

Hydrocarbons	Compounds of carbon and hydrogen
	Saturated hydrocarbons - have carbon-carbon single bonds
	Unsaturated hydrocarbons - have carbon-carbon multiple bonds
Wurtz Reaction	Used for the preparation of higher alkanes
	Alkyl halides on treatment with sodium metal in dry ethereal solution give higher alkanes containing even number of carbon atoms
Halogenation of Alkanes	Free radical chain mechanism
	Rate of reaction of alkanes with halogens is $F_2 > Cl_2 > Br_2 > l_2$
	Rate of replacement of hydrogens of alkanes is 3° > 2° > 1°

Controlled Oxidation of Alkanes	Alkanes give a variety of oxidation products with suitable catalysts, e.g. i) $CH_4 \longrightarrow CH_3OH$ with $Cu/$ 523K/100atm ii) $CH_4 \longrightarrow HCHO$ with $Mo_2O_3 + \Delta$ iii) $C_2H_6 \longrightarrow CH_3COOH$ with $(CH_3COO)_2Mn$
Markovnikov Rule	Addition of hydrogen halides to unsymmetrical alkenes The negative part of the addendum (here, hydrogen halide) gets attached to the carbon atom having lesser number of hydrogen atoms
Peroxide or Kharash Effect	Anti Markovnikov addition of HBr to unsymmetrical alkenes. It proceeds via free radical chain mechanism

Alkane	Containing carbon - carbon single bonds
	General formula - C _n H _{2n+2}
	Carbon is sp ³ hybridised
	C-C bond length is 154 pm and bond enthalpy 348 kJ mol ⁻¹
	H-C-H bond angles are of 109.5°
Alkene Alkyne	Containing carbon - carbon double bonds
	General formula - C _n H _{2n}
	Carbon is sp ² hybridised
	C=C bond length is 134 pm and bond enthalpy 681 kJ mol ⁻¹
	Containing carbon - carbon triple bonds
	General formula - C _n H _{2n-2}
	Carbon is sp hybridised
	C≡C bond length is 120 pm and bond enthalpy 823 kJ mol ⁻¹
	H-C-C bond angle - 180°

Flashcards for NEET Biology: Hydrocarbons

Aromaticity	Ring system satisfying these criteria: - planar structure - complete delocalisation of the π electrons - (4n + 2) π electrons, where n is an integer (n = 0, 1, 2,) (Hückel Rule)
Friedel-Crafts Alkylation Reaction	Benzene is treated with an alkyl halide in the presence of anhydrous aluminium chloride to form alkyl benzene $C_6H_6 + CH_3CI \longrightarrow Toluene$ $(C_6H_5CH_3) + HCI$
Substitution in Mono-substituted Benzene	Ortho and para directing groups: –OH, –NHR, –OCH3, –CH3, – C2H5, –NH2, –NHCOCH3, etc. <u>Meta directing groups:</u> –NO2, –CN, –CHO, –COR, –COOH, – COOR, –SO3H, etc.