BYJU'S Full Test for Board Term I (CBSE Grade 12) MATHEMATICS ANSWER KEYS and SOLUTIONS

ANSWER KEY

Q1	С	Q26	В
Q2	А	Q27	В
Q3	В	Q28	В
Q4	С	Q29	В
Q5	В	Q30	А
Q6	С	Q31	A
Q7	D	Q32	D
Q8	С	Q33	С
Q9	С	Q34	D
Q10	С	Q35	А
Q11	С	Q36	В
Q12	В	Q37	А
Q13	С	Q38	В
Q14	В	Q39	В
Q15	С	Q40	В
Q16	В	Q41	D
Q17	С	Q42	В
Q18	А	Q43	В
Q19	D	Q44	А
Q20	D	Q45	D
Q21	С	Q46	В
Q22	A	Q47	В
Q23	В	Q48	С
Q24	А	Q49	В
Q25	D	Q50	В

SOLUTIONS

Q1	If $A = \begin{bmatrix} x & 1 & 3 \\ -1 & y & 4 \\ 2 & -1 & 0 \end{bmatrix}$ is a skew-symmetric matrix, then the values of x, y, z respectively
	L=3 Z UI
	B 0.0.4
	C. $0, 0, -4$
	D. 1.3.4
	Answer: (<i>C</i>) $0, 0, -4$
	Solution:
	$\begin{bmatrix} x & 1 & 3 \end{bmatrix}$
	Given: $A = \begin{bmatrix} -1 & y & 4 \\ -3 & z & 0 \end{bmatrix}$
	A is skew symmetric, then $A^T = -A$
	or, $a_{ij} = -a_{ji}$ for all i, j
	$\Rightarrow a_{11} = x = 0 \text{ and } a_{22} = y = 0$
	$a_{32} = -a_{23} \Rightarrow a_{32} = -4 = z$
	Hence, the values of x, y and z are 0, 0 and -4 respectively.
Q2	Let $A = \mathbb{R} - \{3\}$ and $B = \mathbb{R} - \{1\}$. If $f: A \to B$ is defined by $f(x) = \frac{x-2}{x}$, then
	A = f is bijective
	R f is one-one but not onto
	f is onto but not one-one
	$D_{\rm r}$ f is not a function
	Answer: (1) f is bijective
	Allswei. (A) j is bijective
	Solution
	For one-one:
	Let $f(x_1) = f(x_2)$
	$x_1 - 2 x_2 - 2$
	$\Rightarrow \frac{1}{x_1 - 3} = \frac{1}{x_2 - 3}$
	$\Rightarrow x_1 x_2 - 3x_1 - 2x_2 + 6 = x_1 x_2 - 2x_1 - 3x_2 + 6$
	$\Rightarrow x_1 = x_2$

	$\therefore f$ is one-one function.
	Now, let $y = \frac{x-2}{x-3}$
	$\Rightarrow xy - 3y = x - 2$
	$\Rightarrow xy - x = 3y - 2$
	$\Rightarrow x = \frac{3y - 2}{y - 1}$
	x is defined for all $y \in \mathbb{R} - \{1\}$
	\therefore Range of f is $\mathbb{R}-\{1\}$ which is equal to co-domain.
	$\therefore f$ is onto function.
	Hence, <i>f</i> is bijective.
Q3	If $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, x \neq 0\\ a, x = 0 \end{cases}$ is continuous at $x = 0$, then the value of a is
	A. 4
	B. 2
	C. $\frac{1}{2}$
	D2
	Answer: (B) 2
	Solution: Given: $f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2}, & x \neq 0 \end{cases}$
	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$
	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$,
	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$, $\therefore \lim_{x \to 0} f(x) = f(0) = a$
	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$, $\therefore \lim_{x \to 0} f(x) = f(0) = a$ $\Rightarrow a = \lim_{x \to 0} \frac{1-\cos 2x}{x^2}$
	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$, $\therefore \lim_{x \to 0} f(x) = f(0) = a$ $\Rightarrow a = \lim_{x \to 0} \frac{1-\cos 2x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \frac{2\sin^2 x}{x^2}$
	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$, $\therefore \lim_{x \to 0} f(x) = f(0) = a$ $\Rightarrow a = \lim_{x \to 0} \frac{1-\cos 2x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \frac{2\sin^2 x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \times 2 = 2$ ($\because \lim_{x \to 0} \frac{\sin x}{x} = 1$)
	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$, $\therefore \lim_{x \to 0} f(x) = f(0) = a$ $\Rightarrow a = \lim_{x \to 0} \frac{1-\cos 2x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \frac{2\sin^2 x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \times 2 = 2$ ($\because \lim_{x \to 0} \frac{\sin x}{x} = 1$) $\therefore a = 2$
Q4	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$, $\therefore \lim_{x \to 0} f(x) = f(0) = a$ $\Rightarrow a = \lim_{x \to 0} \frac{1-\cos 2x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \frac{2\sin^2 x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \times 2 = 2$ ($\because \lim_{x \to 0} \frac{\sin x}{x} = 1$) $\therefore a = 2$ The principal value of $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is
Q4	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$, $\therefore \lim_{x \to 0} f(x) = f(0) = a$ $\Rightarrow a = \lim_{x \to 0} \frac{1-\cos 2x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \frac{2\sin^2 x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \times 2 = 2$ ($\because \lim_{x \to 0} \frac{\sin x}{x} = 1$) $\therefore a = 2$ The principal value of $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is A. $\frac{4\pi}{2}$
Q4	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$, $\therefore \lim_{x \to 0} f(x) = f(0) = a$ $\Rightarrow a = \lim_{x \to 0} \frac{1-\cos 2x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \frac{2\sin^2 x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \times 2 = 2 \left(\because \lim_{x \to 0} \frac{\sin x}{x} = 1\right)$ $\therefore a = 2$ The principal value of $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is A. $\frac{4\pi}{3}$ B. $\frac{\pi}{2}$
Q4	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$, $\therefore \lim_{x \to 0} f(x) = f(0) = a$ $\Rightarrow a = \lim_{x \to 0} \frac{1-\cos 2x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \frac{2\sin^2 x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \times 2 = 2 \left(\because \lim_{x \to 0} \frac{\sin x}{x} = 1\right)$ $\therefore a = 2$ The principal value of $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is A. $\frac{4\pi}{3}$ B. $\frac{\pi}{3}$
Q4	Solution: Given: $f(x) = \begin{cases} \frac{1-\cos 2x}{x^2}, & x \neq 0\\ a, & x = 0 \end{cases}$ Since $f(x)$ is continuous at $x = 0$, $\therefore \lim_{x \to 0} f(x) = f(0) = a$ $\Rightarrow a = \lim_{x \to 0} \frac{1-\cos 2x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \frac{2\sin^2 x}{x^2}$ $\Rightarrow a = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \times 2 = 2$ ($\because \lim_{x \to 0} \frac{\sin x}{x} = 1$) $\therefore a = 2$ The principal value of $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is A. $\frac{4\pi}{3}$ B. $\frac{\pi}{3}$ C. $\frac{5\pi}{6}$

