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                                      BYJU'S Full Test for Board Term I  
                                                      (CBSE Grade 12)  

MATHEMATICS ANSWER KEYS and SOLUTIONS 

ANSWER KEY 

Q1 C Q26 B 

Q2 A Q27 B 

Q3 B Q28 B 

Q4 C Q29 B 

Q5 B Q30 A 

Q6 C Q31 A 

Q7 D Q32 D 

Q8 C Q33 C 

Q9 C Q34 D 

Q10 C Q35 A 

Q11 C Q36 B 

Q12 B Q37 A 

Q13 C Q38 B 

Q14 B Q39 B 

Q15 C Q40 B 

Q16 B Q41 D 

Q17 C Q42 B 

Q18 A Q43 B 

Q19 D Q44 A 

Q20 D Q45 D 

Q21 C Q46 B 

Q22 A Q47 B 

Q23 B Q48 C 

Q24 A Q49 B 

Q25 D Q50 B 
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SOLUTIONS 

Q1 
If 𝐴 = [

𝑥 1 3
−1 𝑦 4
−3 𝑧 0

] is a skew-symmetric matrix, then the values of 𝑥, 𝑦, 𝑧 respectively 

are  

A. 0, 0, 0 

B. 0, 0, 4 

C. 0, 0, −4 

D. 1, 3, 4 

Answer: (𝐶) 0, 0, −4 

 

Solution:  

Given: 𝐴 = [
𝑥 1 3

−1 𝑦 4
−3 𝑧 0

] 

𝐴 is skew symmetric, then 𝐴𝑇 = −𝐴 

or, 𝑎𝑖𝑗 = −𝑎𝑗𝑖  for all 𝑖, 𝑗 

⇒ 𝑎11 = 𝑥 = 0 and 𝑎22 = 𝑦 = 0 

𝑎32 = −𝑎23 ⇒ 𝑎32 = −4 = 𝑧  

Hence, the values of 𝑥, 𝑦 and 𝑧 are 0, 0 and −4 respectively. 

Q2 Let 𝐴 = ℝ − {3} and 𝐵 = ℝ − {1}. If 𝑓: 𝐴 → 𝐵 is defined by 𝑓(𝑥) =
𝑥−2

𝑥−3
, then  

A. 𝑓 is bijective 

B. 𝑓 is one-one but not onto  

C. 𝑓 is onto but not one-one 

D. 𝑓 is not a function 

Answer: (𝐴) 𝑓 is bijective 

 

Solution:  

For one-one: 

Let 𝑓(𝑥1) = 𝑓(𝑥2) 

⇒
𝑥1 − 2

𝑥1 − 3
=

𝑥2 − 2

𝑥2 − 3
 

⇒ 𝑥1𝑥2 − 3𝑥1 − 2𝑥2 + 6 = 𝑥1𝑥2 − 2𝑥1 − 3𝑥2 + 6 

⇒ 𝑥1 = 𝑥2 
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∴ 𝑓 is one-one function. 

Now, let 𝑦 =
𝑥−2

𝑥−3
 

⇒ 𝑥𝑦 − 3𝑦 = 𝑥 − 2 

⇒ 𝑥𝑦 − 𝑥 = 3𝑦 − 2 

⇒ 𝑥 =
3𝑦 − 2

𝑦 − 1
 

𝑥 is defined for all 𝑦 ∈ ℝ − {1} 

∴ Range of 𝑓 is ℝ − {1} which is equal to co-domain. 

∴ 𝑓 is onto function. 

Hence, 𝑓 is bijective. 

Q3 
If 𝑓(𝑥) = {

 
1−cos 2𝑥

𝑥2 , 𝑥 ≠ 0

   𝑎,       𝑥 = 0
 is continuous at 𝑥 = 0, then the value of 𝑎 is 

A. 4 

B. 2 

C. 
1

2
 

D. −2 

Answer: (𝐵) 2  

 

Solution:  

Given: 𝑓(𝑥) = {
 
1−cos 2𝑥

𝑥2 , 𝑥 ≠ 0

   𝑎,         𝑥 = 0
 

Since 𝑓(𝑥) is continuous at 𝑥 = 0, 

∴ lim
𝑥→0

𝑓(𝑥) = 𝑓(0) = 𝑎 

⇒ 𝑎 = lim
𝑥→0

 
1 − cos 2𝑥

𝑥2
 

⇒ 𝑎 = lim
𝑥→0

 
2 sin2 𝑥

𝑥2
 

⇒ 𝑎 = lim
𝑥→0

( 
sin 𝑥

𝑥
)

2

× 2 = 2      (∵ lim
𝑥→0

sin 𝑥

𝑥
= 1 ) 

∴ 𝑎 = 2 

Q4 The principal value of cos−1 (−
√3

2
)  is 

A. 
4𝜋

3
 

B. 
𝜋

3
 

C. 
5𝜋

6
 

D. −
𝜋

6
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Answer: (𝐶) 
5𝜋

6
 

 

Solution: 

We know that cos−1(−𝑥) = 𝜋 − cos−1(𝑥) for all 𝑥 ∈ [−1, 1] 

∴ cos−1 (−
√3

2
) = 𝜋 − cos−1 (

√3

2
)  

⇒ cos−1 (−
√3

2
) = 𝜋 −

𝜋

6
=

5𝜋

6
 

We know that the range of principal value branch of cos−1 is [0, 𝜋] and 
5𝜋

6
∈ [0, π]. 

∴ Principal value of cos−1 (−
√3

2
)  is 

5𝜋

6
. 

Q5 If  [
2   𝑥
3 −4

] + [
2 −3
𝑧   𝑝

] = [
4 0

𝑧 + 3 𝑝 − 4
], then the value of 𝑥 is  

A. −3 

B. 3 

C. 4 

D. 5 

Answer: (𝐵) 3 

 

Solution:  

Given: [
2   𝑥
3 −4

] + [
2 −3
𝑧   𝑝

] = [
4 0

𝑧 + 3 𝑝 − 4
] 

⇒ [
4 𝑥 − 3

𝑧 + 3 𝑝 − 4
] = [

4 0
𝑧 + 3 𝑝 − 4

] 

We know that corresponding entries of equal matrices are equal. 

