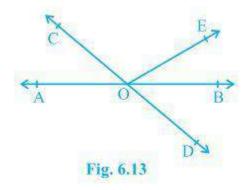


Exercise: 6.1 (Page No: 96)

1. In Fig. 6.13, lines AB and CD intersect at O. If \angle AOC + \angle BOE = 70° and \angle BOD = 40°, find \angle BOE and reflex \angle COE.



Solution:

From the diagram, we have

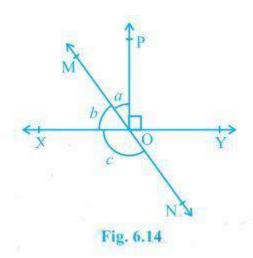
 $(\angle AOC + \angle BOE + \angle COE)$ and $(\angle COE + \angle BOD + \angle BOE)$ forms a straight line.

So, $\angle AOC + \angle BOE + \angle COE = \angle COE + \angle BOD + \angle BOE = 180^{\circ}$

Now, by putting the values of $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$ we get

 \angle COE = 110°, \angle BOE = 30° and reflex \angle COE = 360° - 110° = 250°

2. In Fig. 6.14, lines XY and MN intersect at O. If \angle POY = 90° and a : b = 2 : 3, find c.



Solution:

We know that the sum of linear pair are always equal to 180°

So,

$$\angle$$
POY +a +b = 180°

Putting the value of $\angle POY = 90^{\circ}$ (as given in the question) we get,

 $a+b = 90^{\circ}$

Now, it is given that a:b=2:3 so,

Let a be 2x and b be 3x

 $\therefore 2x+3x = 90^{\circ}$

Solving this we get

 $5x = 90^{\circ}$

So, $x = 18^{\circ}$

 $a = 2 \times 18^{\circ} = 36^{\circ}$

Similarly, b can be calculated and the value will be

$$b = 3 \times 18^{\circ} = 54^{\circ}$$

From the diagram, b+c also forms a straight angle so,

 $b+c = 180^{\circ}$

∴ c = 126°

3. In Fig. 6.15, \angle PQR = \angle PRQ, then prove that \angle PQS = \angle PRT.

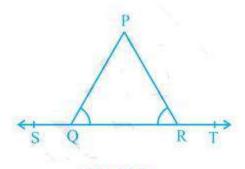


Fig. 6.15

Solution:

Since ST is a straight line so,

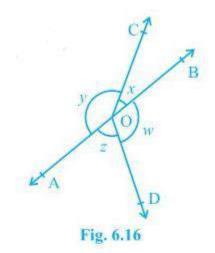
$$\angle$$
PQS+ \angle PAR = 180° (linear pair) and

$$\angle$$
PRT+ \angle PRQ = 180° (linear pair)

Now,
$$\angle PQS + \angle PAR = \angle PRT + \angle PRQ = 180^{\circ}$$

Since $\angle PQR = \angle PRQ$ (as given in the question) $\angle PQS = \angle PRT$. (Hence proved).

4. In Fig. 6.16, if x+y = w+z, then prove that AOB is a line.



Solution:

For proving AOB is a straight line, we will have to prove x+y is a linear pair

i.e. $x+y = 180^{\circ}$

We know that the angles around a point are 360° so,

 $x+y+w+z = 360^{\circ}$

In the question, it is given that,

x+y = w+z

So, $(x+y)+(x+y) = 360^{\circ}$

 \Rightarrow 2(x+y) = 360°

 \therefore (x+y) = 180° (Hence proved).

5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that \angle ROS = $\frac{1}{2}$ (\angle QOS – \angle POS).

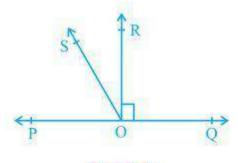
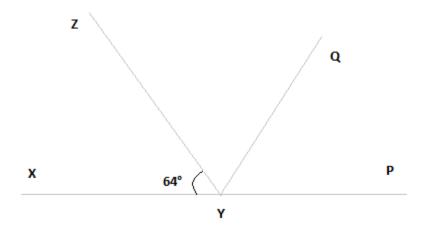


Fig. 6.17

Solution:

In the question, it is given that (OR \perp PQ) and \angle POQ = 180° So, \angle POS+ \angle ROS+ \angle ROQ = 180° Now, \angle POS+ \angle ROS = 180°-90° (Since \angle POR = \angle ROQ = 90°) \therefore \angle POS + \angle ROS = 90° Now, \angle QOS = \angle ROQ+ \angle ROS It is given that \angle ROQ = 90°, \therefore \angle QOS = 90° + \angle ROS Or, \angle QOS + \angle ROS = 90° and \angle QOS + \angle ROS = 90° As \angle POS + \angle ROS = 90° and \angle QOS + \angle ROS = 90°, we get \angle POS + \angle ROS = \angle QOS + \angle ROS = \angle QOS + \angle ROS = \angle QOS Or, \angle ROS = \angle 2 (\angle QOS - \angle POS) (Hence proved).