	Answer: (<i>C</i>) $\frac{5\pi}{6}$
	Solution:
	We know that $\cos^{-1}(-x) = \pi - \cos^{-1}(x)$ for all $x \in [-1, 1]$
	$\therefore \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \pi - \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$
	$\Rightarrow \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$
	We know that the range of principal value branch of \cos^{-1} is $[0, \pi]$ and $\frac{5\pi}{6} \in [0, \pi]$.
	\therefore Principal value of $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is $\frac{5\pi}{6}$.
Q5	If $\begin{bmatrix} 2 & x \\ 3 & -4 \end{bmatrix} + \begin{bmatrix} 2 & -3 \\ z & p \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ z+3 & p-4 \end{bmatrix}$, then the value of x is
	A3
	В. З
	C. 4
	D. 5
	Answer: (<i>B</i>) 3
	Solution:
	Given: $\begin{bmatrix} 2 & x \\ 3 & -4 \end{bmatrix} + \begin{bmatrix} 2 & -3 \\ z & p \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ z+3 & p-4 \end{bmatrix}$
	$\Rightarrow \begin{bmatrix} 4 & x-3\\ z+3 & p-4 \end{bmatrix} = \begin{bmatrix} 4 & 0\\ z+3 & p-4 \end{bmatrix}$
	We know that corresponding entries of equal matrices are equal.
	$\therefore x = 3$
Q6	The equation of the normal to the curve $y = x^2 + x$ at $x = -2$ is
	A. $x = 3y + 8$
	B. $y = 3x + 8$
	C. $3y = x + 8$
	D. $3x = y + 8$
	Answer: (<i>C</i>) $3y = x + 8$
	Solution:
	$y = x^2 + x$
	The point on the curve is $(-2, 2)$.

Differentiating with respect to x, we get $\frac{dy}{dx} = 2x + 1$ At x = -2, $\frac{dy}{dx} = -4 + 1 = -3$ So, the slope of normal at (-2, 2) is $\frac{1}{3}$. Now, equation of the normal at (-2, 2) is $y-2 = \frac{1}{3}(x+2)$ $\therefore 3y = x + 8$ If $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$ is continuous at every point in its domain, then the value of f(0)Q7 is A. 2 B. $-\frac{1}{3}$ C. $\frac{2}{3}$ D. $\frac{1}{3}$ Answer: $(D)\frac{1}{3}$ Solution: For f(x) to be continuous at every point in its domain, it must be continuous at x = 0. \therefore We must have $\lim_{x \to 0} f(x) = f(0)$ $\Rightarrow f(0) = \lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$ Dividing numerator and denominator by x, we get $f(0) = \lim_{x \to 0} \frac{2 - \frac{\sin^{-1} x}{x}}{2 + \frac{\tan^{-1} x}{x}} = \frac{2 - 1}{2 + 1}$ $\therefore f(0) = \frac{1}{3}$

Q8	The derivative of $tan^{-1}(tan x)$ with respect to x where $x \in (0, \frac{\pi}{2})$, is
	A. $\frac{1}{1}$
	$1+\tan^2 x$
	C. 1
	$\sum_{x} \sec^2 x$
	$\frac{1}{1+\tan x}$
	Answer: (L) 1
	Solution:
	Let $y = \tan^{-1}(\tan x)$
	$\Rightarrow y = x \ \forall \ x \in \left(0, \frac{\pi}{2}\right)$
	Differentiating with respect to x, we get
	$\frac{dy}{dt} = 1$
09	dx If $f(x) = x^2 - 2ax + 6$ is strictly increasing function for $x > 0$ then
Q.J	$A = a \in (1, 2)$
	B. $a \in (0, \infty)$
	C. $a \in (-\infty, 0]$
	D. $a \in (0,7)$
	Answer: (<i>C</i>) $a \in (-\infty, 0]$
	Solution:
	Given: $f(x) = x^2 - 2ax + 6$
	Differentiating with respect to x , we get
	f'(x) = 2x - 2a
	For strictly increasing, $f'(x) > 0$
	$\Rightarrow 2x - 2a > 0$
	$\Rightarrow x > a \text{ but } x > 0$
	$\therefore a \in (-\infty, 0]$
Q10	The derivative of $\ln(\sec\theta + \tan\theta)$ with respect to $\sec\theta$ at $\theta = \frac{\pi}{4}$ is
	A1
	в. 0
	C. 1
	D. $\sqrt{2}$
	Answer: (<i>C</i>) 1