∴ 𝑥 = 3 

Q6 The equation of the normal to the curve 𝑦 = 𝑥2 + 𝑥 at 𝑥 = −2 is 

A. 𝑥 = 3𝑦 + 8 

B. 𝑦 = 3𝑥 + 8 

C. 3𝑦 = 𝑥 + 8 

D. 3𝑥 = 𝑦 + 8 

Answer: (𝐶) 3𝑦 = 𝑥 + 8  

 

Solution:  

𝑦 = 𝑥2 + 𝑥 

The point on the curve is (−2, 2). 
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Differentiating with respect to 𝑥, we get 

𝑑𝑦

𝑑𝑥
= 2𝑥 + 1 

At 𝑥 = −2, 

𝑑𝑦

𝑑𝑥
= −4 + 1 = −3 

So, the slope of normal at (−2, 2) is  
1

3
. 

Now, equation of the normal at (−2, 2) is 

𝑦 − 2 =
1

3
(𝑥 + 2) 

∴ 3𝑦 = 𝑥 + 8 

Q7 If 𝑓(𝑥) =
2𝑥−sin−1 𝑥

2𝑥+tan−1 𝑥
 is continuous at every point in its domain, then the value of 𝑓(0) 

is  

A. 2 

B. −
1

3
 

C. 
2

3
 

D. 
1

3
 

Answer: (𝐷) 
1

3
 

 

Solution:  

For 𝑓(𝑥) to be continuous at every point in its domain, it must be continuous at  

𝑥 = 0.  

∴ We must have lim
𝑥→0

𝑓(𝑥) = 𝑓(0) 

⇒ 𝑓(0) = lim
𝑥→0

2𝑥 − sin−1 𝑥

2𝑥 + tan−1 𝑥
  

Dividing numerator and denominator by 𝑥, we get 

𝑓(0) = lim
𝑥→0

2 −
sin−1 𝑥

𝑥

2 +
tan−1 𝑥

𝑥

=
2 − 1

2 + 1
 

∴ 𝑓(0) =
1

3
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Q8 The derivative of tan−1(tan 𝑥) with respect to 𝑥 where 𝑥 ∈ (0,
𝜋

2
), is 

A. 
1

1+tan2 𝑥
 

B. 𝑥 

C. 1 

D. 
sec2 𝑥

1+tan 𝑥
 

Answer: (𝐶) 1 

 

Solution:  

Let 𝑦 = tan−1(tan 𝑥) 

⇒ 𝑦 = 𝑥 ∀ 𝑥 ∈ (0,
𝜋

2
) 

Differentiating with respect to 𝑥, we get 

𝑑𝑦

𝑑𝑥
= 1 

Q9 If 𝑓(𝑥) = 𝑥2 − 2𝑎𝑥 + 6 is strictly increasing function for 𝑥 > 0, then  

A. 𝑎 ∈ (1, 2) 

B. 𝑎 ∈ (0, ∞) 

C. 𝑎 ∈ (−∞, 0] 

D. 𝑎 ∈ (0, 7) 

Answer: (𝐶) 𝑎 ∈ (−∞, 0] 

 

Solution:  

Given: 𝑓(𝑥) = 𝑥2 − 2𝑎𝑥 + 6 

Differentiating with respect to 𝑥, we get 

𝑓′(𝑥) = 2𝑥 − 2𝑎 

For strictly increasing, 𝑓′(𝑥) > 0 

⇒  2𝑥 − 2𝑎 > 0 

⇒  𝑥 > 𝑎 but 𝑥 > 0 

∴ 𝑎 ∈ (−∞, 0] 

Q10 The derivative of ln(sec 𝜃 + tan 𝜃) with respect to sec 𝜃 at 𝜃 =
𝜋

4
 is  

A. −1 

B. 0 

C. 1 

D. √2 

Answer: (𝐶) 1 
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Solution:  

Let 𝑦 = ln(sec 𝜃 + tan 𝜃) and 𝑧 = sec 𝜃 

Now,  

𝑑𝑦

𝑑𝑧
=

𝑑𝑦
𝑑𝜃
𝑑𝑧
𝑑𝜃

   ⋯ (1)  

We have, 𝑦 = ln(sec 𝜃 + tan 𝜃) 

Differentiating with respect to 𝜃, we get 

𝑑𝑦

𝑑𝜃
=

1

sec 𝜃 + tan 𝜃
×

𝑑

𝑑𝜃
(sec 𝜃 + tan 𝜃) 

∴
𝑑𝑦

𝑑𝜃
=

sec 𝜃 tan 𝜃 + sec2 𝜃

sec 𝜃 + tan 𝜃
= sec 𝜃 

and 𝑧 = sec 𝜃 

Differentiating with respect to 𝜃, we get 

𝑑𝑧

𝑑𝜃
= sec 𝜃 tan 𝜃 

From (1), we get 

𝑑𝑦

𝑑𝑧
=

sec 𝜃

sec 𝜃 tan 𝜃
   

⇒
𝑑𝑦

𝑑𝑧
=

1

tan 𝜃
 

At 𝜃 =
𝜋

4
,

𝑑𝑦

𝑑𝑧
= 1 

Q11 If 𝑦 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ +

𝑥𝑛

𝑛!
, then 

𝑑𝑦

𝑑𝑥
 is 

A. 𝑦 − 𝑥𝑛  

B. 𝑦 −
𝑥𝑛

𝑛
 

C. 𝑦 −
𝑥𝑛

𝑛!
 

D. 𝑦 −
𝑥𝑛

(𝑛−1)!
 

Answer: (𝐶) 𝑦 −
𝑥𝑛

𝑛!
 

 

Solution:  

Given: 𝑦 = 1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+

𝑥4

4!
+ ⋯ +

𝑥𝑛

𝑛!
 

Differentiating with respect to 𝑥, we get 

𝑑𝑦

𝑑𝑥
= 0 +

1

1!
+

2𝑥

2!
+

3𝑥2

3!
+

4𝑥3

4!
+ ⋯ +

𝑛𝑥𝑛−1

𝑛!
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⇒
𝑑𝑦

𝑑𝑥
= {1 +

𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥𝑛−1

(𝑛 − 1)!
+

𝑥𝑛

𝑛!
} −

𝑥𝑛

𝑛!
 

∴
𝑑𝑦

𝑑𝑥
= 𝑦 −

𝑥𝑛

𝑛!
 

