Practice Questions - Term 1

Date: 19/11/2021
Subject: Mathematics
Topic: Triangles
Class: X

1. In $\triangle A B C, D E \| B C$ and $\frac{A D}{D B}=\frac{3}{5}$. If $A C=5.6 \mathrm{~cm}$, then $A E=$

A. $\quad 2.1 \mathrm{~cm}$
\times
B. $\quad 2.4 \mathrm{~cm}$
x C. 3.2 cm
x D. 3.6 cm

$$
\begin{aligned}
& \text { In } \triangle A B C \text {, } \\
& D E \| B C \quad(\text { Given }) \\
& \frac{A D}{A B}=\frac{A E}{A C} \quad[\text { Basic Proportionality Theorem }] \\
& \because A B=(3+5), A D=3 \\
& A C=5.6 \mathrm{~cm}(\text { Given }) \\
& \frac{3}{3+5}=\frac{A E}{5.6} \\
& \frac{3}{8}=\frac{A E}{5.6} \\
& A E=\frac{3 \times 5.6}{8}=3 \times 0.7=2.1 \mathrm{~cm} \\
& \Rightarrow A E=2.1 \mathrm{~cm}
\end{aligned}
$$

2. In the given figure, if $D E \| B C$ then find $A D$.
A. 30 units
x
B. 50 units
\times
C. 40 units
\times
D. 10 units

By Basic Proportionality Theorem, $\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{A D}{45}=\frac{20}{30}$
$\Rightarrow A D=\frac{20 \times 45}{30}=30$ units

Practice Questions - Term 1

3. Find $C D$, if $A C=4 \mathrm{~cm}, A B=3 \mathrm{~cm}$ and $A D=2 \mathrm{~cm}$.

A. $\frac{8}{3} \mathrm{~cm}$

X B. $\frac{3}{8} \mathrm{~cm}$
x C. $\frac{4}{3} \mathrm{~cm}$
x
D. $\frac{3}{4} \mathrm{~cm}$

Perpendicular from right angle to hypotenuse divides the triangle into two similar triangles and these are similar to the whole triangle also.
$\therefore \triangle C A B \sim \triangle C D A$
$\Rightarrow \frac{A B}{D A}=\frac{C A}{C D}$
$\Rightarrow \frac{3}{2}=\frac{4}{C D}$
$\Rightarrow C D=\frac{8}{3} \mathrm{~cm}$

Practice Questions - Term 1

4.

In $\triangle A B C$, point D and E lies on the line AB and AC respectively as shown in the figure. Find the measure of $\angle A E D$.

\times A. 65°
(v)
B. 40°
\times C. 75°
x D. 70°
In $\triangle A B C$,
$\frac{A D}{D B}=\frac{4}{3}$ and $\frac{A E}{E C}=\frac{4.8}{3.6}=\frac{4}{3}$
$\therefore \frac{A D}{D B}=\frac{A E}{E C}=\frac{4}{3}$
We know that in a triangle, if a line segment intersects two sides and divides them in the same ratio, then it will be parallel to the third side.
$\therefore \mathrm{DE} \| \mathrm{BC}$
So, $\angle A E D=\angle A C B=40^{\circ}$
(Corresponding angles are equal)

Practice Questions - Term 1

5.

Observe the given triangles and find the value of $\angle P$.

x A. 60°
B. 40°
\times
C. 50°
x
D. 65°

In $\triangle A B C$ and $\triangle R Q P$,
$\frac{A B}{R Q}=\frac{3.8}{7.6}=\frac{1}{2}$
$\frac{B C}{Q P}=\frac{6}{12}=\frac{1}{2}$
and $\frac{C A}{P R}=\frac{3 \sqrt{3}}{6 \sqrt{3}}=\frac{1}{2}$
$\Rightarrow \frac{A B}{R Q}=\frac{B C}{Q P}=\frac{C A}{P R}$

So, $\triangle A B C \sim \Delta R Q P$
(By SSS similarity criterion)
$\therefore \angle C=\angle P$
(Corresponding angles of similar triangles are equal)

