Date: 17/11/2021 Subject: Physics

Class: Standard XII

Time:90minutes

Maximum Marks: 35

General Instructions:

- 1. The Question Paper contains three sections
- 2. Section A has 25 questions. Attempt any 20 questions.
- 3. Section B has 24 questions. Attempt any 20 questions.
- 4. Section C has 6 questions. Attempt any 5 questions.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

Date: 17/11/2021 Subject: Physics Topic : Section A

Class: Standard XII

- 1. When a body is charged by induction, then the body
 - A. becomes neutral
 - B. does not lose any charge
 - C. loses whole of the charge on it
 - D. loses part of the charge on it
- 2. Consider three charged bodies *P*, *Q* and *R*. If *P* and *Q* repel each other, while *P* and *R* attract. What is the nature of force between *Q* and *R*?
 - A. Repulsive force
 - B. Attractive force
 - C. No force
 - D. None of these
- 3. Two equal charges are placed at a separation of 1 m. What should be the magnitude of the charges so that the force between them equals the weight of a 50 kg person ?

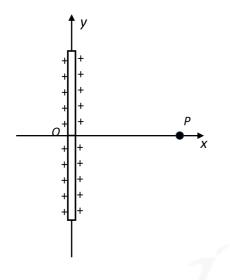
(Take $g = 10 \text{ m/s}^2$)

- A. $3 \times 10^{-4} C$
- **B.** $2.3 \times 10^{-4} C$
- **C.** $3.2 imes 10^{-4} C$
- D. $5 imes 10^{-5}~C$

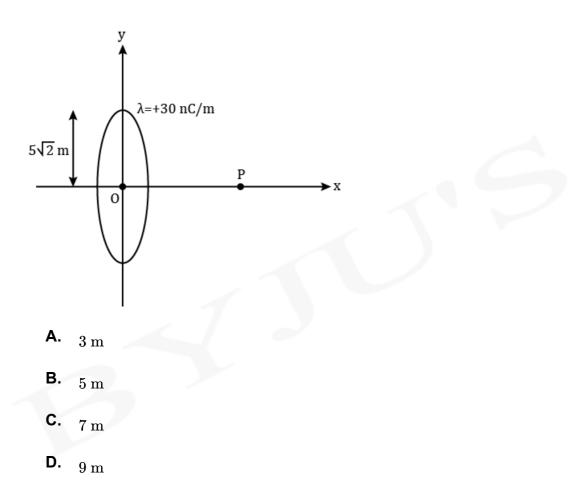
4. Two equally charged identical metallic spheres *A* and *B* repel each other with a force 2×10^{-5} N, when placed in air (neglect the dimension of sphere as they are very small). Another identical uncharged sphere *C* is touched to *B* and then placed at the mid point of line joining *A* and *B*. What is the net electrostatic force on *C*?

A. 1×10^{-5} N, toward *BA*

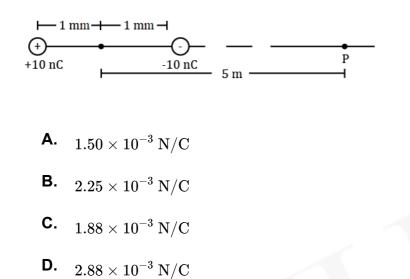
B. 2×10^{-5} N, towards AB


- **C.** 4×10^{-5} N, towards *BA*
- **D.** 0.5×10^{-5} N, towards AB
- 5. Three charges 4μ C each are kept at the vertices of an equilateral triangle of side 9 cm. The magnitude of force on one of the charges is

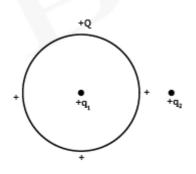
A.
$$\frac{16\sqrt{3}}{9}$$
N
B. $\frac{160}{9}\sqrt{3}$ N
C. $\frac{80}{9}\sqrt{3}$ N
D. $\frac{40}{9}\sqrt{3}$ N



6. Find the direction of electric field at point P for the uniform line charge distribution of finite length as shown in figure, if line OP is equidistant from both the ends.