6. It is given that \angle XYZ = 64° and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects \angle ZYP, find \angle XYQ and reflex \angle QYP. Solution:



Here, XP is a straight line

So,
$$\angle XYZ + \angle ZYP = 180^{\circ}$$

Putting the value of $\angle XYZ = 64^{\circ}$ we get,

$$64^{\circ} + \angle ZYP = 180^{\circ}$$

From the diagram, we also know that \angle ZYP = \angle ZYQ + \angle QYP

Now, as YQ bisects ∠ZYP,

$$\angle$$
ZYQ = \angle QYP

Or,
$$\angle$$
ZYP = $2\angle$ ZYQ

$$\therefore$$
 \angle ZYQ = \angle QYP = 58°

Again, $\angle XYQ = \angle XYZ + \angle ZYQ$

By putting the value of $\angle XYZ = 64^{\circ}$ and $\angle ZYQ = 58^{\circ}$ we get.

$$\angle$$
XYQ = 64°+58°

Or,
$$\angle$$
XYQ = 122°

Now, reflex
$$\angle$$
QYP = 180°+ \angle XYQ

We computed that the value of $\angle XYQ = 122^{\circ}$.

So,

$$\angle$$
QYP = 180°+122°

Exercise: 6.2 (Page No: 103)

1. In Fig. 6.28, find the values of x and y and then show that AB | CD.

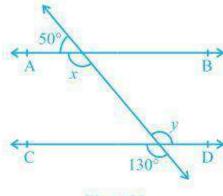


Fig. 6.28

Solution:

We know that a linear pair is equal to 180°.

So, $x+50^{\circ} = 180^{\circ}$

∴ x = 130°

We also know that vertically opposite angles are equal.

So, $y = 130^{\circ}$

In two parallel lines, the alternate interior angles are equal. In this,

$$x = y = 130^{\circ}$$

This proves that alternate interior angles are equal and so, AB II CD.

2. In Fig. 6.29, if AB II CD, CD II EF and y:z=3:7, find x.

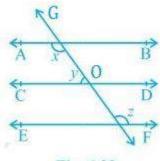


Fig. 6.29

Solution:

It is known that AB II CD and CD II EF

As the angles on the same side of a transversal line sums up to 180°,

$$x + y = 180^{\circ} -----(i)$$

Also,

 \angle O = z (Since they are corresponding angles)

and, $y + \angle O = 180^{\circ}$ (Since they are a linear pair)

So, $y+z = 180^{\circ}$

Now, let y = 3w and hence, z = 7w (As y : z = 3 : 7)

 $3w+7w = 180^{\circ}$

Or, $10 \text{ w} = 180^{\circ}$

So, $w = 18^{\circ}$

Now, $y = 3 \times 18^{\circ} = 54^{\circ}$

and, $z = 7 \times 18^{\circ} = 126^{\circ}$

Now, angle x can be calculated from equation (i)

 $x+y = 180^{\circ}$

Or, x+54° = 180°

∴ x = 126°

3. In Fig. 6.30, if AB || CD, EF \perp CD and \angle GED = 126°, find \angle AGE, \angle GEF and \angle FGE.

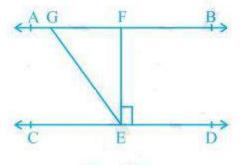


Fig. 6.30

Solution:

Since AB II CD, GE is a transversal.

It is given that \angle GED = 126°

So, \angle GED = \angle AGE = 126° (As they are alternate interior angles) Also,

 \angle GED = \angle GEF + \angle FED

As EF \perp CD, \angle FED = 90°

∴ ∠GED = ∠GEF+90°

Or, \angle GEF = 126° – 90° = 36°

Again, \angle FGE + \angle GED = 180° (Transversal)

Putting the value of \angle GED = 126° we get,

 \angle FGE = 54°

So,

∠AGE = 126°

 \angle GEF = 36° and

 \angle FGE = 54°

4. In Fig. 6.31, if PQ II ST, \angle PQR = 110° and \angle RST = 130°, find \angle QRS.

[Hint: Draw a line parallel to ST through point R.]

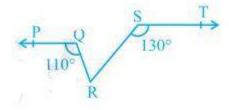
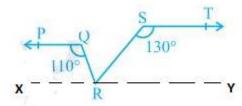


Fig. 6.31

Solution:

First, construct a line XY parallel to PQ.



We know that the angles on the same side of transversal is equal to 180°.

