min}$) at which the level of coffee in the pot is rising at the instance when it is 10 cm , is equal to
A. $\frac{16}{9 \pi}$
x
B. $\frac{5}{3 \pi}$
\times
C. $\frac{9}{16 \pi}$
\times
D. $\frac{4}{3 \pi}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

For a cylindrical pot, $V=\pi r^{2} h$
$\Rightarrow \frac{d V}{d t}=\pi\left[r^{2} \frac{d h}{d t}\right]$
$\{\because r=$ constant $\}$

$\Rightarrow 100=\pi r^{2} \frac{d h}{d t}$
$\Rightarrow 100=\pi \cdot \frac{225}{4} \cdot \frac{d h}{d t}$
$\Rightarrow \frac{d h}{d t}=\frac{16}{9 \pi} \mathrm{~cm} / \mathrm{min}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

8. The approximate value of $(25)^{\frac{1}{3}}$ is
x A. 2.921
x B. 2.923
x C. 2.924
(v) D. 2.926

Let $f(x)=x^{\frac{1}{3}}$
$x=27$ and $\triangle x=-2$
We know, $f(x+\triangle x)=f(x)+\triangle x f^{\prime}(x)$
$f(27-2)=f(27)-2 \cdot \frac{1}{3}(27)^{-\frac{2}{3}}$
$f(25)=3-\frac{2}{27}=\frac{79}{27}$
$\therefore(25)^{\frac{1}{3}}=2.926$
9. A particle moves on a line according to the law $s=a t^{2}+b t+c$. If the displacement after one second is 16 cm , the velocity after 2 seconds is 24 $\mathrm{cm} / \mathrm{sec}$ and the acceleration is $8 \mathrm{~cm} / \mathrm{sec}^{2}$, then (a, b, c)
A. $(4,8,4)$
x B. $(4,4,8)$
x
C. $(8,4,4)$
x D. $(8,8,4)$
We have,
$s=a t^{2}+b t+c$
when $t=1, a+b+c=16$
$v=\frac{d s}{d t}=2 a t+b$
when $t=2,4 a+b=24$
acceleration $=\frac{d v}{d t}=2 a=8 \Rightarrow a=4, b=8, c=4$

BYJU'S Study Planner for Board Term I

 (CBSE Grade 12)10. If the rate of change in the volume of a sphere is equal to the rate of change in its radius, then the radius is equal to
(A) $\frac{1}{2 \pi}$B. $\frac{1}{2 \sqrt{\pi}}$
(x) C. $\frac{1}{\sqrt{2 \pi}}$
(D. $\frac{2}{\pi}$

Volume of sphere, $V=\frac{4}{3} \pi r^{3}$
Given, $\quad \frac{d V}{d t}=\frac{d r}{d t}$
$\Rightarrow \frac{4 \pi}{3} \times 3 r^{2} \times \frac{d r}{d t}=\frac{d r}{d t}$
$\Rightarrow r^{2}=\frac{1}{4 \pi} \Rightarrow r=\frac{1}{2 \sqrt{\pi}}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

11. The normal to the curve $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ at any point θ is such that

X A. it makes a constant angle with the x-axis.
x B. it passes through origin.
(v)
C. it is at a constant distance from the origin.
x D. none of these
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$
$\frac{d y}{d \theta}=a \theta \sin \theta$
$\frac{d x}{d \theta}=a \theta \cos \theta$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\tan \theta$
\therefore Slope of the normal $=-\cot \theta$
Therefore, equation of the normal is
$y-a(\sin \theta-\theta \cos \theta)=-\frac{\cos \theta}{\sin \theta}(x-a(\cos \theta+\theta \sin \theta))$
$y \sin \theta-a \sin ^{2} \theta+a \theta \sin \theta \cos \theta=-x \cos \theta+a \cos ^{2} \theta+a \theta \sin \theta \cos \theta$
$\Rightarrow x \cos \theta+y \sin \theta=a$.
As θ varies, inclination is not constant. It does not pass through $(0,0)$
Its distance from the origin is $\left|\frac{a}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}\right|=a$ is constant

BYJU'S Study Planner for Board Term I

(CBSE Grade 12)