- **A.** Along positive x- axis
- **B.** Along negative x axis
- **C.** Along positive y- axis
- **D.** Along negative y- axis

7. At what distance from the centre of a uniformly charged ring, maximum value of electric field will be obtained?

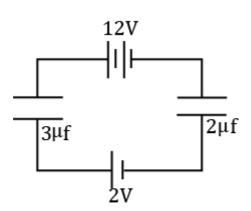


- 8. A particle of mass 2 gm and charge $1 \mu \text{C}$ is held at rest on a frictionless horizontal surface at a distance of 1 m from the fixed charge of 1 mC. If the particle is released, it will be repelled. The speed of the particle when it is at a distance of 10 m from the fixed charge is
 - A. 45 ms^{-1} B. 60 ms^{-1} C. 90 ms^{-1}
 - **D.** 100 ms^{-1}

9. Find the net electric field at an axial point P of a dipole as shown in figure.

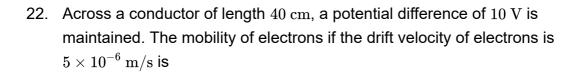
10. A thin metallic spherical shell contains a charge Q on its surface. A point charge q_1 is placed at the centre of the shell and another charge q_2 is placed outside the shell. All the three charges are positive. Then, the force on charge q_1 is

- A. Towards right
- B. Towards left
- C. Zero
- D. None of these

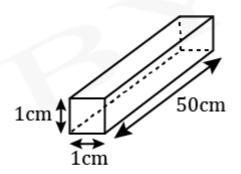

- 11. Identify the correct statement regarding an equipotential surface:
 - **A.** An equipotential surface and electric line of force never intersect each other.
 - **B.** An equipotential surface and electric line of force intersect at an angle of 45° .
 - **C.** An equipotential surface and electric line of force intersect at an angle of 90° .
 - **D.** An equipotential surface and electric line of force intersect at an angle of 60° .
- 12. Electric potential in a region is varying according to the relation $V = \frac{3x^2}{2} - \frac{y^2}{4}$, where *x* and *y* are in meter and *V* is in volt. Electric field intensity in N/C at a point (1 m, 2 m) is
 - A. $3\hat{i} \hat{j}$
 - B. $-3\hat{i}+\hat{j}$
 - C. $6\hat{i} 2\hat{j}$
 - **D.** $-6\hat{i}+2\hat{j}$
- 13. A capacitor cannot be used as a battery because
 - A. It cannot store a large amount of charge
 - **B.** It produces too much heat
 - **C.** It gets discharged very rapidly
 - **D.** It is very costly as compared to a battery

- 14. The phenomenon of 'outwards bending of electric field lines at the edges' of the plates of a capacitor is called
 - A. Polarization of induced charge
 - B. Induction of charges
 - **C.** Fringing of the field
 - **D.** Electric susceptibility
- 15. Two conductors of irregular shapes placed near each other are connected to the two terminals of a battery of 50 V. It is observed that the charge on one of the conductors is 2μ C. The capacitance of this arrangement is
 - A. $2 \times 10^{-8} \mathrm{F}$
 - **B.** $4 \times 10^{-8} \mathrm{F}$
 - **C.** 10^{-8} F
 - **D.** $4 imes 10^{-6} ext{ F}$
- 16. Three capacitors of capacitance $3 \mu F$, $10 \mu F$ and $15 \mu F$ are connected in series to a battery of 100 V. The voltage across $10 \mu F$ is
 - A. 10 Volt
 - **B.** 20 Volt
 - **C.** $_{30 \text{ Volt}}$
 - **D.** 40 Volt

17. For the circuit shown in the figure, the total energy stored in the capacitors is



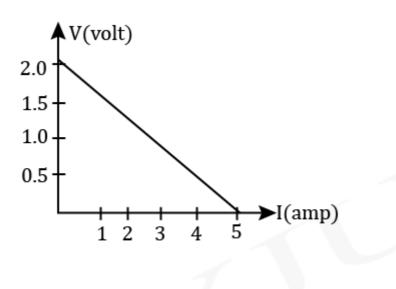
- **A.** $120 \ \mu J$
- **B.** 30 μJ
- **C.** $60 \mu J$
- **D.** $20 \ \mu J$