	Solution:
	Let $y = \ln(\sec \theta + \tan \theta)$ and $z = \sec \theta$
	Now,
	$\frac{dy}{dz} = \frac{\frac{dy}{d\theta}}{\frac{dz}{d\theta}} \dots (1)$
	We have, $y = \ln(\sec\theta + \tan\theta)$
	Differentiating with respect to $ heta$, we get
	$\frac{dy}{d\theta} = \frac{1}{\sec\theta + \tan\theta} \times \frac{d}{d\theta} (\sec\theta + \tan\theta)$
	$\therefore \frac{dy}{d\theta} = \frac{\sec\theta\tan\theta + \sec^2\theta}{\sec\theta + \tan\theta} = \sec\theta$
	and $z = \sec \theta$
	Differentiating with respect to θ , we get
	$\frac{dz}{d\theta} = \sec\theta\tan\theta$
	From (1), we get
	$\frac{dy}{dz} = \frac{\sec\theta}{\sec\theta\tan\theta}$
	$\Rightarrow \frac{dy}{dz} = \frac{1}{\tan \theta}$
	At $\theta = \frac{\pi}{4}, \ \frac{dy}{dz} = 1$
Q11	If $y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!}$, then $\frac{dy}{dx}$ is
	A. $y - x^n$
	B. $y - \frac{x^n}{n}$
	C. $y - \frac{x^n}{n!}$
	D. $y - \frac{x^n}{(n-1)!}$
	Answer: (<i>C</i>) $y - \frac{x^n}{n!}$
	Solution:
	Given: $y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!}$
	Differentiating with respect to x, we get
	$\frac{dy}{dx} = 0 + \frac{1}{1!} + \frac{2x}{2!} + \frac{3x^2}{3!} + \frac{4x^3}{4!} + \dots + \frac{nx^{n-1}}{n!}$

Differentiating with respect to θ , we get	
$\frac{dy}{d\theta} = 3a\sin^2\theta\cos\theta$	
Now, $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$	
$\Rightarrow \frac{dy}{dx} = \frac{3a\sin^2\theta\cos\theta}{-3a\cos^2\theta\sin\theta} = -\tan\theta$	
$\Rightarrow 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \tan^2 \theta = \sec^2 \theta$	
$\Rightarrow \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{\sec^2 \theta} = \sec \theta $	
$\therefore \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sec \theta \qquad \left[\because \theta \in \left(0, \frac{\pi}{2}\right)\right]$	
Q14 Adjoint of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is	
A. $\begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix}$	
B. $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$	
C. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	
D. $\begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$	
Answer: (<i>B</i>) $A = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$	
Solution	
Solution. $\begin{bmatrix} 1 & 2 \end{bmatrix}$	
Given: $A = \begin{bmatrix} 3 & 4 \end{bmatrix}$	
$\Rightarrow adj(A) = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}^{T}$	
$\therefore adj(A) = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$	
Q15 Region represented by $x < 0$ and $y < 0$ is	
A. First quadrant	
B. Second quadrant	
C. Third quadrant	
D. Fourth quadrant	
Answer: (<i>C</i>) Third quadrant	

	Solution:
	Given curve: $x^2 y = c^3$
	Differentiating with respect to x , we get
	$x^2 \frac{dy}{dx} + 2xy = 0$
	$\Rightarrow \frac{dy}{dx} = -\frac{2y}{x}$
	Equation of tangent at (h, k) is
	$y - k = -\frac{2k}{h}(x - h)$
	At $y = 0$, $x = \frac{3h}{2} = a$
	At $x = 0$, $y = 3k = b$
	$\therefore a^2 b = \frac{9h^2}{4} \times 3k = \frac{27h^2 k}{4} = \frac{27}{4}c^3$
Q18	A relation R on the set of natural numbers \mathbb{N} is defined as
	$xRy \Leftrightarrow x^2 - 4xy + 3y^2 = 0; x, y \in \mathbb{N}$. Then <i>R</i> is
	A. reflexive but neither symmetric nor transitive relation
	B. symmetric but neither reflexive nor transitive relation
	C. transitive but neither reflexive nor symmetric relation
	D. an equivalence relation
	Answer: (<i>A</i>) reflexive but neither symmetric nor transitive relation
	Solution:
	Given: $xRy \Leftrightarrow x^2 - 4xy + 3y^2 = 0; x, y \in \mathbb{N}$
	$\Rightarrow x^{2} - xy - 3xy + 3y^{2} = 0$ $\Rightarrow x(x - y) - 3y(x - y) = 0$ $\Rightarrow (x - 3y)(x - y) = 0$ $\therefore (x, y) \in R \text{ iff } (x - 3y)(x - y) = 0$
	As $(x - 3x)(x - x) = 0 \forall x \in \mathbb{N}$, $\Rightarrow (x, x) \in R$ So, R is a reflexive relation.
	It can be observed that $(3, 1) \in R$ but $(1, 3) \notin R$ as $(1 - 9)(1 - 3) \neq 0$ So, R is not a symmetric relation.
	As $(3, 1)$ and $\left(1, \frac{1}{3}\right) \in R$ but $\left(3, \frac{1}{3}\right) \notin R$,