Q12 The area of the triangle whose vertices are 𝐴(−3, 0), 𝐵(3, 0) and 𝐶(0, 3), is  

A. 18 square units 

B. 9 square units 

C. 6 square units 

D. 12 square units 

Answer: (𝐵) 9 square units  

 

Solution:  

We know that the area of triangle whose vertices are (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3) is  

Δ = |
1

2
|
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

||  

⇒ Δ = |
1

2
|
−3 0 1
3 0 1
0 3 1

|| 

⇒ Δ = |
1

2
{−3(−3) − 0 + 1(9 − 0)}| 

⇒ Δ = 9 square units 

Q13 
If 𝑥 = 𝑎 cos3 𝜃 and 𝑦 = 𝑎 sin3 𝜃 where 𝜃 ∈ (0,

𝜋

2
) and 𝑎 is constant, then √1 + (

𝑑𝑦

𝑑𝑥
)

2

 

is equal to  

A. tan2 𝜃 

B. sec2 𝜃 

C. sec 𝜃 

D. −sec 𝜃 

Answer: (𝐶) sec 𝜃 

 

Solution:  

We have, 

𝑥 = 𝑎 cos3 𝜃 

Differentiating with respect to 𝜃, we get 

𝑑𝑥

𝑑𝜃
= −3𝑎 cos2 𝜃 sin 𝜃 
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and 𝑦 = 𝑎 sin3 𝜃 

Differentiating with respect to 𝜃, we get 

𝑑𝑦

𝑑𝜃
= 3𝑎 sin2 𝜃 cos 𝜃 

Now, 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝜃
𝑑𝑥

𝑑𝜃

 

 ⇒  
𝑑𝑦

𝑑𝑥
=

3𝑎 sin2 𝜃 cos 𝜃

−3𝑎 cos2 𝜃 sin 𝜃
= − tan 𝜃 

⇒ 1 + ( 
𝑑𝑦

𝑑𝑥
)

2

= 1 + tan2 𝜃 = sec2 𝜃 

⇒ √1 + (
𝑑𝑦

𝑑𝑥
)

2

= √sec2 𝜃 = | sec 𝜃 | 

∴ √1 + (
𝑑𝑦

𝑑𝑥
)

2

= sec 𝜃       [∵ 𝜃 ∈ (0,
𝜋

2
)] 

Q14 Adjoint of matrix 𝐴 = [
1 2
3 4

] is 

A. [
4 2
3 1

 ] 

B. [
4 −2

−3 1
] 

C. [
1 2
3 4

] 

D. [
1 −2

−3 4
] 

Answer: (𝐵) 𝐴 = [
4 −2

−3 1
] 

 

Solution:  

Given: 𝐴 = [
1 2
3 4

] 

⇒ 𝑎𝑑𝑗(𝐴) = [
4 −3

−2 1
]

𝑇

 

∴ 𝑎𝑑𝑗(𝐴) = [
4 −2

−3 1
]

 

 

Q15 Region represented by 𝑥 < 0 and 𝑦 < 0 is  

A. First quadrant 

B. Second quadrant 

C. Third quadrant 

D. Fourth quadrant 

Answer: (𝐶) Third quadrant 
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Solution:  

 

Clearly, this is third quadrant. 

Q16 If 𝑦 = 𝑒tan 3𝑥 , then 
𝑑𝑦

𝑑𝑥
 is  

A. 𝑒tan 3𝑥 × sec2 3𝑥 

B. 3𝑒tan 3𝑥 × sec2 3𝑥 

C. 3𝑒tan 3𝑥 × tan 3𝑥 

D. 3𝑒tan 3𝑥 × sec 3𝑥 

Answer: (𝐵) 3𝑒tan 3𝑥 × sec2 3𝑥 

 

Solution:  

Given: 𝑦 = 𝑒tan 3𝑥  

Differentiating with respect to 𝑥, we get 

𝑑𝑦

𝑑𝑥
= 𝑒tan 3𝑥 ×

𝑑

𝑑𝑥
(tan 3𝑥) 

⇒
𝑑𝑦

𝑑𝑥
= 𝑒tan 3𝑥 × sec2 3𝑥 ×

𝑑

𝑑𝑥
(3𝑥) 

∴
𝑑𝑦

𝑑𝑥
= 3𝑒tan 3𝑥 × sec2 3𝑥 

Q17 If the variable tangent to the curve 𝑥2𝑦 = 𝑐3 makes intercepts 𝑎 and 𝑏 on 𝑥 and 𝑦 

axes respectively, then the value of 𝑎2𝑏 is  

A. 27𝑐3 

B. 
4

27
𝑐3 

C. 
27

4
𝑐3 

D. 
4

9
𝑐3 

Answer: (𝐶) 
27

4
𝑐3 
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Solution:  

Given curve: 𝑥2𝑦 = 𝑐3 

Differentiating with respect to 𝑥, we get 

𝑥2
𝑑𝑦

𝑑𝑥
+ 2𝑥𝑦 = 0 

⇒  
𝑑𝑦

𝑑𝑥
= −

2𝑦

𝑥
 

Equation of tangent at (ℎ, 𝑘) is  

𝑦 − 𝑘 = −
2𝑘

ℎ
(𝑥 − ℎ) 

At 𝑦 = 0,  𝑥 =
3ℎ

2
= 𝑎 

At 𝑥 = 0,  𝑦 = 3𝑘 = 𝑏 

∴ 𝑎2𝑏 =
9ℎ2

4
× 3𝑘 =

27ℎ2𝑘

4
=

27

4
𝑐3 

Q18 A relation 𝑅 on the set of natural numbers ℕ is defined as 

 𝑥𝑅𝑦 ⇔ 𝑥2 − 4𝑥𝑦 + 3𝑦2 = 0; 𝑥, 𝑦 ∈ ℕ. Then 𝑅 is  

A. reflexive but neither symmetric nor transitive relation 

B. symmetric but neither reflexive nor transitive relation 

C. transitive but neither reflexive nor symmetric relation 

D. an equivalence relation 

Answer: (𝐴) reflexive but neither symmetric nor transitive relation 

 

Solution:  

Given: 𝑥𝑅𝑦 ⇔ 𝑥2 − 4𝑥𝑦 + 3𝑦2 = 0; 𝑥, 𝑦 ∈ ℕ 

⇒ 𝑥2 − 𝑥𝑦 − 3𝑥𝑦 + 3𝑦2 = 0 
⇒ 𝑥(𝑥 − 𝑦) − 3𝑦(𝑥 − 𝑦) = 0 
⇒ (𝑥 − 3𝑦)(𝑥 − 𝑦) = 0 
∴  (𝑥, 𝑦) ∈ 𝑅 iff (𝑥 − 3𝑦)(𝑥 − 𝑦) = 0 
 
As (𝑥 − 3𝑥)(𝑥 − 𝑥) = 0 ∀ 𝑥 ∈ ℕ, 
⇒ (𝑥, 𝑥) ∈ 𝑅 
So, 𝑅 is a reflexive relation. 
 