But, $\angle C=180^{\circ}-\angle A-\angle B$
(By angle sum property)
$\angle C=180^{\circ}-80^{\circ}-60^{\circ}=40^{\circ}$

So, $\angle P=40^{\circ}$
6. In the figure, $\mathrm{AC}=10 \mathrm{~cm}, \mathrm{PC}=15 \mathrm{~cm}, \mathrm{PQ}=12 \mathrm{~cm}$, find PB .

x A. 6 cm
x B. 7 cm
(C. 8 cm
(v)
D. 9 cm

In $\triangle A B C$ and $\triangle P Q C$,
$\angle P Q C=\angle A B C=90^{\circ}$
$\angle C=\angle C$ (common angle)
Therefore, $\triangle A B C \sim \triangle P Q C$ By AA similarity
$\frac{A C}{P C}=\frac{A B}{P Q}=\frac{B C}{Q C} \Rightarrow \frac{10}{15}=\frac{A B}{12}=\frac{B C}{Q C}$
$\Rightarrow A B=8 \mathrm{~cm}$
In $\triangle A B C$,
$A B^{2}+B C^{2}=A C^{2}$
$\Rightarrow 8^{2}+B C^{2}=10^{2}$
$\Rightarrow B C=6 \mathrm{~cm}$
$P B=P C-B C=15-6=9 \mathrm{~cm}$
$\therefore P B=9 \mathrm{~cm}$.

Practice Questions - Term 1

7. In a $\triangle A B C$, points P and Q are on sides AB and AC respectively. If $\mathrm{AP}=3$ $\mathrm{cm}, \mathrm{PB}=6 \mathrm{~cm} . \mathrm{AQ}=5 \mathrm{~cm}$ and $\mathrm{QC}=10 \mathrm{~cm}$, then $\mathrm{BC}=$ \qquad .

x A. $4 P Q$
(x) B. $\frac{P Q}{2}$
(C . $3 P Q$
x D. $P Q^{2}$

Practice Questions - Term 1

Given: $\mathrm{AP}=3 \mathrm{~cm}, \mathrm{~PB}=6 \mathrm{~cm}$,
$A Q=5 \mathrm{~cm}$ and $Q C=10 \mathrm{~cm}$

We have, $A B=A P+P B=(3+6) \mathrm{cm}=9 \mathrm{~cm}$ and, $A C=A Q+Q C=(5+10) \mathrm{cm}=15 \mathrm{~cm}$
$\therefore \frac{A P}{A B}=\frac{3}{9}=\frac{1}{3}$
and $\frac{A Q}{A C}=\frac{5}{15}=\frac{1}{3}$
$\Rightarrow \frac{A P}{A B}=\frac{A Q}{A C}$

Thus, in $\triangle P A Q$ and $\triangle B A C$,
$\frac{A P}{A B}=\frac{A Q}{A C}$
$\angle P A Q=\angle B A C$
(Common in both triangles)
$\therefore \triangle A P Q \sim \triangle A B C$ (by SAS similarity criterion)
$\Rightarrow \frac{A P}{A B}=\frac{P Q}{B C}=\frac{A Q}{A C}$
$\Rightarrow \frac{P Q}{B C}=\frac{A Q}{A C}=\frac{1}{3}$
$\Rightarrow B C=3 P Q$

Practice Questions - Term 1

8.

Two isosceles triangles have equal angles and their areas are in the ratio 16 $: 25$. The ratio of corresponding heights is :A. $4: 5$
x B. 5: 4
$x \quad$ C. 3:2
x D. 5:7
For similar triangles,

$$
\begin{aligned}
& \frac{\text { Area of } 1 \text { st triangle }}{\text { Area of } 2 \text { nd triangle }}=\frac{(\text { Corresponding length of } 1 \text { st triangle })^{2}}{(\text { Corresponding length of 2nd triangle })^{2}} \\
& \frac{\text { Area }\left(\Delta_{1}\right)}{\text { Area }\left(\Delta_{2}\right)}=\frac{\left(h_{1}\right)^{2}}{\left(h_{2}\right)^{2}} \\
& \frac{16}{25}=\frac{\left(h_{1}\right)^{2}}{\left(h_{2}\right)^{2}} \\
& \frac{h_{1}}{h_{2}}=\frac{4}{5}
\end{aligned}
$$

Practice Questions - Term 1

9.