	: Domain of R is $\{-2, -1, 0, 1, 2\}$
Q22	If $y = (1 + x)(1 + x^2)(1 + x^3) \cdots (1 + x^n)$, then the value of $\frac{dy}{dx}$ at $x = 0$ is
	A. 1
	B1
	C. 0
	D. 2
	Answer: (A) 1
	Solution:
	Given: $y = (1 + x)(1 + x^2)(1 + x^3) \cdots \cdots (1 + x^n)$
	Taking ln on both sides, we get
	$\ln y = \ln(1+x) + \ln(1+x^2) + \ln(1+x^3) + \dots + \ln(1+x^n)$
	Differentiating with respect to x, we get
	$\frac{1}{y}\frac{dy}{dx} = \frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{3x^2}{1+x^3} + \dots + \frac{nx^{n-1}}{1+x^n}$
	At $x = 0$, we have $y = 1$
	$\left. \cdot \frac{dy}{dx} \right _{x=0} = 1$
Q23	For real constants a and b, if $f(x) = \begin{cases} x^2 + b + 1, x < 0 \\ 3ax + 2, x \ge 0 \end{cases}$ is differentiable at
	x = 0, then the value of $a + b$ is
	A. 0
	B. 1
	C1
	D. Z
	Solution:
	If function is differentiable, then it is continuous also.
	$\therefore L.H.L. = R.H.L. = f(0) \cdots (1)$
	$L. H. L. = \lim_{x \to 0^{-}} x^2 + b + 1$
	= b + 1
	$R.H.L. = \lim_{x \to 0^+} 3ax + 2$
	= 2
	From (1), we have $b = 1$

	Since $f(x)$ is differentiable at $x = 0$,
	$\therefore L.H.D. = R.H.D. \cdots (2)$
	L. H. D. = $\lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$
	$= \lim_{h \to 0} \frac{(0-h)^2 + 2 - 2}{-h}$
	$=\lim_{h\to 0}\frac{h^2}{-h}=0$
	$R.H.D. = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$
	$= \lim_{h \to 0} \frac{3a(0+h) + 2 - 2}{h}$
	= 3a
	From (2), we have $a = 0$
	$\therefore a + b = 1$
Q24	If $y^x = 2^x$ where $y > 0$, then $\frac{dy}{dx}$ is
	A. $\frac{y}{x} \ln\left(\frac{2}{y}\right)$
	B. $\frac{x}{y} \ln\left(\frac{2}{y}\right)$
	C. $\frac{y}{x} \ln\left(\frac{y}{2}\right)$
	D. $\frac{x}{y} \ln\left(\frac{y}{2}\right)$
	Answer: (A) $\frac{y}{x} \ln\left(\frac{2}{y}\right)$
	Solution:
	Given: $y^x = 2^x$
	Taking \ln on both sides, we get
	$x\ln y = x\ln 2$
	Differentiating with respect to x , we get
	$x \cdot \frac{1}{y} \cdot \frac{dy}{dx} + \ln y = \ln 2$
	$\Rightarrow \frac{x}{y} \cdot \frac{dy}{dx} = \ln 2 - \ln y$
	$\therefore \frac{dy}{dx} = \frac{y}{x} \ln\left(\frac{2}{y}\right)$

Q25	If $f(x) = (x + 1)^3 (x - 3)^3$, then
	A. $f(x)$ is strictly decreasing in $(3, \infty)$
	B. $f(x)$ is strictly decreasing in (1, 3)
	C. $f(x)$ is strictly increasing in $(-1, 1)$
	D. $f(x)$ is strictly decreasing in $(-\infty, -1)$
	Answer: (D) $f(x)$ is strictly decreasing in $(-\infty, -1)$
	Solution:
	$f(x) = (x+1)^3(x-3)^3$
	Differentiating with respect to x, we get
	$f'(x) = 3(x+1)^2(x-3)^3 + 3(x+1)^3(x-3)^2$
	$\Rightarrow f'(x) = 3(x+1)^2(x-3)^2[(x-3) + (x+1)]$
	$\Rightarrow f'(x) = 6(x+1)^2(x-3)^2(x-1)$
	Let us find out sign of $f'(x)$ using wavy curve method.
	+ + -
	-1 1 3
	Hence, $f(x)$ is strictly decreasing in $(-\infty, -1)$.
Q26	$\begin{bmatrix} 1 & 2 & x \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 & y \end{bmatrix}$
	Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. If $AB = I_3$, where I_3 is the identity matrix
	of order 3, then the value of $x + y$ is
	A. 1
	в. 0
	C1
	D. 4
	Answer: (<i>B</i>) 0
	Solution:
	Given: $A = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
	$AB = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
	$\Rightarrow AB = \begin{bmatrix} 1 & 0 & x + y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
	$\therefore x + y = 0$

