Date: 17/11/2021 Subject: Mathematics

Class: Standard XII

Time Allowed: 90 minutes

Maximum Marks: 40

General Instructions:

1. The question paper contains **three sections - A, B and C.** Each part is compulsory.

- 2. Section A consists of 20 MCQs, attempt any 16 out of 20.
- 3. Section B consists of 20 MCQs, attempt any 16 out of 20.
- 4. Section C consists of 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

Date: 17/11/2021 Subject: Mathematics Topic : Section A

Class: Standard XII

- 1. Let \mathbb{N} be the set of all natural numbers and let R be a relation on $\mathbb{N} \times \mathbb{N}$ defined by $(a, b)R(c, d) \Leftrightarrow ad = bc$ for all $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$. Then R is
 - A. an equivalence relation
 - B. reflexive but not transitive
 - C. symmetric but not reflexive
 - D. both reflexive and symmetric but not transitive

2. If $f(x) = x \sin\left(\frac{1}{x}\right), x \neq 0$ is continuous at x = 0, then the value of f(0) is

- **A.** 1 **B.** 0
- **C**. 2
- D. -1

$$^{f 3.}$$
 If a matrix $A=[a_{ij}]_{2 imes 2}$ is given by $a_{ij}=rac{(i+j)+(i\cdot j)}{2},$ then the matrix A is

Α.	$\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix}$	$\left[\begin{array}{c} 5\\ 2\\ 4 \end{array} \right]$
В.	$\begin{bmatrix} \frac{3}{2} \\ \frac{5}{2} \end{bmatrix}$	$\frac{5}{2}$ 4
C.	$\begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \end{bmatrix}$	$\frac{3}{2} \\ 4 \end{bmatrix}$
D.	$\left[\begin{array}{c} \frac{3}{2} \\ 3 \end{array}\right]$	$\begin{bmatrix} 3\\ 8 \end{bmatrix}$

4. The principal value of $tan^{-1}\left(-\sqrt{3}\right)$ is

5.

Minor M_{33} (Minor of the element of $i^{
m th}$ row and $j^{
m th}$ column) of the

determinant $\begin{vmatrix} 2 & 3 & 5 \\ 2 & -1 & 8 \\ 1 & 2 & 4 \end{vmatrix}$ is A. 1 B. -32 C. -15 D. -8 BAJI

6. Let $f:\mathbb{N} o\mathbb{N}$ be defined by $f(x)=x^2+x+1.$ Then f is

- A. a one-one onto function
- B. a many-one onto function
- **C.** a one-one but not an onto function
- D. None of these
- 7. If $\begin{bmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix}$, then *b* is
 - **A**. 1
 - **B**. 2
 - C. -2

D. -3

- 8. If $f(x) = \begin{cases} x^2 + 3x + a, & x \leq 1 \\ bx + 2, & x > 1 \end{cases}$ is a differentiable function, then which of the following is correct about *a* and *b*?
 - **A.** a = 1, b = 3
 - **B.** a = 5, b = 3
 - **C.** a = 3, b = 5

D.
$$a = 3, b = 1$$

- 9. If $2\begin{bmatrix} x & 5 \\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}$, then (x, y) is **A.** (2, 6) **B.** (1, 6) **C.** (2, 9) **D.** (3, 6)
- 10. Let $\sin^{-1} x + \cos^{-1} y = \lambda \pi$, where $x + \frac{1}{x} = 2$ and $y + \frac{1}{y} = -2$. Then λ is equal to
 - **A.** -1 **B.** 1 **C.** $\frac{1}{2}$ **D.** $\frac{3}{2}$
- ^{11.} If $A = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ and $A + A^T = I$, where *I* is 2×2 unit matrix and A^T is the transpose of *A*, then the value of θ is equal to
 - **A.** $\frac{\pi}{6}$ **B.** $\frac{\pi}{2}$ **C.** $\frac{\pi}{3}$ **D.** $\frac{3\pi}{2}$

