
BYJU The Learning A NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Exercise: 6.3

(Page No: 107)

1. In Fig. 6.39, sides QP and RQ of Δ PQR are produced to points S and T respectively. If \angle SPR = 135° and \angle PQT = 110°, find \angle PRQ.

Solution:

It is given the TQR is a straight line and so, the linear pairs (i.e. \angle TQP and \angle PQR) will add up to 180°

So, $\angle TQP + \angle PQR = 180^{\circ}$ Now, putting the value of $\angle TQP = 110^{\circ}$ we get, $\angle PQR = 70^{\circ}$ Consider the $\triangle PQR$, Here, the side QP is extended to S and so, $\angle SPR$ forms the exterior angle. Thus, $\angle SPR$ ($\angle SPR = 135^{\circ}$) is equal to the sum of interior opposite angles. (Triangle property) Or, $\angle PQR + \angle PRQ = 135^{\circ}$ Now, putting the value of $\angle PQR = 70^{\circ}$ we get, $\angle PRQ = 135^{\circ}-70^{\circ}$ Hence, $\angle PRQ = 65^{\circ}$

2. In Fig. 6.40, $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$, find $\angle OZY$ and $\angle YOZ$.

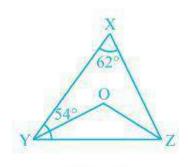


Fig. 6.40

Solution:

We know that the sum of the interior angles of the triangle. So, $\angle X + \angle XYZ + \angle XZY = 180^{\circ}$ Putting the values as given in the question we get, 62°+54° +∠XZY = 180° Or, $\angle XZY = 64^{\circ}$ Now, we know that ZO is the bisector so, $\angle OZY = \frac{1}{2} \angle XZY$ ∴∠OZY = 32° Similarly, YO is a bisector and so, $\angle OYZ = \frac{1}{2} \angle XYZ$ Or, $\angle OYZ = 27^{\circ}$ (As $\angle XYZ = 54^{\circ}$) Now, as the sum of the interior angles of the triangle, $\angle OZY + \angle OYZ + \angle O = 180^{\circ}$ Putting their respective values, we get, ∠O = 180°-32°-27° Hence, $\angle 0 = 121^{\circ}$

3. In Fig. 6.41, if AB || DE, \angle BAC = 35° and \angle CDE = 53°, find \angle DCE.

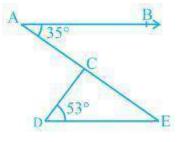
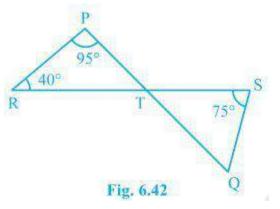


Fig. 6.41

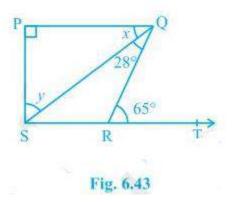

Solution:

https://byjus.com

BYJUC The Learning A Angles

We know that AE is a transversal since AB II DE Here \angle BAC and \angle AED are alternate interior angles. Hence, \angle BAC = \angle AED It is given that \angle BAC = 35° $\Rightarrow \angle$ AED = 35° Now consider the triangle CDE. We know that the sum of the interior angles of a triangle is 180°. $\therefore \angle$ DCE+ \angle CED+ \angle CDE = 180° Putting the values, we get \angle DCE+35°+53° = 180° Hence, \angle DCE = 92°

4. In Fig. 6.42, if lines PQ and RS intersect at point T, such that $\angle PRT = 40^\circ$, $\angle RPT = 95^\circ$ and $\angle TSQ = 75^\circ$, find $\angle SQT$.

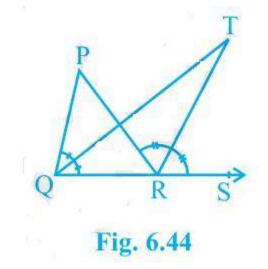

Solution:

Consider triangle PRT. $\angle PRT + \angle RPT + \angle PTR = 180^{\circ}$ So, $\angle PTR = 45^{\circ}$ Now $\angle PTR$ will be equal to $\angle STQ$ as they are vertically opposite angles. So, $\angle PTR = \angle STQ = 45^{\circ}$ Again, in triangle STQ, $\angle TSQ + \angle PTR + \angle SQT = 180^{\circ}$ Solving this we get, $75^{\circ} + 45^{\circ} + \angle SQT = 180^{\circ}$ $\angle SQT = 60^{\circ}$

https://byjus.com

BYJU: NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

5. In Fig. 6.43, if PQ \perp PS, PQ II SR, \angle SQR = 28° and \angle QRT = 65°, then find the values of x and y.


Solution:

x +∠SQR = ∠QRT (As they are alternate angles since QR is transversal) So, x+28° = 65° \therefore x = 37° It is also known that alternate interior angles are same and so, ∠QSR = x = 37° Also, Now, ∠QRS +∠QRT = 180° (As they are a Linear pair) Or, ∠QRS+65° = 180° So, ∠QRS = 115° Using the angle sum property in ∆ SPQ ∠SPQ +x+y= 180° 90° + 37° + y = 180° y = 180° - 127° = 53°

Hence, $y = 53^{\circ}$

6. In Fig. 6.44, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR = $\frac{1}{2} \angle$ QPR.

Solution:

Consider the Δ PQR. \angle PRS is the exterior angle and \angle QPR and \angle PQR are interior angles. So, \angle PRS = \angle QPR+ \angle PQR (According to triangle property) Or, \angle PRS - \angle PQR = \angle QPR ------(i) Now, consider the Δ QRT, \angle TRS = \angle TQR+ \angle QTR Or, \angle QTR = \angle TRS- \angle TQR We know that QT and RT bisect \angle PQR and \angle PRS respectively. So, \angle PRS = 2 \angle TRS and \angle PQR = 2 \angle TQR Now, \angle QTR = $\frac{1}{2} \angle$ PRS - $\frac{1}{2} \angle$ PQR Or, \angle QTR = $\frac{1}{2} \angle$ PRS - $\frac{1}{2} \angle$ PQR From (i) we know that \angle PRS - \angle PQR = \angle QPR So, \angle QTR = $\frac{1}{2} \angle$ QPR (hence proved).