

Class 11 Thermodynamics MCQs

- 1. A well stoppered thermos flask contains some ice cubes. This is an example of
 - (a) Closed system
- (b) Open system
- (c) Isolated system
- (d) Non thermodynamics system

Ans: (c)

Solution: It is an isolated system

- 2. For the reaction $C(s) + O_2(g) \rightarrow CO_2(g)$
 - (a) △H >△U
- (b) $\Delta H < \Delta U$
- (c) $\triangle H = \triangle U$
- (d) None of these

Ans: (c)

Solution:Here \triangle ng RT = 0 , because reactant and product contain same number of gaseous molecules. So that \triangle H = \triangle U + \triangle ng RT \Rightarrow \triangle H = \triangle U

- 3. For an ideal gas, C_V and C_P are related as :
 - (a) $C_V C_P = R$
- (b) $C_V + C_P = R$
- (c) $C_P C_v = RT$
- (d) $C_P C_v = R$

Ans: (d) $C_P - C_V = R$

Solution: For an ideal gas, C_V and C_P are related as $C_P - C_V = R$

- 4. The least random state of the water system is:
 - (a) ice
- (b) liquid water
- (c) steam
- (d) randomness is same

Ans: (a)

Solution: The least random state of the water system is ice.

- 5. Considering entropy(S) thermodynamic parameters the criteria for the spontaneity of any process is:
 - (a) \triangle S system + \triangle S surroundings > 0
 - (b) $\triangle S$ system $\triangle S$ surroundings < 0
 - (c) $\triangle S$ system > 0
 - (d) \triangle S surroundings > 0

Ans: (a)

Solution: The criteria for the spontaneity of any process is

 ΔS system + ΔS surroundings > 0

- 6. The enthalpy change in a reaction does not depend upon
 - (a) the state of reactions and products
 - (b) the nature of the reactants and products
 - (c) different intermediate steps in the reaction
 - (d) initial and final enthalpy of the reaction

Ans: (c)

Solution: The enthalpy change is a state function so it doesn't depend on different intermediate steps in the reaction.

- 7. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_C is
 - (a) $-\Delta G = RT \ln K_C$
- (b) $\triangle G^0 = RT InK_C$
- (c) $-\Delta G^0 = RT \ln K_C$
- (d) $\triangle G = RT lnK_C$

Ans: (c)

Solution : The relationship between free energy change in a reaction and the corresponding equilibrium constant K_C is $\Delta G^0 = -RT InK_C$ or $-\Delta G^0 = RT InK_C$

- 8. What is the entropy change (in JK⁻¹ mol⁻¹) when 1 mole of ice is converted into water at 0°C? (The enthalpy change for the conversion of ice to liquid water is 6.0 kJ mol⁻¹ at 0°C)
 - (a) 20.13
- (b) 2.013
- (c) 2.198
- (d) 21.98

Ans: (d)

Solution: The entropy change; $ds = dq_{rev}/T \Rightarrow ds = 6000 \text{J mol}^{-1} / 273 \text{K}$ $\Rightarrow ds = 21.978 \text{JK}^{-1} \text{ mol}^{-1}$

- 9. If liquids A and B form an ideal solution
 - (a) the entropy of mixing is zero
 - (b) the free energy of mixing is zero
 - (c) the free energy as well as the entropy of mixing are zero
 - (d) the enthalpy of mixing is zero

Ans: (d)

Solution: If liquids A and B form an ideal solution the enthalpy of mixing is zero

- 10. When water is added to quick lime the reaction is
 - (a) Explosive
- (b) endothermic
- (c) exothermic
- (d) photochemical

Ans: (c)

Solution: When water is added to quick lime the reaction is exothermic

 $CaO + H_2O \rightarrow Ca(OH)_2 \triangle H = -ve$