18. Which of the following cannot be used as a dielectric in a capacitor ?

- A. Paper
- B. Glass
- **C**. Copper
- D. Oil

- 19. An air capacitor of capacity $10 \ \mu F$ is connected to a battery of 12 V. Now the space between the plates is filled with a liquid of dielectric constant 5. The additional charge that flows to the capacitor is
 - **A.** $120 \ \mu C$
 - **B.** 600 μC
 - **C.** $_{480 \mu C}$
 - **D.** $24 \mu C$
- 20. What will be the number of electrons passing through a heater wire in one minute, if it carries a current of 8 A?
 - A. 3×10^{21} B. 3×10^{28} C. 3×10^{30} D. 3×10^{12}
- 21. Two wires , each of the radius r but of different materials are connected together end to end (in series). If the densities of charge carried in the two wires are in the ratio 1:4, the drift velocity of electrons in the two wires will be in the ratio of.
 - A. 1:2
 B. 2:1
 C. 4:1
 D. 1:4

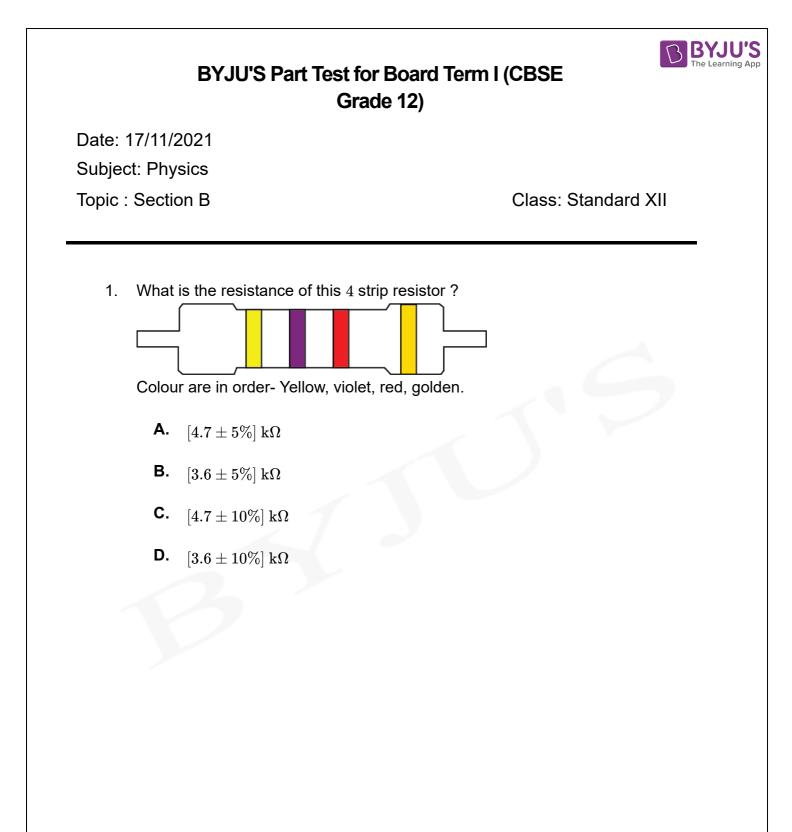
- **A.** $2 \times 10^{-7} \text{ m}^2/\text{Vs}$
- **B.** $1 \times 10^{-7} \text{ m}^2/\text{Vs}$
- C. $4 \times 10^{-6} \text{ m}^2/\text{Vs}$
- **D.** $0.5 \times 10^{-7} \text{ m}^2/\text{Vs}$
- 23. A rectangular carbon block has dimension $1.0 \text{ cm} \times 1.0 \text{ cm} \times 50 \text{ cm}$. Resistances are measured, first across two square ends and then across two rectangular ends, respectively. If resistivity of carbon is $3.5 \times 10^{-5} \Omega \text{m}$, then values of measured resistances respectively are:



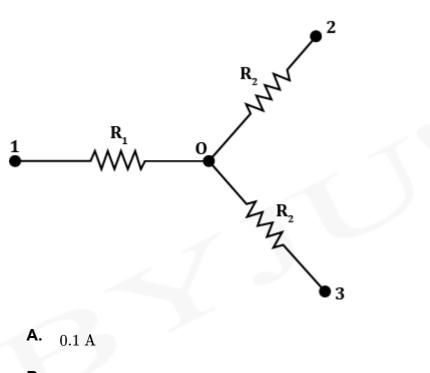
A.
$$\frac{35}{2} \times 10^{-2} \Omega, \ 7 \times 10^{-5} \Omega$$

B. $7 \times 10^{-5} \Omega, \ \frac{15}{2} \times 10^{-2} \Omega$
C. $\frac{35}{2} \times 10^{-4} \Omega, \ 7 \times 10^{-7} \Omega$
D. $\frac{15}{2} \times 10^{-4} \Omega$

D.
$$\frac{15}{2}\Omega$$
, $7 \times 10^{-2} \Omega$

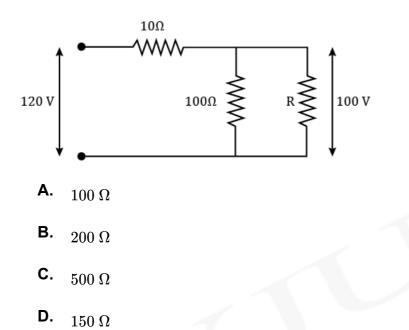


24. For a cell, a graph is plotted between the potential difference V across the terminals of the cell and the current I drawn from the cell (figure). The emf and the internal resistance of the cell are E and r respectively. Then

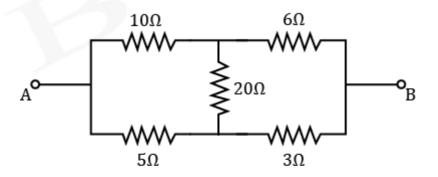


- A. $E = 2 \text{ V}, r = 0.5 \Omega$
- **B.** $E = 2 \text{ V}, r = 0.4 \Omega$
- **C.** $E > 2 \text{ V}, r = 0.5 \Omega$
- D. E>2 V, r=0.4 Ω
- 25. How much work is required to carry a 6 μ C charge from the negative terminal of a 9 V cell to the positive terminal?
 - A. $54 \times 10^{-3} \text{ J}$ B. $54 \times 10^{-9} \text{ J}$ C. $54 \times 10^{-6} \text{ J}$
 - D. $54 \times 10^{-12} \ \mathrm{J}$

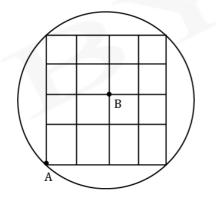
2. Find the current flowing through the resistance R_1 of the circuit shown in figure, if the resistances are equal to $R_1 = 10 \Omega$, $R_2 = 10 \Omega$ and $R_3 = 10 \Omega$, and the potential of points 1, 2 and 3 are equal to $V_1 = 10$ V, $V_2 = 6$ V and $V_3 = 5$ V.