So,
$$\angle PQR + \angle QRX = 180^{\circ}$$

$$Or, \angle QRX = 180^{\circ}-110^{\circ}$$

Similarly,

 \angle RST + \angle SRY = 180°

Or, \angle SRY = 180°- 130°

∴ ∠SRY = 50°

Now, for the linear pairs on the line XY-

 $\angle QRX + \angle QRS + \angle SRY = 180^{\circ}$

Putting their respective values, we get,

 \angle QRS = 180° - 70° - 50°

Hence, \angle QRS = 60°

5. In Fig. 6.32, if AB II CD, \angle APQ = 50° and \angle PRD = 127°, find x and y.

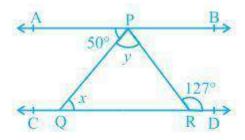


Fig. 6.32

Solution:

From the diagram,

 $\angle APQ = \angle PQR$ (Alternate interior angles)

Now, putting the value of $\angle APQ = 50^{\circ}$ and $\angle PQR = x$ we get,

 $x = 50^{\circ}$

Also,

 $\angle APR = \angle PRD$ (Alternate interior angles)

Or, $\angle APR = 127^{\circ}$ (As it is given that $\angle PRD = 127^{\circ}$)

We know that

 $\angle APR = \angle APQ + \angle QPR$

Now, putting values of $\angle QPR = y$ and $\angle APR = 127^{\circ}$ we get,

 $127^{\circ} = 50^{\circ} + y$

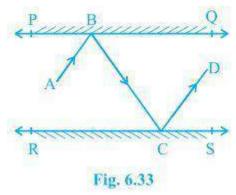
Or, $y = 77^{\circ}$

Thus, the values of x and y are calculated as:

 $x = 50^{\circ} \text{ and } y = 77^{\circ}$

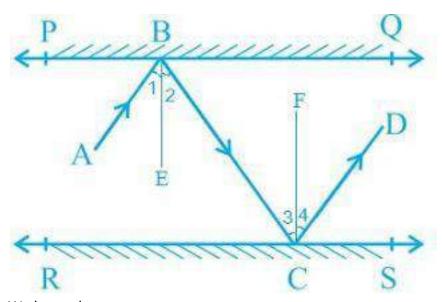
6. In Fig. 6.33,

PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB II CD.



Solution:

First, draw two lines BE and CF such that BE \perp PQ and CF \perp RS. Now, since PQ II RS, So, BE II CF



We know that,

Angle of incidence = Angle of reflection (By the law of reflection) So,

 $\angle 1 = \angle 2$ and

∠3 = ∠4

We also know that alternate interior angles are equal. Here, BE \perp CF and the transversal line BC cuts them at B and C

So, $\angle 2 = \angle 3$

(As they are alternate interior angles)

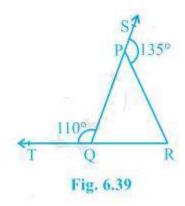
Now, $\angle 1 + \angle 2 = \angle 3 + \angle 4$

Or, \angle ABC = \angle DCB

So, AB II CD alternate interior angles are equal)

Exercise: 6.3 (Page No: 107)

1. In Fig. 6.39, sides QP and RQ of \triangle PQR are produced to points S and T respectively. If \angle SPR = 135° and \angle PQT = 110°, find \angle PRQ.



Solution:

It is given the TQR is a straight line and so, the linear pairs (i.e. \angle TQP and \angle PQR) will add up to 180°

So, \angle TQP + \angle PQR = 180°

Now, putting the value of $\angle TQP = 110^{\circ}$ we get,

 \angle PQR = 70°

Consider the ΔPQR,

Here, the side QP is extended to S and so, \angle SPR forms the exterior angle.

Thus, \angle SPR (\angle SPR = 135°) is equal to the sum of interior opposite angles. (Triangle property)

Or, \angle PQR + \angle PRQ = 135°

Now, putting the value of $\angle PQR = 70^{\circ}$ we get,

 \angle PRQ = 135°-70°

Hence, \angle PRQ = 65°

2. In Fig. 6.40, \angle X = 62°, \angle XYZ = 54°. If YO and ZO are the bisectors of \angle XYZ and \angle XZY respectively of \triangle XYZ, find \angle OZY and \angle YOZ.

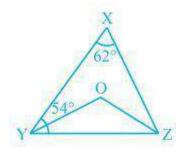


Fig. 6.40

Solution:

We know that the sum of the interior angles of the triangle.

