

Exercise 13.6

Page No: 230

1. The circumference of the base of cylindrical vessel is 132cm and its height is 25cm. How many litres of water can it hold? (1000 cm³= 1L) (Assume $\pi = 22/7$)

Solution:

Circumference of the base of cylindrical vessel = 132 cmHeight of vessel, h = 25 cmLet r be the radius of the cylindrical vessel.

Step 1: Find the radius of vessel

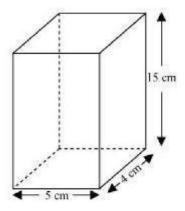
We know that, circumference of base = $2\pi r$, so $2\pi r = 132$ (given) $r = (132/(2\pi))$ $r = 66 \times 7/22 = 21$ Radius is 21 cm

Step 2: Find the volume of vessel

Formula: Volume of cylindrical vessel = $\pi r^2 h$ = $(22/7) \times 21^2 \times 25$ = 34650 Therefore, volume is 34650 cm³

Since, $1000 \text{ cm}^3 = 1L$ So, Volume = 34650/1000 L = 34.65L

Therefore, vessel can hold 34.65 litres of water.


2. The inner diameter of a cylindrical wooden pipe is 24cm and its outer diameter is 28 cm. The length of the pipe is 35cm. Find the mass of the pipe, if 1cm³ of wood has a mass of 0.6g. (Assume $\pi = 22/7$)

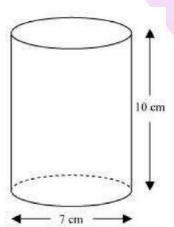
Solution:

Inner radius of cylindrical pipe, say $r_1 = \text{diameter}_1/2 = 24/2 \text{ cm} = 12\text{cm}$ Outer radius of cylindrical pipe, say $r_2 = \text{diameter}_2/2 = 28/2 \text{ cm} = 14 \text{ cm}$ Height of pipe, h = Length of pipe = 35cmNow, the Volume of pipe $= \pi(r_2^2 - r_1^2)h$ cm³ Substitute the values. Volume of pipe $= 110 \times 52 \text{ cm}^3 = 5720 \text{ cm}^3$ Since, Mass of 1 cm³ wood = 0.6 gMass of 5720 cm³ wood $= (5720 \times 0.6) \text{ g} = 3432 \text{ g}$ or 3.432 kg. 3. A soft drink is available in two packs - (i) a tin can with a rectangular base of length 5cm and width 4cm, having a height of 15 cm and (ii) a plastic cylinder with circular base of diameter 7cm and height 10cm. Which container has greater capacity and by how much? (Assume $\pi=22/7$)

Solution:

(i) tin can will be cuboidal in shape

Dimensions of tin can are


Length, l = 5 cm

Breadth, b = 4 cm

Height, h = 15 cm

Capacity of tin can = $1 \times b \times h = (5 \times 4 \times 15) \text{ cm}^3 = 300 \text{ cm}^3$

(ii) Plastic cylinder will be cylindrical in shape.

Dimensions of plastic can are:

Radius of circular end of plastic cylinder, r = 3.5cm

Height, H = 10 cm

Capacity of plastic cylinder = $\pi r^2 H$

Capacity of plastic cylinder = $(22/7)\times(3.5)^2\times10 = 385$

Capacity of plastic cylinder is 385 cm³

From results of (i) and (ii), plastic cylinder has more capacity.

Difference in capacity = (385-300) cm³ = 85cm³

- 4. If the lateral surface of a cylinder is 94.2cm² and its height is 5cm, then find
- (i) radius of its base
- (ii) its volume. [Use π = 3.14]

Solution:

CSA of cylinder = 94.2 cm^2

Height of cylinder, h = 5cm

(i) Let radius of cylinder be r.

Using CSA of cylinder, we get

 $2\pi rh = 94.2$

 $2 \times 3.14 \times r \times 5 = 94.2$

r = 3

radius is 3 cm

(ii) Volume of cylinder

Formula for volume of cylinder = $\pi r^2 h$

Now, $\pi r^2 h = (3.14 \times (3)^2 \times 5)$ (using value of r from (i))

= 141.3

Volume is 141.3 cm³

- 5. It costs Rs 2200 to paint the inner curved surface of a cylindrical vessel 10m deep. If the cost of painting is at the rate of Rs 20 per m^2 , find
- (i) inner curved surface area of the vessel
- (ii) radius of the base
- (iii) capacity of the vessel

(Assume $\pi = 22/7$)

Solution:

(i) Rs 20 is the cost of painting 1 m² area.