12. If $3 x+2 y=1$ acts as a tangent to $y=f(x)$ at $x=\frac{1}{2}$ and if $p=\lim _{x \rightarrow 0} \frac{x(x-1)}{f\left(\frac{e^{2 x}}{2}\right)-f\left(\frac{e^{-2 x}}{2}\right)}$, then $\sum_{r=1}^{\infty} p^{r}=$ \qquad
(A) $\frac{1}{2}$
(B. $\frac{1}{3}$
(C. $\frac{1}{6}$
× D. $\frac{1}{7}$
Slope of $3 x+2 y=1$ is $\frac{-3}{2}$
$\Rightarrow f^{\prime}\left(\frac{1}{2}\right)=\frac{-3}{2}$
Using L-Hospital's rule we will get
$p=\lim _{x \rightarrow 0} \frac{2 x-1}{f^{\prime}\left(\frac{e^{2 x}}{2}\right) e^{2 x}+f^{\prime}\left(\frac{e^{-2 x}}{2}\right) e^{-2 x}}=\frac{-1}{\frac{-3}{2}-\frac{3}{2}}$
$=\frac{-1}{-3}=\frac{1}{3} \Rightarrow \sum_{r=1}^{\infty} p^{r}=\frac{\frac{1}{3}}{1-\left(\frac{1}{3}\right)}=\frac{1}{2}$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

13. The normal to the curve $x=a(1+\cos \theta), y=a \sin \theta$ at θ always passes through the fixed point
A. $(a, 0)$
\times
B. $(0, a)$
x C. $(0,0)$
x D. (a, a)
$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=-\frac{\cos \theta}{\sin \theta}$
Slope of normal $=\frac{\sin \theta}{\cos \theta}$
The equation of the normal at $[a(1+\cos \theta), a \sin \theta]$ is
$(y-a \sin \theta)=\frac{\sin \theta}{\cos \theta}[x-a(1+\cos \theta)]$
$y \cos \theta-a \sin \theta \cos \theta=x \sin \theta-a \sin \theta-a \sin \theta \cos \theta$
$y \cos \theta=(x-a) \sin \theta$
Using family of lines we get fixed point $=(a, 0)$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

14. If m is the slope of a tangent to the curve $e^{y}=1+x^{2}$, then
x A. $|m|>1$
\times
B. $m>1$
x
C. $m>-1$
(v)
D. $|m| \leq 1$
$\frac{d y}{d x}=m=\frac{2 x}{1+x^{2}}$
$\Rightarrow|m|=\frac{2|x|}{1+x^{2}}$
$(1-x)^{2} \geq 0$
$\Rightarrow 1+x^{2} \geq 2 x$
$(1+x)^{2} \geq 0$
$\Rightarrow 1+x^{2} \geq-2 x$
$\therefore 1+x^{2} \geq 2|x|$
$\Rightarrow|m| \leq 1$
15. The equation of the tangent to the curve $y=x+\frac{4}{x^{2}}$, which is parallel to the x - axis, is
x A. $y=8$
X B. $y=0$C. $y=3$
\times
D. $y=2$
$\frac{d y}{d x}=0$
$\Rightarrow 1-\frac{8}{x^{3}}=0$
$\Rightarrow x=2$
$y=2+\frac{4}{2^{2}}$
$\Rightarrow y=3$
Equation of Tangent at $(2,3)$ is
$y-3=0(x-2) \Rightarrow y=3$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

16. The number of tangent(s) to the curve $y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$, that is (are) perpendicular to the line $2 x-y=3$ is
x A. 1
B. 2
x C. 3
x D. 4
$\frac{d y}{d x}=-\sin (x+y)\left(1+\frac{d y}{d x}\right)$
Substituting $\frac{d y}{d x}=-\frac{1}{2}$ we get
$\sin (x+y)=1$
$\Rightarrow y=\cos (x+y)=0$
$\Rightarrow \sin x=1 \Rightarrow x=\frac{\pi}{2}, \frac{-3 \pi}{2}$
No. of points $=2$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

