

Aliphatic Compounds

Straight or branched chain compounds

E.g. Ethane, Isobutane, Acetaldehyde, Ethanol, etc.

Aromatic Compounds

Commonly called 'arenes'. They have a ring system with planar structure and $(4n + 2) \pi$ electrons that are delocalised in the ring

E.g. Benzene, Naphthalene, Cyclopentadienyl anion, Toluene, etc.

Metamerism

Different alkyl chains on either side of the functional group of the molecule, e.g. methoxypropane (CH₃OC₃H₇) and ethoxyethane (C₂H₅OC₂H₅)

Stereoisomerism	Difference in relative positions of atoms or groups in compounds with same constitution and sequence of covalent bonds Geometrical and optical isomerism
Nucleophiles	Nucleus seeking reagent that donates an electron pair. They are negatively charged ions or neutral molecules with lone pair of electrons E.g. hydroxide (HO-), cyanide (NC-) ions and carbanions (R ₃ C-), H ₂ O, R ₃ N, R ₂ NH, etc.
Electrophiles	Electron seeking reagent that accepts an electron pair E.g. carbocations, carbonyl group (>C=O) or alkyl halides, etc.

B	BYJ	U'S
	The Learn	ing App

Inductive Effect

An ability of substituent(s) to either withdraw or donate electron density to the attached carbon atom

Electron withdrawing groups

- halogen, -NO₂, -CN, -COOH, -COOR, etc.

Electron donating groups alkyl groups

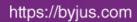
Positive Resonance Effect (+R effect)

Transfer of electrons away from an atom or substituent group attached to the conjugated system

E.g. - halogen, -OH, -OR, -OCOR, -NH₂, -NHR, -NR₂, -**NHCOR**

Negative Resonance Effect (-R effect)

Transfer of electrons towards the atom or substituent group attached to the conjugated system


E.g. - COOH, -CHO, >C=O, -CN, -NO₃

Flashcards for NEET Biology: Organic Chemistry – Some Basic Principles and Techniques

Electromeric Effect (E effect)

Positive Electromeric Effect (+E effect) - The π -electrons of the multiple bond are transferred to the atom that gets attached to the reagent

Negative Electromeric Effect
(-E effect) - The π-electrons of the multiple bond are transferred to the atom that does not get attached to the reagent