12. The function $f(x)=rac{1}{x^4+x^2+1}$ is

- **A.** Discontinuous at x = 0
- **B.** Discontinuous at x = 1
- **C.** Discontinuous at x = -1
- D. Continuous everywhere
- 13. If relation *R* on the set $A = \{1, 2, 3, 4, 5\}$ is defined as $R = \{(a, b) : a + b \text{ is even}\}$, then [2], the equivalence class of 2 is
 - **A.** $\{2,3\}$
 - **B.** {2,3,4}
 - **C.** $\{2,4\}$
 - **D.** $\{1, 2, 3, 4, 5\}$

14. The domain of the function $y = \sin^{-1}(-x^2)$ is

- **A.** [0,1]
- **B.** (0,1)
- **C.** [-1,1]
- **D.** $(-\infty,-1)\cup(1,\infty)$

- 15. If *A* and *B* are symmetric matrices of the same order and X = AB + BAand Y = AB - BA, then XY^T is equal to
 - A. XY
 - **B**. *YX*
 - **C**. –*XY*
 - D. None of these
- 16. A relation R is defined as aRb if "a is the father of b". Then R is
 - A. reflexive
 - B. symmetric
 - C. transitive
 - D. none of these
- 17. If $f(x)=egin{cases} 4^x, & -1\leq x<1\ 5-x, & 1\leq x\leq 5 \end{cases}$, then
 - **A.** f(x) is discontinuous at x = 1
 - **B.** f(x) is differentiable at x = 1
 - **C.** f(x) is continuous but not differentiable at x = 1
 - D. None of these

- 18. If $\begin{bmatrix} 1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1 \end{bmatrix}$ has no inverse, then the possible real value of x is **A.** 2 **B.** 3 **C.** 0 **D.** 1
- 19. If $f(x) = a |\sin x| + b e^{|x|} + c |x|^3$, where $a, b, c \in \mathbb{R}$ is differentiable at x = 0, then
 - A. $a + b = 0, c \in \mathbb{R}$ B. $c = 0, a = 0, b \in \mathbb{R}$ C. $b = 0, c = 0, a \in \mathbb{R}$ D. a = 0, b = 0, c = 0

20. Let $f(x) = \cot^{-1}(2x - x^2), x \in \mathbb{R}$. Then the range of f(x) is

A.
$$(0, \pi)$$

B. $\left[0, \frac{\pi}{4}\right]$
C. $\left[\frac{\pi}{4}, \pi\right]$
D. $\left[\frac{\pi}{4}, \pi\right)$

BY. **BYJU'S Part Test for Board Term I (CBSE** Grade 12) Date: 17/11/2021 Subject: Mathematics Topic : Section B Class: Standard XII 1. If $\begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix} \begin{bmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then the value of a+b+c+d is **A**. 0 **B.** $\sin\theta + \cos\theta + 1$ **C**. 2 **D**. 1 If $f(x) = rac{\log_e(1+x^2 \tan x)}{\sin x^3}, x eq 0$ is continuous at x=0, then the value of 2. f(0) is **A**. _1 **B**. 0 **C**. $\frac{1}{2}$ **D**. 1 The number of value(s) of x satisfying $\sin\left(\frac{1}{3}\cos^{-1}x\right) = 1$ is 3. **A**. 0 Β. 1 **C**. 2 **D**. 3

- 4. Let R be a relation defined on \mathbb{N} as $R = \{(x, y) : x, y \in \mathbb{N}, 2x + y = 41\}$. Then R is
 - A. a symmetric relation
 - B. both symmetric and transitive relation
 - C. neither reflexive nor symmetric nor transitive relation
 - **D.** symmetric relation but not transitive relation
- 5. The domain of the function $f(x) = \sin^{-1} x + \cos x$ is
 - **A.** [-1,1]
 - **B.** $[-1, \pi + 1]$
 - C. $(-\infty,\infty)$
 - **D.** $(-\infty, -1) \cup (1, \infty)$
- 6. Let S be the set of all real values of k for which the system of linear equations

x+y+z=2 2x+y-z=3 3x+2y+kz=4has a unique solution. Then *S* is

- A. an empty set
- **B.** equal to $\{0\}$
- **C.** equal to \mathbb{R}
- **D.** equal to $\mathbb{R} \{0\}$