It can be observed that (3, 1) ∈ 𝑅 but (1, 3) ∉ 𝑅 as (1 − 9)(1 − 3) ≠ 0 
So, 𝑅 is not a symmetric relation. 
 

As (3, 1) and (1,
1

3
 ) ∈ 𝑅 but (3,

1

3
) ∉ 𝑅, 

so 𝑅 is not a transitive relation.  
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Q19 A covered box of volume 72 cm3 and the base sides in a ratio of 1: 2 is to be made. 

The length of all sides so that the total surface area is the least possible, is 

A. 2, 4, 9 

B. 8, 4, 3 

C. 3, 6, 2 

D. 6, 3, 4 

Answer: (𝐷) 6, 3, 4 

 

Solution:  

Let 𝑙, 𝑏, ℎ be the dimensions. 

Given, 𝑙 = 2𝑏 

So, volume of box, 𝑉 = 𝑙𝑏ℎ = 2𝑏2ℎ 

⇒ 72 = 2𝑏2ℎ 

⇒ ℎ =
36

𝑏2
 

Surface area,  𝑆 = 2(𝑙𝑏 + 𝑏ℎ + ℎ𝑙) 

⇒ 𝑆 = 2 (2𝑏2 + 𝑏 (
36

𝑏2
) + 2𝑏 (

36

𝑏2
)) 

⇒ 𝑆 = 2 (2𝑏2 +
108

𝑏
) 

⇒ 𝑆 = 4 (𝑏2 +
54

𝑏
) 

Differentiating with respect to 𝑏, we get 

𝑑𝑆

𝑑𝑏
= 4 (2𝑏 −

54

𝑏2
) 

For maximum or minimum, 
𝑑𝑆

𝑑𝑏
= 0 

⇒ 𝑏 = 3 

And 
𝑑2𝑆

𝑑𝑏2 = 4 (2 +
108

𝑏3
) 

For 𝑏 = 3,
𝑑2𝑆

𝑑𝑏2 > 0  

Hence, 𝑆 is minimum when 𝑏 = 3 

So, the dimensions are 6, 3,
36

9
 or, 6, 3, 4 
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Q20 For the objective function 𝑍 = 𝑥 + 2𝑦, subject to constraints: 𝑥 − 𝑦 ≤ −1,  

−𝑥 + 𝑦 ≤ 0, 𝑥 ≥ 0, which of the following is CORRECT? 

A. 𝑍max  = 1  

B. 𝑍min  = −1 

C. 𝑍min  = 0 

D. No feasible solution is possible 

Answer: (𝐷) No feasible solution is possible 

 

Solution:  

Given constraints: 𝑥 − 𝑦 ≤ −1, −𝑥 + 𝑦 ≤ 0, 𝑥 ≥ 0  

Plotting the graph for the feasible region:  

  

From graph, there is no feasible region for the given constraints.  

So, no feasible solution is possible. 

Q21 If 𝑅 = {(𝑥, 𝑦): 𝑥, 𝑦 ∈ ℤ, 𝑥2 + 𝑦2 ≤ 4} is a relation on ℤ, then domain of 𝑅 is   

A. {0, 1, 2} 

B. {0, −1, −2} 

C. {−2, −1, 0, 1, 2} 

D. {−2, −1, 1, 2} 

Answer: (𝐶) {−2, −1, 0, 1, 2} 

 

Solution:  

Given: 𝑅 = {(𝑥, 𝑦): 𝑥, 𝑦 ∈ ℤ, 𝑥2 + 𝑦2 ≤ 4} 

If 𝑦 = 0, then 𝑥 = 0, ±1, ±2 

If 𝑦 = ±1, then 𝑥 = 0, ±1 

If 𝑦 = ±2, then 𝑥 = 0 
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∴ Domain of 𝑅 is {−2, −1, 0, 1, 2} 

Q22 If 𝑦 = (1 + 𝑥)(1 + 𝑥2)(1 + 𝑥3) ⋯ ⋯ (1 + 𝑥𝑛), then the value of 
𝑑𝑦

𝑑𝑥
 at 𝑥 = 0 is 

A. 1 

B. −1 

C.  0 

D. 2 

Answer: (𝐴) 1 

 

Solution:  

Given: 𝑦 = (1 + 𝑥)(1 + 𝑥2)(1 + 𝑥3) ⋯ ⋯ (1 + 𝑥𝑛) 

Taking ln  on both sides, we get  

ln 𝑦 = ln(1 + 𝑥) + ln(1 + 𝑥2) + ln(1 + 𝑥3) + ⋯ + ln(1 + 𝑥𝑛) 

Differentiating with respect to 𝑥, we get 

1

𝑦

𝑑𝑦

𝑑𝑥
=

1

1 + 𝑥
+

2𝑥

1 + 𝑥2
+

3𝑥2

1 + 𝑥3
+ ⋯ +

𝑛𝑥𝑛−1

1 + 𝑥𝑛
  

At 𝑥 = 0, we have 𝑦 = 1 

∴
𝑑𝑦

𝑑𝑥
|

𝑥=0
= 1   

Q23 
For real constants 𝑎 and 𝑏, if 𝑓(𝑥) = { 𝑥2 + 𝑏 + 1, 𝑥 < 0

   3𝑎𝑥 + 2,   𝑥 ≥ 0
  is differentiable at  

𝑥 = 0, then the value of 𝑎 + 𝑏 is 

A. 0 

B. 1 

C. −1 

D. 2 

Answer: (𝐵) 1 

 

Solution:  

If function is differentiable, then it is continuous also. 