	$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
	Cofactor of 2, $C_{12} = (-1)^{1+2} \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = -1(36 - 42)$
	$\therefore C_{12} = 6$
Q29	If $f: [1, \infty) \to B$ defined by $f(x) = x^2 - 2x + 6$ is a surjective function, then B is
	equal to
	A. [1,∞)
	B. [5,∞)
	C. [6,∞)
	D. [2,∞)
	Answer: (<i>B</i>) [5,∞)
	Solution:
	$f(x) = x^2 - 2x + 6$
	⇒ $f(x) = (x - 1)^2 + 5 \ge 5$ for $x \ge 1$
	∴ Range of f in domain $[1, \infty)$ is $[5, \infty)$.
	$\therefore B = [5, \infty)$
Q30	The value of λ for which the matrix $A = \begin{bmatrix} \lambda & 2 & 2 \\ -3 & 0 & 4 \\ 1 & -1 & 1 \end{bmatrix}$ is not invertible, is
	A5
	в. 5
	C. 0
	D1
	Answer: (<i>A</i>) -5
	Solution:
	Given: $A = \begin{bmatrix} \lambda & 2 & 2 \\ -3 & 0 & 4 \\ 1 & -1 & 1 \end{bmatrix}$
	Since matrix A is not invertible, therefore $ A = 0$
	$\Rightarrow \begin{vmatrix} \lambda & 2 & 2 \\ -3 & 0 & 4 \\ 1 & -1 & 1 \end{vmatrix} = 0$
	$\Rightarrow \lambda(0+4) - 2(-3-4) + 2(3-0) = 0$
	$\Rightarrow 4\lambda + 14 + 6 = 0$
	$\therefore \lambda = -5$

B

Q31	The feasible region for an LPP is shown shad	ed in the figure. Let $Z = 6x - 4y$ be the	
	objective function. The minimum of Z occurs at		
	<i>Y</i>		
	(1, 3) $(4, 3)$		
	(0, 0) (5, 0)	x	
	A. (1,3)		
	B. (0,0)		
	C. (4,3)		
	D. (5,0)		
	Answer: (<i>A</i>) (1,3)		
	Solution:		
	The table of values at corner points for obje	ctive function $Z = 6x - 4y$ is given below:	
	Corner point: (<i>x</i> , <i>y</i>)	Value: $Z = 6x - 4y$	
	Corner point: (<i>x</i> , <i>y</i>) (0, 0)	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$	
	Corner point: (x, y) (0, 0) (1, 3)	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum)	
	Corner point: (x, y) (0, 0) (1, 3) (4, 3)	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$	
	Corner point: (x, y) (0, 0) (1, 3) (4, 3) (5, 0)	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$	
	Corner point: (x, y) (0, 0) (1, 3) (4, 3) (5, 0) Hence, the minimum value of Z occurs at (1)	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$,,3).	
Q32	Corner point: (x, y) $(0, 0)$ $(1, 3)$ $(4, 3)$ $(5, 0)$ Hence, the minimum value of Z occurs at (1)If $x^m + y^m = 1$ where m is a constant such	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$,3). that $\frac{dy}{dx} = -\frac{x}{y} \forall x, y \in \mathbb{R} - \{0\}$, then the	
Q32	Corner point: (x, y) $(0, 0)$ $(1, 3)$ $(4, 3)$ $(5, 0)$ Hence, the minimum value of Z occurs at (1)If $x^m + y^m = 1$ where m is a constant suchvalue of m is	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$,3). that $\frac{dy}{dx} = -\frac{x}{y} \forall x, y \in \mathbb{R} - \{0\}$, then the	
Q32	Corner point: (x, y) $(0, 0)$ $(1, 3)$ $(4, 3)$ $(5, 0)$ Hence, the minimum value of Z occurs at (1)If $x^m + y^m = 1$ where m is a constant suchvalue of m isA. -1	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$,3). that $\frac{dy}{dx} = -\frac{x}{y} \forall x, y \in \mathbb{R} - \{0\}$, then the	
Q32	Corner point: (x, y) $(0, 0)$ $(1, 3)$ $(4, 3)$ $(5, 0)$ Hence, the minimum value of Z occurs at (1)If $x^m + y^m = 1$ where m is a constant suchvalue of m isA. -1 B. 0	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$,3). that $\frac{dy}{dx} = -\frac{x}{y} \forall x, y \in \mathbb{R} - \{0\}$, then the	
Q32	Corner point: (x, y) $(0, 0)$ $(1, 3)$ $(4, 3)$ $(5, 0)$ Hence, the minimum value of Z occurs at (1)If $x^m + y^m = 1$ where m is a constant suchvalue of m isA. -1 B. 0C. 1	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$,3). that $\frac{dy}{dx} = -\frac{x}{y} \forall x, y \in \mathbb{R} - \{0\}$, then the	
Q32	Corner point: (x, y) $(0, 0)$ $(1, 3)$ $(4, 3)$ $(5, 0)$ Hence, the minimum value of Z occurs at (1If $x^m + y^m = 1$ where m is a constant suchvalue of m isA. -1 B. 0C. 1D. 2	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$,,3). that $\frac{dy}{dx} = -\frac{x}{y} \forall x, y \in \mathbb{R} - \{0\}$, then the	
Q32	Corner point: (x, y) $(0, 0)$ $(1, 3)$ $(4, 3)$ $(5, 0)$ Hence, the minimum value of Z occurs at (1If $x^m + y^m = 1$ where m is a constant suchvalue of m isA. -1 B. 0C. 1D. 2Answer: (D) 2	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$ a,3). that $\frac{dy}{dx} = -\frac{x}{y} \forall x, y \in \mathbb{R} - \{0\}$, then the	
Q32	Corner point: (x, y) (0,0) (1,3) (4,3) (5,0) Hence, the minimum value of Z occurs at (1 If $x^m + y^m = 1$ where m is a constant such value of m is A1 B. 0 C. 1 D. 2 Answer: (D) 2	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$,3). that $\frac{dy}{dx} = -\frac{x}{y} \forall x, y \in \mathbb{R} - \{0\}$, then the	
Q32	Corner point: (x, y) (0,0) (1,3) (4,3) (5,0) Hence, the minimum value of Z occurs at (1 If $x^m + y^m = 1$ where m is a constant such value of m is A1 B. 0 C. 1 D. 2 Answer: (D) 2 Solution:	Value: $Z = 6x - 4y$ $6 \times 0 - 4 \times 0 = 0$ $6 \times 1 - 4 \times 3 = -6$ (minimum) $6 \times 4 - 4 \times 3 = 12$ $6 \times 5 - 4 \times 0 = 30$,3). that $\frac{dy}{dx} = -\frac{x}{y} \forall x, y \in \mathbb{R} - \{0\}$, then the	