So,
$$\angle X + \angle XYZ + \angle XZY = 180^{\circ}$$

Putting the values as given in the question we get,

$$62^{\circ}+54^{\circ}+\angle XZY = 180^{\circ}$$

Or,
$$\angle$$
XZY = 64°

Now, we know that ZO is the bisector so,

$$\angle OZY = \frac{1}{2} \angle XZY$$

Similarly, YO is a bisector and so,

$$\angle OYZ = \frac{1}{2} \angle XYZ$$

Or,
$$\angle$$
OYZ = 27° (As \angle XYZ = 54°)

Now, as the sum of the interior angles of the triangle,

$$\angle$$
OZY + \angle OYZ + \angle O = 180°

Putting their respective values, we get,

Hence, \angle 0 = 121°

3. In Fig. 6.41, if AB || DE, \angle BAC = 35° and \angle CDE = 53°, find \angle DCE.

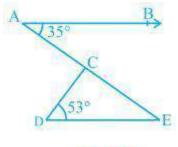


Fig. 6.41

Solution:

We know that

AE is a transversal since AB II DE

Here \angle BAC and \angle AED are alternate interior angles.

Hence, \angle BAC = \angle AED

It is given that $\angle BAC = 35^{\circ}$

 \Rightarrow \angle AED = 35°

Now consider the triangle CDE. We know that the sum of the interior angles of a triangle is 180°.

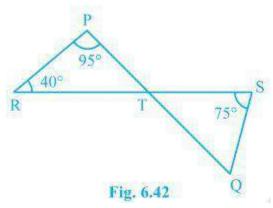
 $\therefore \angle DCE + \angle CED + \angle CDE = 180^{\circ}$

Putting the values, we get

 \angle DCE+35°+53° = 180°

Hence, $\angle DCE = 92^{\circ}$

4. In Fig. 6.42, if lines PQ and RS intersect at point T, such that \angle PRT = 40°, \angle RPT = 95° and \angle TSQ = 75°, find \angle SQT.



Solution:

Consider triangle PRT.

$$\angle$$
PRT + \angle RPT + \angle PTR = 180°

So,
$$\angle$$
PTR = 45°

Now \angle PTR will be equal to \angle STQ as they are vertically opposite angles.

So,
$$\angle$$
PTR = \angle STQ = 45°

Again, in triangle STQ,

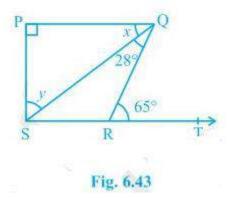
$$\angle$$
TSQ + \angle PTR + \angle SQT = 180°

Solving this we get,

$$75^{\circ} + 45^{\circ} + \angle SQT = 180^{\circ}$$

$$\angle$$
SQT = 60°

5. In Fig. 6.43, if PQ \perp PS, PQ II SR, \angle SQR = 28° and \angle QRT = 65°, then find the values of x and y.



Solution:

 $x + \angle SQR = \angle QRT$ (As they are alternate angles since QR is transversal)

So, $x+28^{\circ} = 65^{\circ}$

∴ x = 37°

It is also known that alternate interior angles are same and so,

 \angle QSR = x = 37°

Also, Now,

 \angle QRS + \angle QRT = 180°

(As they are a Linear pair)

Or, \angle QRS+65° = 180°

So, \angle QRS = 115°

Using the angle sum property in Δ SPQ

 \angle SPQ +x+y= 180°

 $90^{0} + 37^{0} + y = 180^{0}$

 $y = 180^{\circ} - 127^{\circ} = 53^{\circ}$

Hence, $y = 53^{\circ}$

6. In Fig. 6.44, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that \angle QTR = $\frac{1}{2}$ \angle QPR.

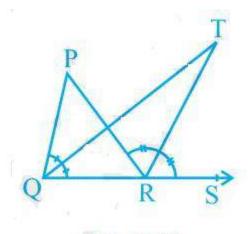


Fig. 6.44

Solution:

Consider the $\triangle PQR$. $\angle PRS$ is the exterior angle and $\angle QPR$ and $\angle PQR$ are interior angles.

So, \angle PRS = \angle QPR+ \angle PQR (According to triangle property)

Or, \angle PRS - \angle PQR = \angle QPR -----(i)

Now, consider the ΔQRT ,

 \angle TRS = \angle TQR+ \angle QTR

Or, \angle QTR = \angle TRS- \angle TQR

We know that QT and RT bisect \angle PQR and \angle PRS respectively.

So, \angle PRS = 2 \angle TRS and \angle PQR = 2 \angle TQR

Now, \angle QTR = $\frac{1}{2}$ \angle PRS - $\frac{1}{2}$ \angle PQR

Or, \angle QTR = $\frac{1}{2}$ (\angle PRS - \angle PQR)

From (i) we know that $\angle PRS - \angle PQR = \angle QPR$

So, $\angle QTR = \frac{1}{2} \angle QPR$ (hence proved).