In the figure given below, sides PB and QA are perpendiculars drawn to the line segment $A B$.

If $\mathrm{PO}=6 \mathrm{~cm}, \mathrm{QO}=9 \mathrm{~cm}$ and area of $\triangle P O B=120 \mathrm{~cm}^{2}$, then the area of $\triangle Q O A$ is

× A. $360 \mathrm{~cm}^{2}$
B. $270 \mathrm{~cm}^{2}$
× C. $240 \mathrm{~cm}^{2}$

X D. $290 \mathrm{~cm}^{2}$
In $\triangle P O B$ and $\triangle Q O A$,
$\angle P B O=\angle Q A O=90^{\circ}$
$\angle P O B=\angle Q O A$
(Since vertically opposite angles are equal)
$\triangle P O B \sim \triangle Q O A$
(by AA similarity criterion)
$\Rightarrow \frac{a r(\triangle P O B)}{\operatorname{ar}(\triangle Q O A)}=\frac{P O^{2}}{Q O^{2}}$
(The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides).
$\Rightarrow \frac{120 \mathrm{~cm}^{2}}{\operatorname{ar}(\mathrm{QOA})}=\frac{6^{2}}{9^{2}}$
$\Rightarrow \operatorname{ar}(Q O A)=\frac{120 \mathrm{~cm}^{2} \times 81}{36}=270 \mathrm{~cm}^{2}$

Practice Questions - Term 1

10. If D is a point on the side BC of a triangle ABC such that $\angle A D C=\angle B A C$ then, $C A^{2}=$ \qquad -.
A. $B C . C D$
x
B. $B D \cdot D C$
\times C. BC.BC
x D. $A D, D C$
Given: $\angle A D C=\angle B A C$

In $\triangle B A C$ and $\triangle A D C$,
$\angle A C B=\angle A C D \ldots$. (common angles)
$\angle B A C=\angle A D C \ldots$. (Given)
$\therefore \triangle B A C \sim \triangle A D C \ldots$ (AA simlilarity)
$\Rightarrow \frac{B A}{A D}=\frac{A C}{C D}=\frac{B C}{A C}$
$\Rightarrow \frac{A C}{C D}=\frac{B C}{A C}$
$\Rightarrow A C^{2}=B C . C D$

Practice Questions - Term 1

11.

In the given figure, $D E \| B C$. If $A D=6 \mathrm{~cm}, A B=24 \mathrm{~cm}$ and $D E=5 \mathrm{~cm}$, then $B C=$ \qquad cm.
x A. 5
\times B. 10
(C. 20
\times D. 24
Consider $\triangle A D E$ and $\triangle A B C$,
Given, DE || BC
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$
$\angle \mathrm{AED}=\angle \mathrm{ACB}$
(Since corresponding angles are equal)
$\therefore \triangle A D E \sim \triangle A B C$
(by AA similarity criterion)
$\Rightarrow \frac{D E}{B C}=\frac{A D}{A B}$
(corresponding sides of similar triangles are in same ratio)
$\Rightarrow B C=\frac{D E \times A B}{A D}$
$\Rightarrow B C=\frac{5 \times 24}{6}$
$\Rightarrow B C=20 \mathrm{~cm}$

Practice Questions - Term 1

12. In the given figure, $D E\|A C, D C\| A P$, $B C=4 \mathrm{~cm}$ and $B P=6 \mathrm{~cm}$.

Find the value of $\frac{B E}{E C}$.

x A. 1:2
(B) $2: 1$
x C. 1:3
x D. $3: 1$
Given: $D E \| A C$.
Applying BPT to $\triangle B A C$ we get
$\frac{B E}{E C}=\frac{B D}{D A} \cdots$
Also, it is given that $D C \| A P$.
Applying BPT to $\triangle B A P$ we get,
$\frac{B C}{C P}=\frac{B D}{D A} \cdots(i i)$
From (i) and (ii), we get
$\frac{B E}{E C}=\frac{B C}{C P}$
We know that, $\mathrm{CP}=\mathrm{BP}-\mathrm{BC}$
$\Rightarrow \frac{B E}{E C}=\frac{B C}{B P-B C}$
Given: $B C=4 \mathrm{~cm}$ and $B P=6 \mathrm{~cm}$.
$\Rightarrow \frac{B E}{E C}=\frac{4}{6-4}=\frac{2}{1}$
$\therefore B E: E C=2: 1$

Practice Questions - Term 1

13.

