Practice Questions - Term 1

Date: 19/11/2021
Subject: Mathematics
Topic: Triangles
Class: X

1. In $\triangle A B C, D E \| B C$ and $\frac{A D}{D B}=\frac{3}{5}$. If $A C=5.6 \mathrm{~cm}$, then $A E=$

A. $\quad 2.1 \mathrm{~cm}$
B. $\quad 2.4 \mathrm{~cm}$
C. 3.2 cm
D. 3.6 cm
2. In the given figure, if $D E \| B C$ then find $A D$.

A. 30 units
B. 50 units
C. 40 units
D. 10 units

Practice Questions - Term 1

3. Find $C D$, if $A C=4 \mathrm{~cm}, A B=3 \mathrm{~cm}$ and $A D=2 \mathrm{~cm}$.

A. $\frac{8}{3} \mathrm{~cm}$
B. $\frac{3}{8} \mathrm{~cm}$
C. $\frac{4}{3} \mathrm{~cm}$
D. $\frac{3}{4} \mathrm{~cm}$
4. In $\triangle A B C$, point D and E lies on the line AB and AC respectively as shown in the figure. Find the measure of $\angle A E D$.

A. 65°
B. 40°
C. 75°
D. 70°

Practice Questions - Term 1

5.

Observe the given triangles and find the value of $\angle P$.

A. 60°
B. 40°
C. 50°
D. 65°
6. In the figure, $A C=10 \mathrm{~cm}, \mathrm{PC}=15 \mathrm{~cm}, \mathrm{PQ}=12 \mathrm{~cm}$, find PB .

A. 6 cm
B. 7 cm
C. 8 cm
D. 9 cm

Practice Questions - Term 1

7. In a $\triangle A B C$, points P and Q are on sides AB and AC respectively. If $\mathrm{AP}=3$ $\mathrm{cm}, \mathrm{PB}=6 \mathrm{~cm} . \mathrm{AQ}=5 \mathrm{~cm}$ and $\mathrm{QC}=10 \mathrm{~cm}$, then $\mathrm{BC}=$ \qquad .

A. 4 PQ
B. $\frac{P Q}{2}$
C. 3 PQ
D. $P Q^{2}$
8. Two isosceles triangles have equal angles and their areas are in the ratio 16 $: 25$. The ratio of corresponding heights is :
A. $4: 5$
B. $5: 4$
C. $3: 2$
D. $5: 7$

Practice Questions - Term 1

9.

In the figure given below, sides PB and QA are perpendiculars drawn to the line segment $A B$.

If $\mathrm{PO}=6 \mathrm{~cm}, \mathrm{QO}=9 \mathrm{~cm}$ and area of $\triangle P O B=120 \mathrm{~cm}^{2}$, then the area of $\triangle Q O A$ is

A. $360 \mathrm{~cm}^{2}$
B. $270 \mathrm{~cm}^{2}$
C. $240 \mathrm{~cm}^{2}$
D. $290 \mathrm{~cm}^{2}$
10. If D is a point on the side BC of a triangle ABC such that $\angle A D C=\angle B A C$ then, $C A^{2}=$ \qquad .
A. $B C . C D$
B. $B D . D C$
C. $B C \cdot B C$
D. $A D . D C$
11.

In the given figure, $D E \| B C$. If $A D=6 \mathrm{~cm}, \mathrm{AB}=24 \mathrm{~cm}$ and $\mathrm{DE}=5 \mathrm{~cm}$, then $B C=$ \qquad cm.
A. 5
B. 10
C. 20
D. 24
12. In the given figure, $D E\|A C, D C\| A P$,
$B C=4 \mathrm{~cm}$ and $B P=6 \mathrm{~cm}$.

Find the value of $\frac{B E}{E C}$.

A. $1: 2$
B. $2: 1$
C. $1: 3$
D. $3: 1$

Practice Questions - Term 1

13.

The line segment $X Y$ is parallel to side $A C$ of $\triangle A B C$ and it divides the triangle into two parts of equal areas. Find the ratio $\frac{B X}{A B}$.

A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2}$
C. $\frac{4}{1}$
D. $\frac{\sqrt{2}}{1}$
14.

A tower of height 24 m casts a shadow 50 m and at the same time, a girl of height 1.8 m casts a shadow. Find the length of her shadow.
A. 3 m
B. 3.25 m
C. 3.5 m
D. 3.75 m

Practice Questions - Term 1

15. If $A B C$ is an equilateral triangle of side $4 a$, then the length of its altitude is
\qquad —.
A. $2 \sqrt{3} a$
B. $7 \sqrt{9} a$
C. $4 \sqrt{3} a$
D. $5 \sqrt{2} a$
16.

In the adjoining figure, $A B=10 \mathrm{~cm}, \mathrm{BC}=15 \mathrm{~cm} A D: D C=2: 3$, then $\angle A B C$ is equal to -

A. 30°
B. 40°
C. 45°
D. 110°

Practice Questions - Term 1

17. In $\triangle A B C, \mathrm{AC}=15 \mathrm{~cm}$ and $\mathrm{DE} \| \mathrm{BC}$. If $\frac{A D}{D B}=\frac{2}{1}$, then $\mathrm{EC}=$ \qquad .

A. 5 cm
B. 10 cm
C. 7.5 cm
D. $\quad 12.5 \mathrm{~cm}$
18.

$\triangle A B C$ is a right angled triangle, right angled at B. $B D$ is perpendicular to AC. What is AC . DC?

A. $B C . A B$
B. $B C^{2}$
C. $B D^{2}$
D. $A B . A C$

Practice Questions - Term 1

19.

$\triangle A B C$ is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}$. If area of $\triangle A D C$ is $169 \mathrm{~cm}^{2}$, then area of $\triangle E F B$ is equal to

A. $196 \mathrm{~cm}^{2}$
B. $324 \mathrm{~cm}^{2}$
C. $169 \mathrm{~cm}^{2}$
D. $396 \mathrm{~cm}^{2}$
20.

If $B C \| E F$ and $F G \| C D$ then, $\frac{A E}{A B}=$ \qquad .

A. $\frac{A G}{C D}$
B. $\frac{G D}{A C}$
C. $\frac{A G}{A D}$
D. $\frac{C F}{A F}$