∴ 𝐿. 𝐻. 𝐿. = 𝑅. 𝐻. 𝐿. = 𝑓(0)  ⋯ (1) 

𝐿. 𝐻. 𝐿. = lim
𝑥→0−

𝑥2 + 𝑏 + 1 

             = 𝑏 + 1  

𝑅. 𝐻. 𝐿. = lim
𝑥→0+

3𝑎𝑥 + 2 

             = 2 

From (1), we have 𝑏 = 1 
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Since 𝑓(𝑥) is differentiable at 𝑥 = 0, 

∴ 𝐿. 𝐻. 𝐷. = 𝑅. 𝐻. 𝐷.   ⋯ (2) 

𝐿. 𝐻. 𝐷. = lim
ℎ→0

𝑓(0 − ℎ) − 𝑓(0)

−ℎ
  

             = lim
ℎ→0

(0 − ℎ)2 + 2 − 2

−ℎ
  

             = lim
ℎ→0

ℎ2

 −ℎ
 = 0 

𝑅. 𝐻. 𝐷. = lim
ℎ→0

𝑓(0 + ℎ) − 𝑓(0)

ℎ
  

              = lim
ℎ→0

3𝑎(0 + ℎ) + 2 − 2

ℎ
  

              = 3𝑎 

From (2), we have 𝑎 = 0 

∴ 𝑎 + 𝑏 = 1 

Q24 If 𝑦𝑥 = 2𝑥  where 𝑦 > 0, then 
𝑑𝑦

𝑑𝑥
 is 

A. 
𝑦

𝑥
ln (

2

𝑦
) 

B. 
𝑥

𝑦
ln (

2

𝑦
) 

C. 
𝑦

𝑥
ln (

𝑦

2
) 

D. 
𝑥

𝑦
ln (

𝑦

2
) 

Answer: (𝐴) 
𝑦

𝑥
ln (

2

𝑦
) 

 

Solution:  

Given: 𝑦𝑥 = 2𝑥  

Taking ln  on both sides, we get  

𝑥 ln 𝑦 = 𝑥 ln 2 

Differentiating with respect to 𝑥, we get 

𝑥 ⋅
1

𝑦
⋅

𝑑𝑦

𝑑𝑥
+ ln 𝑦 = ln 2 

⇒
𝑥

𝑦
⋅

𝑑𝑦

𝑑𝑥
= ln 2 − ln 𝑦 

∴
𝑑𝑦

𝑑𝑥
=  

𝑦

𝑥
ln (

2

𝑦
) 
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Q25 If 𝑓(𝑥) = (𝑥 + 1)3(𝑥 − 3)3, then 

A. 𝑓(𝑥) is strictly decreasing in (3, ∞) 

B. 𝑓(𝑥) is strictly decreasing in (1, 3) 

C. 𝑓(𝑥) is strictly increasing in (−1, 1) 

D. 𝑓(𝑥) is strictly decreasing in (−∞, −1) 

Answer: (𝐷) 𝑓(𝑥) is strictly decreasing in (−∞, −1) 

 

Solution:  

 𝑓(𝑥) = (𝑥 + 1)3(𝑥 − 3)3  

Differentiating with respect to 𝑥, we get 

𝑓′(𝑥) = 3(𝑥 + 1)2(𝑥 − 3)3 + 3(𝑥 + 1)3(𝑥 − 3)2 

⇒ 𝑓′(𝑥) = 3(𝑥 + 1)2(𝑥 − 3)2[(𝑥 − 3) + (𝑥 + 1)] 

⇒ 𝑓′(𝑥) = 6(𝑥 + 1)2(𝑥 − 3)2(𝑥 − 1) 

Let us find out sign of 𝑓′(𝑥) using wavy curve method. 

 

Hence, 𝑓(𝑥) is strictly decreasing in (−∞, −1). 

Q26 
Let 𝐴 = [

1 2 𝑥
0 1 0
0 0 1

] and 𝐵 = [
1 −2 𝑦
0 1 0
0 0 1

]. If 𝐴𝐵 = 𝐼3, where 𝐼3 is the identity matrix 

of order 3, then the value of 𝑥 + 𝑦 is 

A. 1 

B. 0 

C. −1 

D. 4 

Answer: (𝐵) 0 

 

Solution:   

Given: 𝐴 = [
1 2 𝑥
0 1 0
0 0 1

] and 𝐵 = [
1 −2 𝑦
0 1 0
0 0 1

] 

 𝐴𝐵 = [
1 2 𝑥
0 1 0
0 0 1

] [
1 −2 𝑦
0 1 0
0 0 1

] 

⇒ 𝐴𝐵 = [
1 0 𝑥 + 𝑦
0 1 0
0 0 1

] = [
1 0 0
0 1 0
0 0 1

] 

∴ 𝑥 + 𝑦 = 0 
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Q27 The feasible region of an LPP is shown in the figure. If 𝑍 = 5𝑥 + 2𝑦, then the 

maximum value of 𝑍 occurs at 

 

A. (0, 0) 

B. (5, 0) 

C. (2, 4) 

D. (0, 4) 

Answer: (𝐵) (5, 0) 

 

Solution:  

The table of values at corner points for objective function 𝑍 = 5𝑥 + 2𝑦 is given below: 

 

Corner point: (𝑥, 𝑦) Value: 𝑍 = 5𝑥 + 2𝑦 

(0, 0) 5 × 0 + 2 × 0 = 0 

(5, 0) 5 × 5 + 2 × 0 = 25 (maximum) 

(2, 4) 5 × 2 + 2 × 4 = 18 

(0, 4) 5 × 0 + 2 × 4 = 8 

 

Hence, maximum value of 𝑍 occurs at (5, 0). 

Q28 
Cofactor of 2 in matrix 𝐴 = [

1 2 3
4 5 6
7 8 9

] is 

A. −6 

B. 6 

C. 8 

D. −8 

Answer: (𝐵) 6 

 

Solution: 
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𝐴 = [
1 2 3
4 5 6
7 8 9

]  

Cofactor of 2, 𝐶12 = (−1)1+2 |
4 6
7 9

| = −1(36 − 42) 

∴ 𝐶12 = 6  

Q29 If 𝑓: [1, ∞) → 𝐵 defined by 𝑓(𝑥) = 𝑥2 − 2𝑥 + 6 is a surjective function, then 𝐵 is 

equal to  

A. [1, ∞) 

B. [5, ∞) 

C. [6, ∞) 

D. [2, ∞) 

Answer: (𝐵) [5, ∞) 

 

Solution:  

𝑓(𝑥) = 𝑥2 − 2𝑥 + 6  

⇒ 𝑓(𝑥) = (𝑥 − 1)2 + 5 ≥ 5 for 𝑥 ≥ 1 

∴  Range of 𝑓 in domain [1, ∞) is [5, ∞). 