Rs 1 is the cost to paint 1/20 m² area

So, Rs 2200 is the cost of painting = $(1/20 \times 2200)$ m²

 $= 110 \text{ m}^2 \text{ area}$

The inner surface area of the vessel is 110m².

(ii) Radius of the base of the vessel, let us say r.

Height (h) = 10 m and Surface area formula = $2\pi rh$ Using result of (i) $2\pi rh = 110 \text{ m}^2$ $2 \times 22/7 \times r \times 10 = 110$ r = 1.75

Radius is 1.75 m.

(iii) Volume of vessel formula = $\pi r^2 h$

Here r = 1.75 and h = 10

Volume = $(22/7)\times(1.75)^2\times10$) = 96.25

Volume of vessel is 96.25 m³

Therefore, the capacity of the vessel is 96.25 m³ or 96250 litres.

6. The capacity of a closed cylindrical vessel of height 1m is15.4 liters. How many square meters of metal sheet would be needed to make it? (Assume $\pi = 22/7$)

Solution:

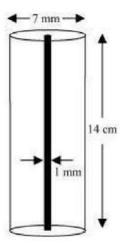
Height of cylindrical vessel, h = 1 mCapacity of cylindrical vessel = $15.4 \text{ litres} = 0.0154 \text{ m}^3$ Let r be the radius of the circular end.

Now.

Capacity of cylindrical vessel = $(22/7) \times r^2 \times 1$ = 0.0154

After simplifying, we get, r = 0.07 m

Again, total surface area of vessel = $2\pi r(r+h)$


- $=(2\times22/7\times0.07(0.07+1))$
- $=0.44\times1.07$
- = 0.4708

Total surface area of vessel is 0.4708 m²

Therefore, 0.4708 m² of the metal sheet would be required to make the cylindrical vessel.

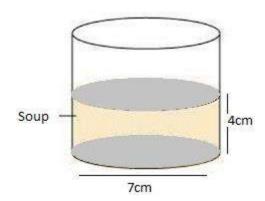
7. A lead pencil consists of a cylinder of wood with solid cylinder of graphite filled in the interior. The diameter of the pencil is 7 mm and the diameter of the graphite is 1 mm. If the length of the pencil is 14 cm, find the volume of the wood and that of the graphite. (Assume $\pi = 22/7$)

Solution:

Radius of pencil, $r_1 = 7/2$ mm = 0.7/2 cm = 0.35 cm Radius of graphite, $r_2 = 1/2$ mm = 0.1/2 cm = 0.05 cm Height of pencil, h = 14 cm Formula to find, volume of wood in pencil = $\pi(r_1^2 - r_2^2)h$ cubic units Substitute the values, we have = $[(22/7)\times(0.35^2-0.05^2)\times14]$ = 44×0.12

= 5.28This implies, volume of wood in pencil = 5.28 cm^3

Again,


Volume of graphite = $\pi r_2^2 h$ cubic units Substitute the values, we have = $(22/7) \times 0.05^2 \times 14$ = 44×0.0025 = 0.11 So, the volume of graphite is 0.11 cm³.

8. A patient in a hospital is given soup daily in a cylindrical bowl of diameter 7cm. If the bowl is filled with soup to a height of 4cm, how much soup the hospital has to prepare daily to serve 250 patients? (Assume $\pi = 22/7$)

Solution:

Diameter of cylindrical bowl = 7 cm Radius of cylindrical bowl, r = 7/2 cm = 3.5 cm Bowl is filled with soup to a height of 4cm, so h = 4 cm

Volume of soup in one bowl= $\pi r^2 h$ (22/7)×3.5²×4 = 154

Volume of soup in one bowl is 154 cm³ Therefore,

Volume of soup given to 250 patients = (250×154) cm³ = 38500 cm³ = 38.5litres.