- 7. For any two real numbers θ and ϕ where $\theta, \phi \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, we define $\theta R \phi$ if and only if $\sec^2 \theta \tan^2 \phi = 1$. Then relation *R* is
 - **A.** Reflexive but not transitive relation.
 - **B.** Symmetric but not reflexive relation.
 - **C.** Both reflexive and symmetric relation but not transitive relation.
 - **D.** An equivalence relation
- 8. The principal value of $\sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$ is
 - **A.** $\frac{\pi}{6}$ **B.** $\frac{\pi}{3}$ **C.** $\frac{5\pi}{6}$ **D.** $\frac{7\pi}{6}$
- 9. Let *A* and *B* be two square matrices of order 3 such that det(A) = 5 and det(B) = 2. Then the value of $det(det(B) \cdot A)$ is
 - A. 40
 B. 20
 C. 8
 D. 10

^{10.} The principal value of
$$\tan^{-1}\left[2\cos\left[2\sin^{-1}\frac{1}{2}\right]\right]$$
 is

A. $\frac{\pi}{3}$ **B.** $\frac{\pi}{2}$ **C.** $\frac{\pi}{4}$ **D.** $\frac{\pi}{6}$

11. If $A = [a_{ij}]$ is a 2 × 2 matrix such that A = Adj(A), then which of the following can be matrix *A*?

Α.	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -1 \end{bmatrix}$
В.	$\begin{bmatrix} 0\\ -2 \end{bmatrix}$	$\begin{bmatrix} -2\\ 0 \end{bmatrix}$
C.	$\begin{bmatrix} 2\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\2 \end{bmatrix}$
D.	$\begin{bmatrix} 0\\ 1 \end{bmatrix}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$

12.
If the function
$$f(x) = \begin{cases} \frac{\sin 4x + \sin 2x}{x}, & x < 0\\ a, & x = 0\\ \frac{b \ln(1 + 2x^2)}{x^2}, & x > 0 \end{cases}$$
 is continuous at $x = 0$, then

which of the following is correct?

A.
$$a = 3, b = 3$$

B. $a = 3, b = 4$
C. $a = 6, b = 6$
D. $a = 6, b = 3$

- 13. If $f(x) = \begin{cases} x+1, & x \leq 1 \\ 2x-1, & x > 1 \end{cases}$, then which of the following is true?
 - **A.** f(x) is continuous at x = 1
 - **B.** f(x) is discontinuous at x = 1
 - $\textbf{C.} \quad \lim_{x \to 1^+} f(x) = 2$
 - D. $\lim_{x o 1^-} f(x) = 1$

14. Let the function $f: \mathbb{R} - \{-b\} \to \mathbb{R} - \{1\}$ be defined by $f(x) = \frac{x+a}{x+b}, a \neq b$. Then

- **A.** *f* is one–one but not onto function
- **B.** *f* is onto but not one–one function
- **C.** f is bijective function
- **D.** *f* is neither one–one nor onto function

15. If
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \cos^{-1}\left(-\frac{1}{2}\right) = \tan^{-1}x$$
, then the value of x is equal to
A. $\frac{1}{\sqrt{3}}$
B. 0
C. 1
D. $\sqrt{3}$

16. The trace of a square matrix is defined as the sum of the principal diagonal elements. For real numbers a and b, if the trace of matrices

 $A = \begin{bmatrix} 2a^2 & 5\\ 3 & 9-6b \end{bmatrix} \text{ and } B = \begin{bmatrix} -b^2 & 2\\ 3 & 8a-8 \end{bmatrix} \text{ are equal, then } 2a-b \text{ is equal to}$ to $A. \quad 0$ $B. \quad 1$ $C. \quad 2$

17. If
$$f(x) = \left\{ egin{array}{cc} |x+2| & x
eq -2 \ rac{1}{ an^{-1}(x+2)}, & x
eq -2 \ 2, & x = -2 \end{array}
ight.$$
 , then

D. 4

A. *f* is continuous at x = -2 but not differentiable

B. *f* is neither continuous nor differentiable at x = -2

C. *f* is continuous at x = -2

D. *f* is continuous and differentiable at x = -2

18. Let matrix
$$A = \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}$$
. Then inverse of matrix A is
A. $\begin{bmatrix} 3 & 1 \\ -5 & -2 \end{bmatrix}$
B. $\begin{bmatrix} -5 & -2 \\ 3 & 1 \end{bmatrix}$
C. $\begin{bmatrix} -5 & 1 \\ 3 & -2 \end{bmatrix}$
D. $\begin{bmatrix} 5 & 2 \\ -3 & -1 \end{bmatrix}$