The line segment $X Y$ is parallel to side $A C$ of $\triangle A B C$ and it divides the triangle into two parts of equal areas. Find the ratio $\frac{B X}{A B}$.

(2) A. $\frac{1}{\sqrt{2}}$
\times
B. $\frac{1}{2}$
\times
C. $\frac{4}{1}$
\times
D. $\frac{\sqrt{2}}{1}$

We have XY || AC (given)
So, $\angle \mathrm{BXY}=\angle \mathrm{A}$ and $\angle \mathrm{BYX}=\angle \mathrm{C}$ (since corresponding angles are equal)
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{XBY}$ (AA similarity criterion)

The ratio of the area of two similar triangles are equal to the ratio of the squares of their corresponding sides.

So, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle X B Y)}=\left(\frac{A B}{X B}\right)^{2}$
Also, $a r(\triangle A B C)=2 \times \operatorname{ar}(\triangle X B Y)$
So, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle X B Y)}=\frac{2}{1}$
Therefore, $\left(\frac{A B}{X B}\right)^{2}=\frac{2}{1}$
$\Rightarrow \frac{A B}{X B}=\frac{\sqrt{2}}{1}$

Taking reciprocal on both sides, we get
$\frac{B X}{A B}=\frac{1}{\sqrt{2}}$

Practice Questions - Term 1

14.

A tower of height 24 m casts a shadow 50 m and at the same time, a girl of height 1.8 m casts a shadow. Find the length of her shadow.
x A. 3 m
x B. 3.25 m
x C. 3.5 m
(D) 3.75 m
Let $A B$ be the height of tower, $B C$ be the length of the shadow of the tower, $E D$ be the height of the girl and $E C=x$ be the length of her shadow.

In $\triangle A B C$ and $\triangle D E C$,
$\angle A B C=\angle D E C=90^{\circ}$
$\angle B C A=\angle E C D \quad$ (common in both triangles)

Therefore, $\triangle A B C \sim \triangle D E C \quad$ (by AA similarity criterion)
$\Rightarrow \frac{D E}{A B}=\frac{E C}{B C}$ (corresponding sides of similar triangles are in same ratio)
$\Rightarrow E C=D E \times \frac{B C}{A B}$
$\Rightarrow E C=1.8 \times \frac{50}{24}$
$\Rightarrow E C=3.75 \mathrm{~m}$

Hence, length of the her shadow is 3.75 m .

Practice Questions - Term 1

15. If $A B C$ is an equilateral triangle of side $4 a$, then the length of its altitude is
\qquad .
A. $2 \sqrt{3} a$
x
B. $7 \sqrt{9} a$
x
C. $4 \sqrt{3} a$
\times
D. $5 \sqrt{2} a$

Given: Length of each side of the equilateral triangle $=4 \mathrm{a}$
Construction: Draw a perpendicular from A to BC. Let this meeting point be D.

In $\triangle A B D$ and $\triangle A C D$,
$A B=A C$
(\because All sides of an equilateral triangle are equal)
AD = AD (Common)
$\angle A D B=\angle A D C=90^{\circ}$
$\therefore \triangle A B D \cong \triangle A C D$
(By RHS congruency)
$\Rightarrow \mathrm{BD}=\mathrm{DC}=2 \mathrm{a}(\mathrm{by} \mathrm{cpct})$
In $\triangle A B D$,
$A B^{2}=A D^{2}+B D^{2}$ (By pythagoras theorm)
$\Rightarrow A D^{2}=A B^{2}-B D^{2}$
$\Rightarrow A D^{2}=(4 a)^{2}-(2 a)^{2}$
$\Rightarrow A D^{2}=16 a^{2}-4 a^{2}$
$\Rightarrow A D^{2}=12 a^{2}$
$\Rightarrow A D=2 \sqrt{3} a$
\therefore Altitude of an equilateral triangle with side 4 a will be $2 \sqrt{3} a$.