∴ 𝐵 = [5, ∞) 

Q30 
The value of 𝜆 for which the matrix 𝐴 = [

𝜆 2 2
−3 0 4
1 −1 1

] is not invertible, is 

A. −5 

B. 5 

C. 0 

D. −1 

Answer: (𝐴) −5 

 

Solution: 

Given: 𝐴 = [
𝜆 2 2

−3 0 4
1 −1 1

] 

Since matrix 𝐴 is not invertible, therefore |𝐴| = 0  

⇒ |
𝜆 2 2

−3 0 4
1 −1 1

| = 0 

⇒ 𝜆(0 + 4) − 2(−3 − 4) + 2(3 − 0) = 0 

⇒ 4𝜆 + 14 + 6 = 0 

∴ 𝜆 = −5 
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Q31 The feasible region for an LPP is shown shaded in the figure. Let 𝑍 = 6𝑥 –  4𝑦 be the 

objective function. The minimum of 𝑍 occurs at 

 

A. (1, 3) 

B. (0, 0) 

C. (4, 3) 

D. (5, 0) 

Answer: (𝐴) (1, 3) 

 

Solution:  

The table of values at corner points for objective function 𝑍 = 6𝑥 − 4𝑦 is given below: 

 

Corner point: (𝑥, 𝑦) Value: 𝑍 = 6𝑥 − 4𝑦 

(0, 0) 6 × 0 − 4 × 0 = 0 

(1, 3) 6 × 1 − 4 × 3 = −6 (minimum) 

(4, 3) 6 × 4 − 4 × 3 = 12 

(5, 0) 6 × 5 − 4 × 0 = 30 

Hence, the minimum value of 𝑍 occurs at (1, 3). 

Q32 If 𝑥𝑚 + 𝑦𝑚 = 1 where 𝑚 is a constant such that 
𝑑𝑦

𝑑𝑥
= −

𝑥

𝑦
 ∀ 𝑥, 𝑦 ∈ ℝ − {0}, then the 

value of 𝑚 is  

A. −1 

B. 0 

C. 1 

D. 2 

Answer: (𝐷) 2 

 

Solution:  

Given:  
𝑑𝑦

𝑑𝑥
= −

𝑥

𝑦
   ⋯ (1) 
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and 𝑥𝑚 + 𝑦𝑚 = 1 

Differentiating with respect to 𝑥, we get 

𝑚𝑥𝑚−1 + 𝑚𝑦𝑚−1 ⋅
𝑑𝑦

𝑑𝑥
= 0 

⇒ 𝑥𝑚−1 + 𝑦𝑚−1 ⋅
𝑑𝑦

𝑑𝑥
= 0 

⇒
𝑑𝑦

𝑑𝑥
= −

𝑥𝑚−1

𝑦𝑚−1
  ⋯ (2) 

From (1) and (2), we get 

𝑥𝑚−1

𝑦𝑚−1
=

𝑥

𝑦
 

⇒ 𝑚 − 1 = 1 

∴ 𝑚 = 2 

Q33 The local maximum value of 𝑓(𝑥) =
𝑥

1+4𝑥+𝑥2 is 

A. 
1

2
 

B. −
1

4
 

C. 
1

6
 

D. 
1

5
 

Answer: (𝐶) 
1

6
 

 

Solution:  

𝑓(𝑥) =
𝑥

1+4𝑥+𝑥2  

Differentiating with respect to 𝑥, we get 

𝑓′(𝑥) =
(1 + 4𝑥 + 𝑥2) ⋅ 1 − 𝑥 ⋅ (2𝑥 + 4)

(1 + 4𝑥 + 𝑥2)2
 

⇒ 𝑓′(𝑥) =
𝑥2 + 4𝑥 + 1 − 2𝑥2 − 4𝑥

(1 + 4𝑥 + 𝑥2)2
 

⇒ 𝑓′(𝑥) =
(1 − 𝑥)(1 + 𝑥)

(1 + 4𝑥 + 𝑥2)2
 

For maximum or minimum, 𝑓′(𝑥) = 0 

⇒  
(1 − 𝑥)(1 + 𝑥)

(1 + 4𝑥 + 𝑥2)2
= 0 

⇒ 𝑥 = −1, 1 
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Since sign of 𝑓′(𝑥) changes from positive to negative as 𝑥 crosses 1 from left to right, 

therefore 𝑥 = 1 is a point of local maximum. 

Therefore, 𝑓(𝑥) has local maximum value at 𝑥 = 1 

and the maximum value, 𝑓(1) =
1

1+4+1
=

1

6
 

Q34 The shaded region in the figure is the solution set of the inequations 

 

A. 4𝑥 + 6𝑦 ≤ 24, 𝑥 ≤ 2, 𝑦 ≤ 𝑥, 𝑥, 𝑦 ≥ 0  

B. 4𝑥 + 6𝑦 ≥ 24, 𝑥 ≥ 2, 𝑦 ≥ 𝑥, 𝑥, 𝑦 ≥ 0 

C. 4𝑥 + 6𝑦 ≥ 24, 𝑥 ≤ 2, 𝑦 ≥ 𝑥, 𝑥, 𝑦 ≥ 0 

D. 4𝑥 + 6𝑦 ≤ 24, 𝑥 ≥ 2, 𝑦 ≤ 𝑥, 𝑥, 𝑦 ≥ 0 

Answer: (𝐷) 4𝑥 + 6𝑦 ≤ 24, 𝑥 ≥ 2, 𝑦 ≤ 𝑥, 𝑥, 𝑦 ≥ 0 

 

Solution:   

The line joining (6, 0) and (0, 4) is 
𝑥

6
+

𝑦

4
= 1 i.e., 4𝑥 + 6𝑦 = 24. 

The line joining (0, 0) and (3, 3) is 𝑦 = 𝑥. 

On observation, we can conclude that option (𝐷) is the correct set of inequations 

which represents the shaded region. 