19. The range of the function $f\left(x
ight)=\left(1+\sec^{-1}x
ight)\left(1+\cos^{-1}x
ight)$ is

A. $\left\{2, (1+\pi)^2\right\}$ B. $(-\infty, 0] \cup [4, \infty)$ C. $\left\{1, (1+\pi)^2\right\}$ D. $\left[1, (1+\pi)^2\right]$

^{20.} If $A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \end{bmatrix}$, then the matrix *C* such that A + B + C is a zero matrix, is

 A.
 $\begin{pmatrix} -1 & 4 & -1 \\ -1 & 0 & -1 \end{bmatrix}$

 B.
 $\begin{pmatrix} -3 & 4 & -1 \\ -3 & 0 & -1 \end{bmatrix}$

 C.
 $\begin{pmatrix} -1 & 1 & -1 \\ -1 & 0 & -1 \end{bmatrix}$

 D.
 $\begin{pmatrix} -1 & 3 & -1 \\ -3 & 0 & -1 \end{bmatrix}$

Date: 17/11/2021 Subject: Mathematics Topic : Section C

Class: Standard XII

- 1. Consider a triangle whose vertices are (1,1), (4,2) and (3,5). Then the area this triangle is
 - A. 3 sq. units
 - B. 7 sq. units
 - **C.** 5 sq. units
 - **D.** 10 sq. units
- 2. The domain of the function $\cos^{-1}\left(\frac{1}{1-x}\right)$ is equal to
 - **A.** [0,2]
 - B. $\mathbb{R}-[0,2]$
 - C. $\mathbb{R}-(0,2)$
 - **D.** [-1,1]
- 3. A function $f : \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = -x^3 + 3x^2 2x + 4$. Which of the following is true about the function f(x)?
 - **A.** f(x) is an onto function
 - **B.** f(x) is an into function
 - **C.** f(x) is a one-one function
 - **D.** f(x) = 4 has only one solution

4. The principal value of $\sin^{-1}(-1)$ is

A. $\frac{\pi}{2}$ **B.** $\frac{3\pi}{2}$ **C.** $-\frac{\pi}{2}$ **D.** $\frac{5\pi}{2}$

5. If
$$f(x) = \begin{cases} \frac{\sin 5x}{x^2 + 2x}, & x \neq 0 \\ k + \frac{1}{2}, & x = 0 \end{cases}$$
 is continuous at $x = 0$, then the value of k is
A. -2
B. $\frac{1}{2}$
C. 1
D. 2

6. Consider two families *A* and *B*. Suppose there are 4 men, 4 women and 4 children in family *A* and 2 men, 2 women and 2 children in family *B*. The recommended daily amount of calories is 2400 for a man, 1900 for a woman, 1800 for a child and 45 grams of proteins for a man, 55 grams for a woman and 33 grams for a child.

The requirement of calories and proteins for each person is given by matrix R and the number of family members in each family is given by matrix F.

Matrix R is

	Calories	$\operatorname{Proteins}$	
Α.	2400	45]	Men
	1900	55	Women
	1800	33]	Children
	Calories	Proteins	
в.	1900	55]	Men
	2400	45	Women
	1800	33	Children
	Calories	Protei	\mathbf{ns}
C.	Calories	Protei 33]	ns Men
C.	Calories [1800 1900	$\begin{array}{c} \text{Protei} \\ 33 \\ 55 \end{array}$	ns Men Women
C.	$\begin{bmatrix} 1800\\ 1900\\ 2400 \end{bmatrix}$	$\begin{array}{c} \text{Protei} \\ 33 \\ 55 \\ 45 \end{array} \right]$	ns Men Women Children
c.	Calories $ \begin{bmatrix} 1800 \\ 1900 \\ 2400 \end{bmatrix} $ Calories	Protei 33 55 45 Protei	ns Men Women Children ns
C. D.	Calories [1800 1900 2400 Calories [2400	Protei 33 55 45 Protei 33	ns Men Women Children ns Men
C. D.	Calories $\begin{bmatrix} 1800\\ 1900\\ 2400 \end{bmatrix}$ Calories $\begin{bmatrix} 2400\\ 1900 \end{bmatrix}$	$ \begin{array}{c} Protei \\ 33 \\ 55 \\ 45 \end{array} $ Protei 33 55	ns Men Women Children ns Men Women