Practice Questions - Term 1

16.

In the adjoining figure, $A B=10 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm} A D: D C=2: 3$, then $\angle A B C$ is equal to -

\times A. 30°
(B) 40°
x C. 45°
\times
D. 110°

Clearly, $\frac{A D}{D C}=\frac{2}{3}$ and $\frac{A B}{B C}=\frac{10}{15}=\frac{2}{3}$
So, $\frac{A D}{D C}=\frac{A B}{B C}$
Thus, BD divides AC in the ratio of the other two sides.
By Converse of Angular Bisector theorem,
$B D$ is the bisector of $\angle B$
$\therefore \angle \mathrm{ABC}=2(\angle \mathrm{CBD})$
Now, $\angle \mathrm{CBD}=180^{\circ}-\left(130^{\circ}+30^{\circ}\right) \ldots$ (Angle Sum
Property)

$$
=20^{\circ}
$$

But, $\angle A B C=2(\angle C B D)$

$$
\begin{aligned}
& =2 \times 20 \\
& =40^{\circ}
\end{aligned}
$$

Practice Questions - Term 1

17. In $\triangle A B C, \mathrm{AC}=15 \mathrm{~cm}$ and $\mathrm{DE} \| \mathrm{BC}$. If $\frac{A D}{D B}=\frac{2}{1}$, then $\mathrm{EC}=$ \qquad .

A. 5 cm
\times
B. 10 cm
x C. 7.5 cm
x
D. $\quad 12.5 \mathrm{~cm}$

Given: $A C=15 \mathrm{~cm}$

$$
D E \| B C
$$

$$
\frac{A D}{D B}=\frac{2}{1}
$$

In $\Delta \mathrm{ADE}$ and $\Delta \mathrm{ABC}$
$\angle D A E=\angle B A C$ [Common]
$\angle A D E=\angle A B C$ and $\angle A E D=\angle A C B$
$[\because \mathrm{DE} \| \mathrm{BC}$, corresponding angles are equal]
$\Rightarrow \triangle A D E \sim \triangle A B C$ [AA similarity]
From Basic Proportionality theorem,
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{A E}{E C}=\frac{2}{1}$
$\Rightarrow A E=2 E C$
Given : $A C=15 \mathrm{~cm}$
$\Rightarrow A E+E C=15 \mathrm{~cm}$
$\Rightarrow 3 E C=15 \mathrm{~cm}$
$\Rightarrow E C=5 \mathrm{~cm}$

Practice Questions - Term 1

18.

$\triangle A B C$ is a right angled triangle, right angled at B. $B D$ is perpendicular to AC. What is AC . DC?

\times A. BC.AB
(B) $B C^{2}$
x C. $B D^{2}$
x D. $A B . A C$
Consider $\triangle A D B$ and $\triangle A B C$
$\begin{array}{ll}\angle \mathrm{BAD}=\angle \mathrm{BAC} & \\ \angle \mathrm{BDA} & =\angle \mathrm{ABC}\end{array}$
Therefore by AA similarity criterion, $\triangle A D B$ and $\triangle A B C$ are similar.
So, $\frac{A B}{A C}=\frac{A D}{A B} \Rightarrow A B^{2}=\mathrm{AC} . \mathrm{AD}$
Similarly, $\triangle B D C$ and $\triangle A B C$ are similar.
So, $\frac{B C}{A C}=\frac{D C}{B C} \Rightarrow B C^{2}=\mathrm{AC} . D C$
Dividing (I) and (II) and cancelling out AC, we get, $\left(\frac{A B}{B C}\right)^{2}=\frac{A D}{D C}---(\mathrm{III})$
Also, In $\triangle A D B, A B^{2}=A D^{2}+D B^{2}$ and in $\triangle B D C, C B^{2}=C D^{2}+D B^{2}$ [Pythagoras theorem]