17. If $2 a+3 b+6 c=0$, then atleast one root of the equation $a x^{2}+b x+c=0$ lies in the interval
A. $(0,1)$
\times
B. $(1,2)$
x
C. $(2,3)$
x D. $(1,3)$
Given, $2 a+3 b+6 c=0$
Let $f^{\prime}(x)=a x^{2}+b x+c$
$f(x)=\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c x+d$
$\Rightarrow f(x)=\frac{2 a x^{3}+3 b x^{2}+6 c x+6 d}{6}$
Now, $f(1)=\frac{2 a+3 b+6 c+6 d}{6}=\frac{6 d}{6}=d$
and $f(0)=\frac{6 d}{6}=d$
$\therefore f(0)=f(1)$
$\Rightarrow f^{\prime}(x)$ will vanish atleast once betweeen 0 and 1 (by Rolle's theorem)
\therefore atleast one of the roots of the equation $a x^{2}+b x+c=0$ lies between 0 and 1

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

18. If $f(x)=x^{3}+b x^{2}+a x$ satisfies the condition of Rolle's theorem on $[1,3]$ with $c=2+\frac{1}{\sqrt{3}}$. Then $(a+b)=$
x A. 0
x B. 3
\times C. -4
($)$ D. 5
$f(x)=x^{3}+b x^{2}+a x$
$\Rightarrow f(1)=a+b+1 \cdots(i)$
$f(3)=3 a+9 b+27 \cdots(i i)$
$f(1)=f(3) \Rightarrow a+4 b+13=0 \cdots(i i i)$
$\Rightarrow f^{\prime}(c)=0$,
$\Rightarrow 3 c^{2}+2 b c+a=0$
putting the value of c
$\Rightarrow 3\left(4+\frac{1}{3}+\frac{4}{\sqrt{3}}\right)+2 b\left(2+\frac{1}{\sqrt{3}}\right)+a=0$
$\Rightarrow 13+4 \sqrt{3}+4 b+\frac{2 b}{\sqrt{3}}+a=0$
Comparing with (iii), we get
$4 \sqrt{3}+\frac{2 b}{\sqrt{3}}=0$
$\Rightarrow b=-6$
Putting b in $(i i i)$
$\Rightarrow a=11$
$\therefore a+b=5$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

19. Let f be differentiable for all x. If $f(1)=-2$ and $f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then
x A. $f(6)<8$
B. $f(6) \geq 8$
x
C. $f(6) \geq 5$
x
D. $f(6) \leq 5$

Given that $f(1)=-2$ and $f^{\prime}(x) \geq 2 \forall x \in[1,6]$
Lagrange's mean value theorem states that if $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b) then there exists some c between a and b such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Given that f is differentiable for all x. Therefore Lagrange's mean value theorem can be applied.
Therefore, $f^{\prime}(c)=\frac{f(6)-f(1)}{6-1} \geq 2$
$\Rightarrow f(6)-f(1) \geq 10$
$\Rightarrow f(6)-(-2) \geq 10$
$\Rightarrow f(6) \geq 10-2$
$\Rightarrow f(6) \geq 8$

BYJU'S Study Planner for Board Term I (CBSE Grade 12)

20. Given the function $f(x)=x^{3}-2 x^{2}-x+1$. Then the value(s) of c satisfying the conditions of the mean value theorem for the function on the interval $[-2,2]$, is
x A. ± 1
x B. $\frac{2}{3}$C. $-\frac{2}{3}$
x
D. 2

The given function is a cubic polynomial and, hence, it is continuous and differentiable everywhere. Therefore the LMVT is applicable to this function.
$f(-2)=(-2)^{3}-2 \cdot(-2)^{2}-(-2)+1$
$f(-2)=-8-8+2+1=-13$
$f(2)=2^{3}-2 \cdot 2^{2}-2+1$
$f(2)=8-8-2+1=-1$
$f^{\prime}(x)=3 x^{2}-4 x-1$
According to LMVT, we have:
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
$\Rightarrow 3 c^{2}-4 c-1=\frac{-1-(-13)}{2-(-2)}$,
$\Rightarrow 3 c^{2}-4 c-1=3$,
$\Rightarrow 3 c^{2}-4 c-4=0$
$\Rightarrow(3 c+2)(c-2)=0 \Rightarrow c=-\frac{2}{3}, 2$
Only one root $c_{1}=-\frac{2}{3}$ belongs to the open interval $(-2,2)$

