

Reducing Sugars	Carbohydrates that reduce Fehling's solution and Tollens' reagent E.g. all monosaccharides whether aldose or ketose, maltose and lactose, etc.
Anomers	They differ only in the configuration of the hydroxyl group at C1, called the anomeric carbon The two cyclic hemiacetal forms of glucose, i.e. α-form and β-form
	It is a disaccharide Non-reducing sugar
Sucrose	It gives glucose and fructose on hydrolysis
	Two monosaccharides are held together by a glycosidic linkage between C1 of α-D-glucose and C2 of β-D-fructose

Invert sugar	It is produced by the hydrolysis of sucrose Sucrose is dextrorotatory, but on hydrolysis, the mixture becomes laevorotatory due to the greater laevorotation of fructose
Maltose	It is a disaccharide, made up of two glucose units joined by α- 1-4 glycosidic bond It is a reducing sugar
Lactose	It is a disaccharide, made up of β-D-galactose and β-D-glucose It is a reducing sugar

Starch	It is a polysaccharide made up of α-glucose units It contains 15-20% amylose and 80-85% amylopectin
Amylose	Water soluble It constitutes 15-20% of starch It is a long unbranched chain polymer of 200-1000 α-D glucose units linked by 1–4 glycosidic bonds
Amylopectin	Water-insoluble It constitutes 80-85% of starch It is a branched-chain polymer of α-D glucose units linked by 1–4 and 1–6 glycosidic bonds in the chain and at the branching, respectively

Essential Amino Acids	It cannot be synthesised in the body Valine, Isoleucine, Leucine, Arginine, Lysine, Threonine, Methionine, Phenylalanine, Tryptophan and histidine
Vitamins and Deficiency Diseases	Vitamin A - Xerophthalmia and Night blindness Vitamin C - Scurvy Vitamin D - Rickets and Osteomalacia Vitamin E - Muscular weakness and increased fragility of RBCs Vitamin K - Increased blood coagulation time
Deficiency Diseases of Vitamin B	 B₁ (Thiamine) - Beriberi B₂ (Riboflavin) - Cheilosis B₆ (Pyridoxine) - Convulsions B₁₂ (Cobalamin) - Pernicious anaemia