

| Crystalline<br>Solids         | Long range order<br>Sharp melting point<br>Anisotropic<br>Definite enthalpy of fusion<br>E.g. Sodium chloride and quartz                                                                                                                                                                                  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amorphous Solids              | Short range order<br>Soften over a range of<br>temperature<br>Pseudo solids or super cooled<br>liquids<br>Isotropic<br>E.g. Quartz glass, rubber,<br>plastics                                                                                                                                             |
| Non-polar Molecular<br>Solids | Soft and non-conductors of<br>electricity<br>The atoms or molecules are<br>held by weak dispersion forces<br>or London forces<br>Low melting points and are<br>usually in liquid or gaseous<br>state at room temperature<br>E.g. H <sub>2</sub> , Cl <sub>2</sub> , CCl <sub>4</sub> , and l <sub>2</sub> |

BYJU'S The Learning App

| Polar Molecular<br>Solids           | Soft and non-conductors of<br>electricity<br>The atoms or molecules are<br>held by dipole-dipole<br>interactions<br>Low melting points and are<br>usually in the liquid or gaseous<br>state at room temperature<br>E.g. Solid SO <sub>2</sub> , HCI, NH <sub>3</sub> |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrogen Bonded<br>Molecular Solids | Non-conductors of electricity<br>Molecules are held by hydrogen<br>bonds<br>Generally they are volatile<br>liquids or soft solids under room<br>temperature<br>E.g. H <sub>2</sub> O (ice)                                                                           |
| Ionic Solids                        | Electrical insulators in the solid<br>state but conduct electricity in<br>the molten state<br>Cations and anions bound by<br>strong electrostatic forces<br>High melting and boiling points<br>Hard and brittle<br>E.g. NaCl, MgO, ZnS, CaF <sub>2</sub>             |



| Metallic Solids         | Positive ions surrounded by a<br>sea of free electrons<br>Show high electrical and<br>thermal conductivity<br>Lustrous, malleable and ductile<br>E.g. Fe, Cu, Ag, Mg                                                                                                                  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Covalent Solids         | Network Solids or giant<br>molecules<br>Hard and brittle<br>Insulators and non-conductors<br>of electricity (graphite-<br>exception)<br>Extremely high melting points<br>and may even decompose<br>before melting<br>E.g. Quartz, diamond, graphite<br>Primitive, Body-centred, Face- |
| Cubic Crystal<br>System | centred<br>Axial distances or edge<br>lengths - $a = b = c$<br>Axial angles - $\alpha = \beta = \gamma = 90^{\circ}$<br>Examples - NaCl, Zinc blende,<br>Cu                                                                                                                           |



| Tetragonal Crystal                                            | Primitive, Body-centred                                                              |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                               | Axial distances or edge<br>lengths - a = b ≠ c                                       |
| System                                                        | Axial angles - $\alpha = \beta = \gamma = 90^{\circ}$                                |
|                                                               | <b>Examples</b> - White tin, SnO <sub>2</sub> , TiO <sub>2</sub> , CaSO <sub>4</sub> |
| Orthorhombic<br>Crystal System<br>Hexagonal Crystal<br>System | Primitive, Body-centred, Face-<br>centred, End-centred                               |
|                                                               | Axial distances or edge<br>lengths - a ≠ b ≠ c                                       |
|                                                               | <b>Axial angles</b> - $\alpha = \beta = \gamma = 90^{\circ}$                         |
|                                                               | Examples - Rhombic sulphur,<br>KNO <sub>3</sub> , BaSO <sub>4</sub>                  |
|                                                               | Primitive                                                                            |
|                                                               | Axial distances or edge<br>lengths - a = b ≠ c                                       |
|                                                               | <b>Axial angles</b> - α = β = 90°, γ =<br>120°                                       |
|                                                               | <b>Examples</b> - Graphite, ZnO,<br>CdS                                              |