Q35 The range of the function 𝑓(𝑥) = sin−1 (
𝑥2

1+𝑥2
) ,  𝑥 ∈ ℝ is equal to  

A. [0,
𝜋

2
) 

B. [−
𝜋

2
,

𝜋

2
]  

C. (0,
𝜋

2
) 

D. (−
𝜋

2
,

𝜋

2
) 

Answer: (𝐴) [0,
𝜋

2
) 
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Solution:  

We have, 
𝑥2

1+𝑥2 = 1 −
1

1+𝑥2 

For 𝑥 ∈ ℝ,  𝑥2 ∈ [0, ∞) 

⇒ 1 + 𝑥2 ∈ [1, ∞) 

⇒
1

1 + 𝑥2
∈ (0, 1] 

⇒
𝑥2

1 + 𝑥2
∈ [0, 1) 

Taking sin−1 on both sides, we get 

sin−1 (
𝑥2

1 + 𝑥2
) ∈ [0,

𝜋

2
) 

∴ Range of 𝑓 is [0,
𝜋

2
) 

Q36 
If  𝐴 = [𝑎 𝑏

𝑏 𝑎
] and 𝐴2 = [

𝛼 𝛽
𝛽 𝛼

],  then 

A. 𝛼 = 𝑎2 + 𝑏2, 𝛽 = 𝑎𝑏 

B. 𝛼 = 𝑎2 + 𝑏2, 𝛽 = 2𝑎𝑏 

C. 𝛼 = 𝑎𝑏, 𝛽 = 𝑎2 + 𝑏2 

D. 𝛼 = 2𝑎𝑏, 𝛽 = 𝑎2 + 𝑏2 

Answer: (𝐵) 𝛼 = 𝑎2 + 𝑏2, 𝛽 = 2𝑎𝑏 

 

Solution:  

Given: 𝐴 = [
𝑎 𝑏
𝑏 𝑎

] and 𝐴2 = [
𝛼 𝛽
𝛽 𝛼

] 

⇒ 𝐴2 = [𝑎 𝑏
𝑏 𝑎

] [
𝑎 𝑏
𝑏 𝑎

] = [𝑎2 + 𝑏2 𝑎𝑏 + 𝑎𝑏
𝑎𝑏 + 𝑎𝑏 𝑎2 + 𝑏2 ] 

⇒ [𝑎2 + 𝑏2 2𝑎𝑏
2𝑎𝑏 𝑎2 + 𝑏2] = [

𝛼 𝛽
𝛽 𝛼

] 

∴ 𝛼 = 𝑎2 + 𝑏2 and 𝛽 = 2𝑎𝑏 

Q37 The domain of the function 𝑓(𝑥) = cot−1(𝑥) is  

A. ℝ 

B. ℝ − (−1, 1) 

C. (0, 𝜋) 

D. [−1, 1] 

Answer: (𝐴) ℝ 

 

Solution:  

𝑓(𝑥) = cot−1(𝑥)  
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𝑓 is defined for all 𝑥 ∈ ℝ 

∴ Domain of 𝑓 is ℝ. 

Q38 
If 𝐴 = [

0 −3 6
3 0 9

−6 −9 0
], then 𝐴 + 3𝐴𝑇 is equal to  

A. 𝐴𝑇  

B. 2𝐴𝑇  

C. −𝐴𝑇  

D. −2𝐴𝑇  

Answer: (𝐵) 2𝐴𝑇  

 

Solution:  

Given: 𝐴 = [
0 −3 6
3 0 9

−6 −9 0
] 

𝑎𝑖𝑗 = −𝑎𝑗𝑖  for all 𝑖, 𝑗. 

∴ 𝐴 is skew-symmetric. 

⇒ 𝐴𝑇 = −𝐴  

⇒ 𝐴 + 𝐴𝑇 = 𝑂  

⇒ 𝐴 + 3𝐴𝑇 = 2𝐴𝑇   

Q39 If the slope of the tangent to the curve 𝑥2𝑦 + 𝑎𝑥 + 𝑏𝑦 = 2 at (1, 1) is 2, then (𝑎, 𝑏) is 

A. (6, 5) 

B. (6, −5) 

C. (−2, 3) 

D. (−2, −3) 

Answer: (𝐵) (6, −5) 

 

Solution:  

Given curve: 𝑥2𝑦 + 𝑎𝑥 + 𝑏𝑦 = 2 

Point (1, 1) satisfies the curve.  

⇒ 𝑎 + 𝑏 = 1  ⋯ (1) 

Differentiating the given curve with respect to 𝑥, we get 

2𝑥𝑦 + 𝑥2
𝑑𝑦

𝑑𝑥
+ 𝑎 + 𝑏

𝑑𝑦

𝑑𝑥
= 0 

⇒  
𝑑𝑦

𝑑𝑥
= − (

𝑎 + 2𝑥𝑦

𝑥2 + 𝑏
) 

So, slope of the tangent at (1, 1) is  
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𝑑𝑦

𝑑𝑥
= − (

𝑎 + 2

1 + 𝑏
) 

⇒ − (
𝑎 + 2

1 + 𝑏
) = 2  

⇒ 𝑎 + 2𝑏 = −4  ⋯ (2) 

Solving (1) and (2), we get  

𝑎 = 6 and 𝑏 = −5 

Q40 If 𝐴 is a square matrix of order 3 such that det(𝐴) = 2, then the value of det(adj 𝐴) is  

A. 2 

B. 4 

C. 8 

D. 
1

2
 

Answer: (𝐵) 4 

 

Solution:  

Given: |𝐴| = 2 

We know that |adj 𝐴| = |𝐴|𝑛−1, where 𝑛 is the order of 𝐴. 

∴ |adj 𝐴| = 23−1 = 4 

Q41 The value of sin−1(2) + cos−1(2) is 

A. 
𝜋

2
 

B. 
𝜋

4
 

C. 𝜋 

D. not defined 

Answer: (𝐷) Not defined 

 

Solution:  

We have, sin−1(2) + cos−1(2) 

Domain of sin−1 𝑥 and cos−1 𝑥 are same, i.e., [−1, 1] and 2 ∉ [−1, 1] 

∴ sin−1(2) + cos−1(2) is not defined. 