	and $x^m + y^m = 1$
	Differentiating with respect to x, we get
	$mx^{m-1} + my^{m-1} \cdot \frac{dy}{dx} = 0$
	$\Rightarrow x^{m-1} + y^{m-1} \cdot \frac{dy}{dx} = 0$
	$\Rightarrow \frac{dy}{dx} = -\frac{x^{m-1}}{y^{m-1}} \cdots (2)$
	From (1) and (2), we get
	$\frac{x^{m-1}}{2} = \frac{x}{2}$
	y^{m-1} y
	$\Rightarrow m - 1 = 1$
	$\therefore m = 2$
Q33	The local maximum value of $f(x) = \frac{x}{1+4x+x^2}$ is
	A. $\frac{1}{2}$
	$B - \frac{1}{2}$
	C. $\frac{-}{6}$
	D. $\frac{1}{5}$
	Answer: $(C) \frac{1}{6}$
	Solution:
	$f(x) = \frac{x}{1 + (x + x)^2}$
	Differentiating with respect to x we get
	$(1 + 4r + r^2) \cdot 1 - r \cdot (2r + 4)$
	$f'(x) = \frac{(1+4x+x^2)(1-x^2)(2x+1)}{(1+4x+x^2)^2}$
	$\Rightarrow f'(x) = \frac{x^2 + 4x + 1 - 2x^2 - 4x}{(1 + 4x + x^2)^2}$
	$\Rightarrow f'(x) = \frac{(1-x)(1+x)}{(1+4x+x^2)^2}$
	For maximum or minimum, $f'(x) = 0$
	$\Rightarrow \frac{(1-x)(1+x)}{(1+4x+x^2)^2} = 0$
	$\Rightarrow x = -1, 1$
	$\begin{array}{ccc} - & + & - \\ \hline -1 & 1 \end{array}$

	Since sign of $f'(x)$ changes from positive to negative as x crosses 1 from left to right,
	therefore $x = 1$ is a point of local maximum.
	Therefore, $f(x)$ has local maximum value at $x = 1$
	and the maximum value, $f(1) = \frac{1}{1+4+1} = \frac{1}{6}$
Q34	The shaded region in the figure is the solution set of the inequations
	Y (0, 4) (0, 4) (0, 4) (0, 4) (0, 4) (0, 4) (0, 4) (0, 2) (1, 0) (1, 0) (1
	C. $4x + 6y \ge 24$, $x \le 2$, $y \ge x$, $x, y \ge 0$
	D. $4x + 6y \le 24$, $x \ge 2$, $y \le x$, $x, y \ge 0$
	Answer: (<i>D</i>) $4x + 6y \le 24$, $x \ge 2$, $y \le x$, $x, y \ge 0$
	Solution:
	The line joining (6, 0) and (0, 4) is $\frac{x}{6} + \frac{y}{4} = 1$ i.e., $4x + 6y = 24$.
	The line joining $(0, 0)$ and $(3, 3)$ is $y = x$.
	On observation, we can conclude that option (D) is the correct set of inequations
	which represents the shaded region.
Q35	The range of the function $f(x) = \sin^{-1}\left(\frac{x^2}{1+x^2}\right)$, $x \in \mathbb{R}$ is equal to
	A. $\left[0, \frac{\pi}{2}\right)$ B. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ C. $\left(0, \frac{\pi}{2}\right)$ D. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Answer: $(A) \left[0, \frac{\pi}{2}\right)$