|                              | Primitive                                                                                                                                 |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Rhombohedral or              | Axial distances or edge<br>lengths - a = b = c                                                                                            |
| Trigonal Crystal<br>System   | <b>Axial angles</b> - $\alpha = \beta = \gamma \neq 90^{\circ}$                                                                           |
| Gystern                      | <b>Examples</b> - Calcite (CaCO3),<br>HgS (cinnabar)                                                                                      |
| •                            | Primitive, End-centred                                                                                                                    |
| Monoclinic Crystal<br>System | Axial distances or edge<br>lengths - a ≠ b ≠ c                                                                                            |
|                              | <b>Axial angles</b> - α = γ = 90°, β ≠<br>90°                                                                                             |
|                              | <b>Examples</b> - Monoclinic sulphur,<br>Na <sub>2</sub> SO <sub>4</sub> .10H <sub>2</sub> O                                              |
| Triclinic Crystal<br>System  | Primitive                                                                                                                                 |
|                              | Axial distances or edge<br>lengths - a ≠ b ≠ c                                                                                            |
|                              | <b>Axial angles</b> - $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$                                                                     |
|                              | <b>Examples</b> - K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> ,<br>CuSO <sub>4</sub> .5H <sub>2</sub> O, H <sub>3</sub> BO <sub>3</sub> |



| Primitive Cubic Unit<br>Cell          | Atoms are present only at its corner<br>Total number of atoms in one unit cell is = 1 atom                                              |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Body-centred Cubic<br>(bcc) Unit Cell | An atom at all the corners and<br>also one atom at its body centre<br>Total number of atoms in one<br>unit cell is = 2 atoms            |
| Face-centred Cubic<br>(fcc) Unit Cell | Atoms at all the corners and at<br>the centre of all the faces of the<br>cube<br>Total number of atoms in one<br>unit cell is = 4 atoms |



|                 | Also called dislocation defect                                                                                                  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
| Frenkel Defect  | lonic substances having a large difference in the size of ions                                                                  |
|                 | The smaller ion (usually cation) is dislocated                                                                                  |
|                 | E.g. ZnS, AgCl, AgBr and Agl<br>due to small size of Zn <sup>2+</sup> and<br>Ag <sup>+</sup> ions                               |
| Schottky Defect | Ionic substances having a similar size of ions                                                                                  |
|                 | The number of missing cations and anions are equal                                                                              |
|                 | E.g. NaCl, KCl, CsCl and AgBr                                                                                                   |
| Semiconductors  | Solids with conductivities in the intermediate range from 10 <sup>-6</sup> to 10 <sup>4</sup> ohm <sup>-1</sup> m <sup>-1</sup> |
|                 | Electrical conductivity increases with a rise in temperature                                                                    |
|                 | Intrinsic semiconductors - Si<br>and Ge                                                                                         |



| n-Type<br>Semiconductor | Intrinsic semiconductor (Si and<br>Ge) doped with an electron-rich<br>impurity, i.e. group 15 elements<br>P, As or Sb          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| p-Type<br>Semiconductor | Intrinsic semiconductor (Si and<br>Ge) doped with an electron-<br>deficit impurity, i.e. group 13<br>elements like B, Al or Ga |
|                         | Due to the presence of one or<br>more unpaired electrons                                                                       |
| Paramagnetism           | Weakly attracted by a magnetic field                                                                                           |
|                         | Lose their magnetism in the absence of magnetic field                                                                          |
|                         | E.g. O <sub>2</sub> , Cu <sup>2+</sup> , Fe <sup>3+</sup> , Cr <sup>3+</sup>                                                   |



| Diamagnetism       | All the electrons are paired<br>Weakly repelled by a magnetic<br>field<br>E.g. H <sub>2</sub> O, NaCl and C <sub>6</sub> H <sub>6</sub>    |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Ferromagnetism     | Attracted very strongly by a magnetic field<br>Can be permanently magnetised<br>E.g. iron, cobalt, nickel, gadolinium and CrO <sub>2</sub> |
| Antiferromagnetism | Domains are oppositely oriented<br>and cancel out each other's<br>magnetic moment<br>E.g. MnO                                              |



## Weakly attracted by magnetic field Lose ferrimagnetism on heating Ferrimagnetism and become paramagnetic E.g. Fe<sub>3</sub>O<sub>4</sub> (magnetite) and ferrite like MgFe<sub>2</sub>O<sub>4</sub> and ZnFe<sub>2</sub>O<sub>4</sub> The Learning Apr