Q42 The derivative of cos−1(𝑥2) with respect to 𝑥 is  

A. 
2𝑥

√1−𝑥2
 

B. 
−2𝑥

√1−𝑥4
 

C. 
−1

√1−𝑥4
 

D. 
−𝑥

√1−𝑥4
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Answer: (𝐵) 
−2𝑥

√1−𝑥4
 

 

Solution:  

Let 𝑦 = cos−1(𝑥2) 

Differentiating with respect to 𝑥, we get 

𝑑𝑦

𝑑𝑥
= −

1

√1 − (𝑥2)2
×

𝑑

𝑑𝑥
(𝑥2) 

∴  
𝑑𝑦

𝑑𝑥
= −

2𝑥

√1−𝑥4
  

Q43 If a matrix has 4 elements, then total number of possible orders that matrix can have, 

is 

A. 2 

B. 3 

C. 1 

D. 4 

Answer: (𝐵) 3 

 

Solution:  

Number of elements = 4 

Then possible orders of matrices are 1 × 4, 4 × 1, 2 × 2 

Hence, number of matrices is 3. 

Q44 The function 𝑓: ℕ → ℕ given by 𝑓(𝑥) = 𝑥3 − 1 is   

A. one-one but not onto  

B. onto but not one-one 

C. bijective 

D. many-one only 

Answer: (𝐴) one-one but not onto 

 

Solution:  

For one-one: 

Let 𝑓(𝑥1) = 𝑓(𝑥2) 

⇒ 𝑥1
3 − 1 = 𝑥2

3 − 1 

⇒ 𝑥1
3 = 𝑥2

3 

⇒ 𝑥1 = 𝑥2 

∴ 𝑓 is one-one. 
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For onto: 

1 does not have a pre-image in ℕ (domain) 

⇒ Range ≠ Co-domain 

∴ 𝑓 is into. 

Q45 If 𝑍 = 𝑥 + 2𝑦 subject to the following constraints: 𝑥 + 𝑦 ≤ 5, 𝑥 + 2𝑦 ≥ 6, 𝑥 ≥ 3, 

𝑦 ≥ 0, then sum of the maximum and minimum values of 𝑍 is  

A. 7 

B. 5 

C. 12 

D. 13 

Answer: (𝐷) 13 

 

Solution:  

Given: objective function, 𝑍 = 𝑥 + 2𝑦 

Constraints:  𝑥 + 𝑦 ≤ 5, 𝑥 + 2𝑦 ≥ 6, 𝑥 ≥ 3, 𝑦 ≥ 0 

Plotting the graph of feasible region: 

 

From graph, the feasible region is 𝐴𝐵𝐶. 

Corner point: (𝑥, 𝑦) Value: 𝑍 = 𝑥 + 2𝑦 

𝐴(3, 2) 1 × 3 + 2 × 2 = 7 

𝐵 (3,
3

2
) 1 × 3 + 2 ×

3

2
= 6 

𝐶(4, 1) 1 × 4 + 2 × 1 = 6 

So, 𝑍max = 7 and 𝑍min = 6 

Hence, 𝑍max + 𝑍min = 13 
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The electricity cost per hour for running an electric car is proportional to the square of its 

speed it generates in km/hr. The electricity costs Rs. 12 per hour at speed of 4 km per hour 

and the fixed charges to run the car amounts to Rs. 300 per hour. 

Assume the speed of car is 𝑢 km/hr. 

Q46 Given that the electricity cost per hour is 𝑘 times the square of the speed the car 

generates in km/hr, then value of 𝑘 is  

A. 
3

16
 

B. 
3

4
 

C. 
4

3
 

D. 
16

3
 

Answer: (𝐵) 
3

4
 

 

Solution:  

Electricity cost = 𝑘(𝑢)2, where 𝑘 is proportionality constant. 

⇒ 12 = 𝑘(4)2 

∴ 𝑘 =
3

4
 

Q47 If the car has travelled a distance of 500 km, then the total cost of running the car is 

given by function 

A. 375𝑢 −
150000

𝑢
 

B. 375𝑢 +
150000

𝑢
 

C. 750𝑢 −
150000

𝑢
 

D. 750𝑢 +
150000

𝑢
 

Answer: (𝐵) 375𝑢 +
150000

𝑢
 

 

Solution: 

Time taken to cover 500 km is 
500

𝑢
 hours 

Fixed charges: 

Given that fixed charges to run the car amounts to Rs. 300 per hour. 

⇒ Fixed charges for 
500

𝑢
 hours = 300 ×

500

𝑢
=

150000

𝑢
  

Running charges:  

Electricity cost per hour =  𝑘(𝑢)2 =
3

4
𝑢2 
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⇒ Electricity cost for 
500

𝑢
 hours =

3

4
𝑢2 ×

500

𝑢
= 375𝑢 

Now, Total cost = Fixed charges + Running charges 

∴ Total cost of running the car = 375𝑢 +
150000

𝑢
 

Q48 The most economical speed to run the car is 

A. 80 km/hr 

B. 10 km/hr 

C. 20 km/hr 

D. 40 km/hr 

Answer: (𝐶) 20 km/hr 

 

Solution:  

We have, 

Total cost of running the car, 𝐶 = 375𝑢 +
150000

𝑢
 

Differentiating with respect to 𝑢, we get 

𝑑𝐶

𝑑𝑢
 = 375 −

150000

𝑢2
 

For most economical speed, 
𝑑𝐶

𝑑𝑢
= 0 

⇒ 375 −
150000

𝑢2
= 0 

⇒ 𝑢2 =
150000

375
= 400 

∴ 𝑢 = 20 km/hr 

Q49 The electricity cost for car to travel 500 km at the most economical speed is 

A. Rs. 1835 

B. Rs. 7500 

C. Rs. 3500 

D. Rs. 15000 

Answer: (𝐵) Rs. 7500 

 

Solution:  

We have, Electricity cost = 375𝑢  

∴ Electricity cost at the most economical speed = 375 × 20 =  Rs. 7500 
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Q50 The total cost for the car to travel 500 km at the most economical speed is  

A. Rs. 7500 

B. Rs. 15000 

C. Rs. 8000 

D. Rs. 21000 

Answer: (𝐵) Rs. 15000 

 

Solution:  

We have,  

Total cost of running the car = 375𝑢 +
150000

𝑢
 

⇒ Total cost of running the car at the most economical speed = 375 × 20 +
150000

20
 

                                                                                                                  = Rs. 15000 
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