	Solution:
	We have, $\frac{x^2}{1+x^2} = 1 - \frac{1}{1+x^2}$
	For $x \in \mathbb{R}$, $x^2 \in [0, \infty)$
	$\Rightarrow 1 + x^2 \in [1, \infty)$
	$\Rightarrow \frac{1}{1+x^2} \in (0,1]$
	$\Rightarrow \frac{x^2}{1+x^2} \in [0,1)$
	Taking \sin^{-1} on both sides, we get
	$\sin^{-1}\left(\frac{x^2}{1+x^2}\right) \in \left[0, \frac{\pi}{2}\right)$
	\therefore Range of f is $\left[0, \frac{\pi}{2}\right)$
Q36	If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then
	A. $\alpha = a^2 + b^2, \beta = ab$
	B. $\alpha = a^2 + b^2$, $\beta = 2ab$
	C. $\alpha = ab, \beta = a^2 + b^2$
	D. $\alpha = 2ab, \beta = a^2 + b^2$
	Answer: (<i>B</i>) $\alpha = a^2 + b^2$, $\beta = 2ab$
	Solution:
	Given: $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$
	$\Rightarrow A^{2} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix} = \begin{bmatrix} a^{2} + b^{2} & ab + ab \\ ab + ab & a^{2} + b^{2} \end{bmatrix}$
	$\Rightarrow \begin{bmatrix} a^2 + b^2 & 2ab \\ 2ab & a^2 + b^2 \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$
	$\therefore \alpha = a^2 + b^2$ and $\beta = 2ab$
Q37	The domain of the function $f(x) = \cot^{-1}(x)$ is
	A. R
	B. $\mathbb{R} - (-1, 1)$
	C. (0,π)
	D. [-1,1]
	Answer: (A) \mathbb{R}
	Calution
	$J(x) = \cot^{-1}(x)$

	f is defined for all $x \in \mathbb{R}$
	\therefore Domain of f is \mathbb{R} .
Q38	If $A = \begin{bmatrix} 0 & -3 & 6 \\ 3 & 0 & 9 \\ -6 & -9 & 0 \end{bmatrix}$, then $A + 3A^T$ is equal to
	A. A^T
	B. $2A^T$
	C. $-A^T$
	D. $-2A^T$
	Answer: (B) $2A^T$
	Solution:
	Given: $A = \begin{bmatrix} 0 & -3 & 6 \\ 3 & 0 & 9 \\ -6 & -9 & 0 \end{bmatrix}$
	$a_{ij} = -a_{ji}$ for all i, j .
	\therefore A is skew-symmetric.
	$\Rightarrow A^T = -A$
	$\Rightarrow A + A^T = 0$
	$\Rightarrow A + 3A^T = 2A^T$
Q39	If the slope of the tangent to the curve $x^2y + ax + by = 2$ at $(1, 1)$ is 2, then (a, b) is
	A. (6,5)
	B. (6, -5)
	C. (-2,3)
	D. (-2,-3)
	Answer: (<i>B</i>) (6, -5)
	Solution:
	Given curve: $x^2y + ax + by = 2$
	Point (1, 1) satisfies the curve.
	$\Rightarrow a + b = 1 \cdots (1)$
	Differentiating the given curve with respect to x , we get
	$2xy + x^2\frac{dy}{dx} + a + b\frac{dy}{dx} = 0$
	$\Rightarrow \frac{dy}{dx} = -\left(\frac{a+2xy}{x^2+b}\right)$
	So, slope of the tangent at (1, 1) is

	$\frac{dy}{dx} = -\left(\frac{a+2}{1+b}\right)$
	$\Rightarrow -\left(\frac{a+2}{1+b}\right) = 2$
	$\Rightarrow a + 2b = -4 \cdots (2)$
	Solving (1) and (2), we get
	a = 6 and $b = -5$
Q40	If A is a square matrix of order 3 such that $det(A) = 2$, then the value of $det(adj A)$ is
	A. 2
	B. 4
	C. 8
	D. $\frac{1}{2}$
	Answer: (<i>B</i>) 4
	Solution:
	Given: $ A = 2$
	We know that $ adj A = A ^{n-1}$, where <i>n</i> is the order of <i>A</i> .
	$\therefore \text{adj } A = 2^{3-1} = 4$
Q41	The value of $\sin^{-1}(2) + \cos^{-1}(2)$ is
	A. $\frac{\pi}{2}$
	B. $\frac{\pi}{4}$
	C. <i>π</i>
	D. not defined
	Answer: (D) Not defined
	Solution:
	We have, $\sin^{-1}(2) + \cos^{-1}(2)$
	Domain of $\sin^{-1} x$ and $\cos^{-1} x$ are same, i.e., $[-1, 1]$ and $2 \notin [-1, 1]$
	$\therefore \sin^{-1}(2) + \cos^{-1}(2) \text{ is not defined.}$
Q42	The derivative of $\cos^{-1}(x^2)$ with respect to x is
	A. $\frac{2x}{\sqrt{1-x^2}}$
	B. $\frac{-2x}{\sqrt{1-x^4}}$
	C. $\frac{-1}{\sqrt{-1}}$
	$ \sqrt{1-x^4} $ $ D = \frac{-x}{x} $
	D. $\sqrt{1-x^4}$

	Answer: (B) $\frac{-2x}{\sqrt{1-x^4}}$
	Solution:
	Let $y = \cos^{-1}(x^2)$
	Differentiating with respect to x, we get
	$\frac{dy}{dx} = -\frac{1}{\sqrt{1 - (x^2)^2}} \times \frac{d}{dx}(x^2)$
	$\therefore \frac{dy}{dx} = -\frac{2x}{\sqrt{1-x^4}}$
Q43	If a matrix has 4 elements, then total number of possible orders that matrix can have,
	is
	A. 2
	в. 3
	C. 1
	D. 4
	Answer: (<i>B</i>) 3
	Solution:
	Number of elements $= 4$
	Then possible orders of matrices are $1 \times 4, 4 \times 1, 2 \times 2$
	Hence, number of matrices is 3.
Q44	The function $f: \mathbb{N} \to \mathbb{N}$ given by $f(x) = x^3 - 1$ is
	A. one-one but not onto
	B. onto but not one-one
	C. bijective
	D. many-one only
	Answer: (<i>A</i>) one-one but not onto
	Solution:
	For one-one:
	Let $f(x_1) = f(x_2)$
	$\Rightarrow x_1^3 - 1 = x_2^3 - 1$
	$\Rightarrow x_1^3 = x_2^3$
	$\Rightarrow x_1 = x_2$
	$\therefore f$ is one-one.