- **B.** 0.2 A
- **C.** 0.3 A
- **D.** 0.4 A



3. Find out the value of resistance R in figure.

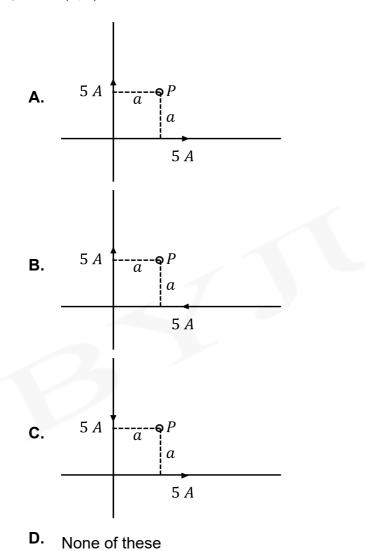

4. Find equivalent resistance of the circuit between the terminal A and B.

A. $\frac{4}{3}\Omega$ B. $\frac{8}{3}\Omega$ C. $\frac{16}{3}\Omega$ D. $\frac{32}{3}\Omega$

- 5. In a meter bridge experiment, the value of unknown resistance is 2Ω . To get the balancing point at 40 cm distance from the same end, then what will be the resistance in the resistance box?
 - A. $_{3\Omega}$
 - **B.** 6 Ω
 - C. $_{8\Omega}$
 - **D**. 9Ω
- A finite square grid with each link having resistance *r* is fitted in a resistanceless conducting circular wire. The equivalent resistance between A and B will be:

(Given, $r=80/7~\Omega$).

- **Α**. _{6 Ω}
- **B**. 8 Ω
- **C**. 12Ω
- **D.** 15Ω



- 7. In Oersted's experiment, deflection in magnetic needle
 - A. decreases if current is increased in the wire
 - **B.** reverses if current is reversed in the wire
 - **C.** remains constant if current is increased
 - D. All above statements are true
- 8. A negative charge is coming towards an observer. The direction of the magnetic field produced by it will be: (As seen by observer)
 - A. Clockwise
 - B. Anticlockwise
 - C. In the direction of motion of charge
 - **D.** In the direction opposite to motion of charge
- 9. A particle carrying charge equal to 100 times the charge of an electron is performing one rotation per second in a circular path of radius 0.8 m. The value of magnetic field produced at the centre will be (μ_0 = permeability for vaccum)

A.
$$\frac{10^{-7}}{\mu_0}$$
T
B. $10^{-17}\mu_0$ T
C. $10^{-6}\mu_0$ T
D. $10^{-16}\mu_0$ T

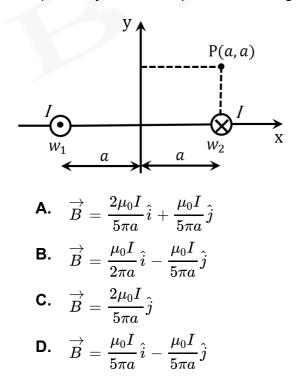
10. Two infinitely long wires carrying currents of 5 A each are shown in the options. For which of the following figures, the value of magnetic field at point P(a, a) is zero?

11. A current *i* flows in a thin wire in the shape of a regular polygon with n sides. what will be the magnetic field at the centre of polygon? [R is the

A.
$$\frac{\mu_0 ni}{2\pi R} \tan \frac{\pi}{6}$$

B. $\frac{\mu_0 ni}{2\pi R} \tan \left(\frac{\pi}{n}\right)$
C. $\frac{\mu_0 i}{2nR}$
D. Zero

circum-radius of the polygon]

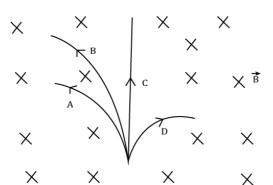


12. A charge of 1 C is placed at one end of a non-conducting rod of length 0.6 m. The rod is rotated in a vertical plane about a horizontal axis passing through the other end of the rod with angular frequency $10^4 \pi \text{ rad/s}$. The magnetic field at a point on the axis of rotation at a distance 0.8 m from centre of the circular path will be:

A. $1.13 \times 10^{-3} \text{ T}$

B. $2.44 \times 10^{-3} \text{ T}$

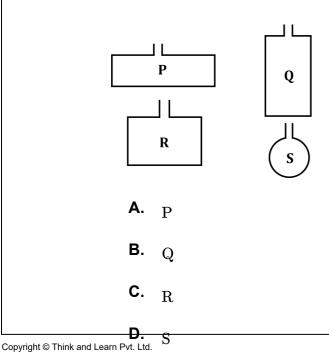
- **C.** $1.75 \times 10^{-3} \text{ T}$
- **D.** $3.25 \times 10^{-3} \text{ T}$
- 13. In the figure shown, two long wires w_1 and w_2 , each carrying current *I* are placed parallel to each other and parallel to *z* axis. The direction of current in w_1 and w_2 is perpendicularly outward and inward to the plane respectively. The \overrightarrow{B} at point P will be given as:



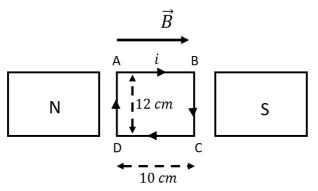
14. An α particle is moving along a circle of radius *R* with a constant angular velocity ω . Point A lies in the same plane at a distance 2*R* from the centre, and it records magnetic field produced by α particle. If the minimum time interval between two successive times at which A records zero magnetic field is *t*, the angular velocity ω is:

A.
$$\frac{2\pi}{t}$$

B. $\frac{2\pi}{3t}$
C. $\frac{\pi}{3t}$
D. $\frac{\pi}{t}$


- 15. A long straight wire of radius *a* carries a steady current *I*. The current is uniformly distributed across its cross-section. The ratio of the magnetic field at distance $\frac{a}{2}$ and 2a from axis of wire is
 - **A.** $\frac{1}{2}$ **B.** $\frac{1}{4}$ **C.** 4 **D.** 1
- 16. Determine the amount of current flowing through the solenoid having 5000 turns per unit length, if the magnetic field at the edge of the solenoid is $2.2\pi \times 10^{-5} \text{ T}.$
 - **A.** 0.02 A
 - **B.** 0.2 A
 - **C.** 0.002 A
 - **D**. _{2 A}

17. A neutron, a proton, an electron and an α particle enter a region of constant magnetic field with equal velocity. The \overrightarrow{B} is along the perpendicularly inward to the plane of the paper. The path followed by each particle is shown in the figure.



The path followed by α particle is represented by:

- A. B
 B. A
 C. D
 D. C
- 18. Four wires of equal lengths are bent in the shapes of four loops P, Q, R and S as shown in the figure. If each loop carries same current *I* in the same sense, which loop will have highest magnetic moment ?

19. A coil of 50 turns is placed in a magnetic field of magnitude B = 0.25 Weber as shown in figure. A current of 2 A is flowing in the coil. The torque acting on the coil will be:

- **A.** 0.15 N
- **B.** 0.30 N
- **C.** 0.45 N

D. 0.60 N

20. In the given question, a statement of Assertion (A) is given, followed by a corresponding statement of Reason (R) just below of it. Mark the correct answer.

Assertion(A): To draw more current at low potential difference through a low external resistance, parallel connection of identical cells is preferred.

Reason(R) : In parallel connection, current $i = \frac{nE}{r}$, if r >> R[where r-internal resistance, E - emf of the cell and n - number of cells]

- **A.** Both (*A*) and (*R*) are true and (*R*) is the correct explanation of (*A*)
- **B.** Both (*A*) and (*R*) are true and (*R*) is not the correct explanation of (A)
- **C.** (A) is true and (R) is false
- **D.** (A) is false and (R) is true

BYJU'S The Learning App

BYJU'S Part Test for Board Term I (CBSE Grade 12)

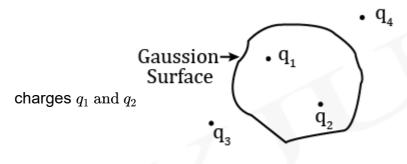
21. Assertion (A) – A current flows in a conductor only when there is an electric field within the conductor.

Reason (R)- The drift velocity of electron in presence of electric field decreases

Of the following mark the correct statement.

- **A.** Both 'A' and 'R' are true and 'R' is the correct explanation of 'A'.
- **B.** Both 'A' and 'R' are true and 'R' is not the correct explanation of 'A'
- **C.** 'A' is true and 'R' is false
- **D.** 'A' is false and 'R' is true
- 22. In the given question, a statement of Assertion (A) is given, followed by a corresponding statement of Reason (R) just below of it. Mark the correct answer.

