

Dispersion Forces or London Forces

It is the force of attraction between two temporary dipoles

Dipole-Dipole Forces

It acts between the molecules having a permanent dipole

It is stronger than the London forces but is weaker than ionion interaction

The attractive force decreases with the increase of distance
At constant temperature, the pressure of a fixed amount of gas is inversely proportional to its volume

 $p_1V_1 = p_2V_2$ or pV = constant

Each line of pressure vs volume graph is called isotherm

Boyle's Law

Charles' Law

At constant pressure, the volume of a fixed mass of a gas is directly proportional to its absolute temperature

 $V_1/T_1 = V_2/T_2$ or V/T = constant

Each line of volume vs temperature graph is called isobar

At constant volume, the pressure of a fixed amount of a gas is directly proportional to the temperature

 $P_1/T_1 = P_2/T_2$ or P/T = constant

Each line of pressure vs temperature graph is called isochore

Ideal Gas

Gay Lussac's Law

It strictly follows Boyle's law, Charles' law and Avogadro law

Intermolecular forces are not present between the molecules of an ideal gas

Ideal Gas Equation

pV = nRT

R is Universal Gas Constant

At STP the value of R is $8.20578 \times 10^{-2} L$ atm K⁻¹ mol⁻¹

Dalton's Law

The total pressure exerted by the mixture of non-reactive gases is equal to the sum of the partial pressures of individual gases

 $p_{Total} = p_1 + p_2 + p_3 + \dots$ (at constant T,V)

Boyle Temperature or Boyle Point

It is the temperature at which a real gas obeys ideal gas law over an appreciable range of pressure

Critical Temperature (TC)

It is the highest temperature at which liquefaction of the gas first occurs

The Learning App