Subtracting these two equations above and cancelling off $D B^{2}$ on both sides, we get
$A B^{2}-B C^{2}=A D^{2}-C D^{2} \Rightarrow A B^{2}+C D^{2}=A D^{2}+B C^{2}$ \qquad
Dividing this equation with $B C^{2}$ on both sides, $\frac{A B^{2}}{B C^{2}}+\frac{C D^{2}}{B C^{2}}=\frac{A D^{2}}{B C^{2}}+\frac{B C^{2}}{B C^{2}}$
$\Rightarrow \frac{A B^{2}}{B C^{2}}+\frac{C D^{2}}{B C^{2}}=\frac{A D^{2}}{B C^{2}}+1$
$\Rightarrow \frac{A B^{2}}{B C^{2}}-1=\frac{A D^{2}}{B C^{2}}-\frac{C D^{2}}{B C^{2}}$

From (III), we know that $\left(\frac{A B}{B C}\right)^{2}=\frac{A D}{D C}$
$\Rightarrow \frac{A D}{D C}-1=\frac{A D^{2}-C D^{2}}{B C^{2}} \quad$ [Using (III)]
$\Rightarrow \frac{A D-D C}{D C}=\frac{(A D-C D)(A D+C D)}{B C^{2}}$
$\Rightarrow \frac{1}{D C}=\frac{A C}{B C^{2}}$
$\Rightarrow B C^{2}=A C . D C$
Alternatively,

Consider $\triangle A B C$ and $\triangle B D C$,
$\angle A B C=\angle B D C=90^{\circ}$
$\angle C=\angle C \quad$ [Common angle]
Therefore by AA similarity criterion, $\triangle A B C$ and $\triangle B D C$ are similar.
$\frac{A C}{B C}=\frac{B C}{D C}$
$B C^{2}=A C \times D C$

Practice Questions - Term 1

19.

$\triangle A B C$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}$. If area of $\triangle A D C$ is $169 \mathrm{~cm}^{2}$, then area of $\triangle E F B$ is equal to

× A. $196 \mathrm{~cm}^{2}$
(v)
B. $324 \mathrm{~cm}^{2}$
x
C. $169 \mathrm{~cm}^{2}$
\times
D. $396 \mathrm{~cm}^{2}$

In $\triangle A D C$ and $\triangle E F B$,
$\angle A C D=\angle E B F$
(Since base angles of an isosceles triangle are equal)
$\angle A D C=\angle E F B \quad\left(\right.$ given $\left.90^{\circ}\right)$
$\triangle A D C \sim \triangle E F B \quad$ (by AA similarity criterion)
So, $\frac{\operatorname{ar}(\triangle A D C)}{\operatorname{ar}(\triangle E F B)}=\frac{A C^{2}}{(E B)^{2}}$
(Since the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides).
$\Rightarrow \frac{169 \mathrm{~cm}^{2}}{a r(\triangle E F B)}=\frac{13^{2}}{(E C+C B)^{2}}$
$\Rightarrow \frac{169 \mathrm{~cm}^{2}}{\operatorname{ar}(\Delta E F B)}=\frac{13^{2}}{(8+10)^{2}}$
$\Rightarrow \operatorname{ar}(\Delta E F B)=\frac{(18 \times 18) \times 169}{(13)^{2}}=324 \mathrm{~cm}^{2}$
20. If $B C \| E F$ and $F G \| C D$ then, $\frac{A E}{A B}=$ \qquad .

x A. $\frac{A G}{C D}$
(x) B. $\frac{G D}{A C}$C. $\frac{A G}{A D}$
\times
D. $\frac{C F}{A F}$

In $\triangle A B C$,
$E F \| B C$
$\therefore \frac{A E}{A B}=\frac{A F}{A C} \ldots$
(Basic proportionality theorem)
In $\triangle A C D$,
$F G \| C D$
$\therefore \frac{A F}{A C}=\frac{A G}{A D}$.
(Basic proportionality theorem)
From 1 \& 2,
$\frac{A E}{A B}=\frac{A F}{A C}=\frac{A G}{A D}$
$\Rightarrow \frac{A E}{A B}=\frac{A G}{A D}$