7. Consider two families *A* and *B*. Suppose there are 4 men, 4 women and 4 children in family *A* and 2 men, 2 women and 2 children in family *B*. The recommended daily amount of calories is 2400 for a man, 1900 for a woman, 1800 for a child and 45 grams of proteins for a man, 55 grams for a woman and 33 grams for a child.

The requirement of calories and proteins for each person is given by matrix R and the number of family members in each family is given by matrix F.

Matrix F is

	Men	Women	Child	ren
Α.	$\begin{bmatrix} 4 \end{bmatrix}$	4	4]	${\rm Family}\ A$
	$\lfloor 2$	2	2	Family B
	Men	Women	Child	ren
В.	$\begin{bmatrix} 4 \end{bmatrix}$	2	4	${\rm Family}\ A$
	$\lfloor 2$	4	2	${\rm Family}\ B$
	Men	Women	Child	ren
C.	$ Men \begin{bmatrix} 4 \end{bmatrix} $	Women 4	Child: 2	$\operatorname{Family} A$
C.	$\operatorname{Men} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$	Women 4 2	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$	ren Family <i>A</i> Family <i>B</i>
C.		Women 4 2 Women	$\begin{bmatrix} Child \\ 2 \\ 4 \end{bmatrix}$ Child	ren Family <i>A</i> Family <i>B</i> ren
C. D.	Men [4 2 Men [2	Women 4 2 Women 2	$\begin{bmatrix} \text{Child} \\ 2 \\ 4 \end{bmatrix}$ $\begin{bmatrix} \text{Child} \\ 4 \end{bmatrix}$	ren Family A Family B ren Family A

8. Consider two families *A* and *B*. Suppose there are 4 men, 4 women and 4 children in family *A* and 2 men, 2 women and 2 children in family *B*. The recommended daily amount of calories is 2400 for a man, 1900 for a woman, 1800 for a child and 45 grams of proteins for a man, 55 grams for a woman and 33 grams for a child.

The requirement of calories and proteins for each person is given by matrix R and the number of family members in each family is given by matrix F.

Requirement of calories of family A is

- **A.** 24000
- **B.** 24400
- **C**. 15000
- D. 15800

9. Consider two families *A* and *B*. Suppose there are 4 men, 4 women and 4 children in family *A* and 2 men, 2 women and 2 children in family *B*. The recommended daily amount of calories is 2400 for a man, 1900 for a woman, 1800 for a child and 45 grams of proteins for a man, 55 grams for a woman and 33 grams for a child.

The requirement of calories and proteins for each person is given by matrix R and the number of family members in each family is given by matrix F.

Requirement of proteins of family B is

- **A.** 560 grams
- **B.** 332 grams
- **C.** 266 grams
- **D.** 532 grams

10. Consider two families *A* and *B*. Suppose there are 4 men, 4 women and 4 children in family *A* and 2 men, 2 women and 2 children in family *B*. The recommended daily amount of calories is 2400 for a man, 1900 for a woman, 1800 for a child and 45 grams of proteins for a man, 55 grams for a woman and 33 grams for a child.

The requirement of calories and proteins for each person is given by matrix R and the number of family members in each family is given by matrix F.

If F^T represents the transpose of matrix F, then $R + 100F^T$ is equal to

Α.	$\begin{bmatrix} 280\\1900\\2200\end{bmatrix}$	245 230 233
в.	$\begin{bmatrix} 2800\\ 2400\\ 2200 \end{bmatrix}$	255 255 233
C.	$\begin{bmatrix} 2800 \\ 2300 \\ 2200 \end{bmatrix}$	$\begin{array}{c} 45\\55\\33 \end{array} \right]$
D.	$\begin{bmatrix} 2800\\ 2300\\ 2200 \end{bmatrix}$	$\begin{array}{c} 245 \\ 255 \\ 233 \end{array}$