	For onto:	
	1 does not have a pre-image in \mathbb{N} (domain)	
	\Rightarrow Range \neq Co-domain	
	$\therefore f$ is into.	
745	If $Z = x + 2y$ subject to the following const	raints: $x + y < 5, x + 2y > 6, x > 3$
2.0	v > 0, then sum of the maximum and minir	num values of Z is
	A. 7	
	B. 5	
	C. 12	
	D. 13	
	Answer: (<i>D</i>) 13	
	Solution:	
	Given: objective function, $Z = x + 2y$	
	Constraints: $x + y \le 5, x + 2y \ge 6, x \ge 3$,	$y \ge 0$
	Plotting the graph of feasible region:	
	Y	
	(0,5) + x + 2y = 6 $(0,3) + x + 2y = 6$ $(0,3) + x + 2y = 6$ $(0,3) + x + 2y = 6$ $(0,3) + (0,3) +$	→ X
	From graph, the feasible region is <i>ABC</i> .	
	$\frac{1}{(x,y)}$	value: $z = x + 2y$
	A(3, 2)	$1 \times 3 + 2 \times 2 = 7$
	$B\left(3,\frac{3}{2}\right)$	$1 \times 3 + 2 \times \frac{5}{2} = 6$
	C(4,1)	$1 \times 4 + 2 \times 1 = 6$
	So, $Z_{\text{max}} = 7$ and $Z_{\text{min}} = 6$	
	Hence, $Z_{\text{max}} + Z_{\text{min}} = 13$	

B

speed it generates in km/hr. The electricity costs Rs. 12 per hour at speed of 4 km per ho and the fixed charges to run the car amounts to Rs. 300 per hour. Assume the speed of car is u km/hr.	ur
and the fixed charges to run the car amounts to Rs. 300 per hour. Assume the speed of car is u km/hr.	
Assume the speed of car is $u \text{ km/hr}$.	
Q46 Given that the electricity cost per hour is k times the square of the speed the car	
generates in km/hr, then value of k is	
A. $\frac{3}{16}$	
B. $\frac{3}{4}$	
C. $\frac{4}{3}$	
D. $\frac{16}{3}$	
Answer: $(B)\frac{3}{4}$	
Solution:	
Electricity cost = $k(u)^2$, where k is proportionality constant.	
$\Rightarrow 12 = k(4)^2$	
$\therefore k = \frac{3}{4}$	
Q47 If the car has travelled a distance of 500 km, then the total cost of running the ca	r is
given by function	
A. $375u - \frac{150000}{u}$	
B. $375u + \frac{150000}{1000}$	
C. $750u - \frac{150000}{150000}$	
D. $750u + \frac{150000}{1000}$	
u	
Allswell. (b) $575u + \frac{u}{u}$	
Solution:	
Time taken to cover 500 km is $\frac{500}{u}$ hours	
Fixed charges:	
Given that fixed charges to run the car amounts to Rs. 300 per hour.	
\Rightarrow Fixed charges for $\frac{500}{u}$ hours = $300 \times \frac{500}{u} = \frac{150000}{u}$	
Running charges:	
Electricity cost per hour = $k(u)^2 = \frac{3}{4}u^2$	

	\Rightarrow Electricity cost for $\frac{500}{u}$ hours $=\frac{3}{4}u^2 \times \frac{500}{u} = 375u$	
	Now, Total cost = Fixed charges + Running charges	
	\therefore Total cost of running the car = $375u + \frac{150000}{u}$	
Q48	The most economical speed to run the car is	
	A. 80 km/hr	
	B. 10 km/hr	
	C. 20 km/hr	
	D. 40 km/hr	
	Answer: (<i>C</i>) 20 km/hr	
	Solution:	
	We have,	
	Total cost of running the car, $C = 375u + \frac{150000}{u}$	
	Differentiating with respect to <i>u</i> , we get	
	$\frac{dC}{du} = 375 - \frac{150000}{u^2}$	
	For most economical speed, $\frac{dC}{du} = 0$	
	$\Rightarrow 375 - \frac{150000}{u^2} = 0$	
	$\Rightarrow u^2 = \frac{150000}{375} = 400$	
	$\therefore u = 20 \text{ km/hr}$	
Q49	The electricity cost for car to travel 500 km at the most economical speed is	
	A. Rs. 1835	
	B. Rs. 7500	
	C. Rs. 3500	
	D. Rs. 15000	
	Answer: (<i>B</i>) Rs.7500	
	Solution:	
	We have, Electricity cost = $375u$	
	\therefore Electricity cost at the most economical speed = $375 \times 20 = \text{Rs}.7500$	

Q50	The total cost for the car to travel $500~{ m km}$ at the most economical speed is
	A. Rs. 7500
	B. Rs. 15000
	C. Rs. 8000
	D. Rs.21000
	Answer: (B) Rs. 15000
	Solution:
	We have,
	Total cost of running the car = $375u + \frac{150000}{u}$
	\Rightarrow Total cost of running the car at the most economical speed = $375 \times 20 + \frac{150000}{20}$
	= Rs. 15000