Assertion(A) : An uncharged conducting slab is placed normally in a uniform electric field. The resultant electric field inside the slab is zero.


Reason(R): The charge in the conductor exists only on its surface

- **A.** Both (A) and (R) are true and (R) is the correct explanation of (A)
- **B.** Both (A) and (R) are true and (R) is not the correct explanation of (A)
- **C.** (A) is true and (R) is false
- **D.** (A) is false and (R) is true

23. In the given question, a statement of Assertion (A) is given, followed by a corresponding statement of Reason (R) just below of it. Mark the correct answer.

Assertion(A) : Four point charges q_1, q_2, q_3 and q_4 are as shown in figure. The flux over the shown Gaussian surface depends only on charges q_1 and q_2

Reason(R) : Electric field at all points on Gaussian surface depends only on

- **A.** Both (A) and (R) are true and (R) is the correct explanation of (A)
- **B.** Both (A) and (R) are true and (R) is not the correct explanation of (A)
- **C.** (A) is true and (R) is false
- **D.** (A) is false and (R) is true

24. In the given question, a statement of Assertion (A) is given, followed by a corresponding statement of Reason (R) just below of it. Mark the correct answer.

Assertion(A) : AlNiCo is used for making permanent magnets.

Reason(R): It has a high retentivity and high coercivity.

- **A.** Both (*A*) and (*R*) are true and (*R*) is the correct explanation of (*A*)
- **B.** Both (A) and (R) are true and (R) is not the correct explanation of (A)
- **C.** (A) is true and (R) is false
- **D.** (A) is false and (R) is true

Date: 17/11/2021 Subject: Physics Topic : Section C

Class: Standard XII

1. Case study (1)

A car battery with a 12 V emf and an internal resistance of $0.04 \ \Omega$ is being charged with a current of 50 A.

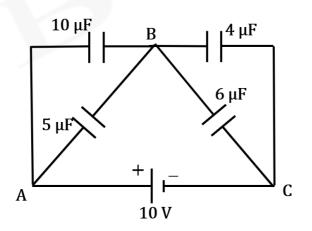
(i)The potential difference V across the terminals of the battery is

- **A.** 10 V
- **B.** 14 V
- **C**. 16 V
- **D**. 12 V
- 2. Case study (1)

A car battery with a 12 V of emf and an internal resistance of 0.04Ω is being charged with a current of 50 A.

(ii)The rate at which energy is being dissipated as heat inside the battery is

- **A.** 100 W
- $\textbf{B.}_{200 \text{ W}}$
- **c**. $_{700 \text{ W}}$
- **D.** 600 W

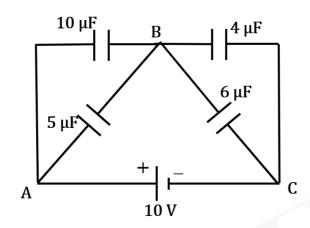

3. Case study (1)

A car battery with a 12 V of emf and an internal resistance of $0.04 \ \Omega$ is being charged with a current of $50 \ A$.

(iii)The rate of energy conversion from electrical to chemical is

- **A.** 100 W
- **B.** 500 W
- **C**. $_{600 \text{ W}}$
- **D.** 700 W
- 4. Case study (2)

In the circuit shown in the figure, four capacitors are connected to a battery.


(i)The equivalent capacitance of the circuit is

- **Α.** 8.4 μF
- **Β.** 6 μF
- **C.** $10 \ \mu F$
- **D.** $25 \ \mu F$

5. Case study (2)

In the circuit shown in the figure, four capacitors are connected to a battery.

(ii)The charge flowing out of the battery is

- **A.** $60 \ \mu C$
- **Β.** 6 μC
- **C**. $600 \ \mu C$
- **D.** $36 \mu C$

6. Case study (2)

In the circuit shown in figure, four capacitors are connected to a battery.

(*iii*)The potential difference

across the $6 \ \mu F$ capacitor is

- **A**. _{6 V}
- **B**. 4 V
- **C**. _{5 V}
- **D**. _{7 V}