Exercise 7.1

1. Which of the following numbers are not perfect cubes?

(i) 216

Solution:

By resolving 216 into prime factor,

2	216
2	108
2	54
3	27
3	9
3	3
	1

 $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$ By grouping the factors in triplets of equal factors, $216 = (2 \times 2 \times 2) \times (3 \times 3 \times 3)$ Here, 216 can be grouped into triplets of equal factors, $\therefore 216 = (2 \times 3) = 6$ Hence, 216 is cube of 6.

(ii) 128

Solution:

By resolving 128 into prime factor,

2	128	
2	64	
2	32	
2	16	
2	8	
2	4	
2	2	
	1	

Page: 114

 $\begin{aligned} &128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \\ & \text{By grouping the factors in triplets of equal factors,} \\ &128 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 2 \\ & \text{Here, } 128 \text{ cannot be grouped into triplets of equal factors, we are left of with one factors } 2 \\ & \therefore 128 \text{ is not a perfect cube.} \end{aligned}$

(iii) 1000 Solution:

By resolving 1000 into prime factor,

2	1000
2	500
2	250
5	125
5	25
5	5
	1

 $1000 = 2 \times 2 \times 2 \times 5 \times 5 \times 5$

By grouping the factors in triplets of equal factors, $1000 = (2 \times 2 \times 2) \times (5 \times 5 \times 5)$ Here, 1000 can be grouped into triplets of equal factors, $\therefore 1000 = (2 \times 5) = 10$ Hence, 1000 is cube of 10.

(iv) 100 Solution:

By resolving 100 into prime factor,

2	100
2	50
5	25
5	5
	1

 $100 = 2 \times 2 \times 5 \times 5$ Here, 100 cannot be grouped into triplets of equal factors.

 \therefore 100 is not a perfect cube.

(v) 46656 Solution:

By resolving 46656 into prime factor,

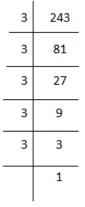
2	46 <mark>6</mark> 56
2	23328
2	<mark>1166</mark> 4
2	58 <mark>3</mark> 2
2	2916
2	1458
3	729
3	243
3	81
Û	27
	9
	3
	1

By grouping the factors in triplets of equal factors, $46656 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (3 \times 3 \times 3) \times (3 \times 3 \times 3)$ Here, 46656 can be grouped into triplets of equal factors, $\therefore 46656 = (2 \times 2 \times 3 \times 3) = 36$ Hence, 46656 is cube of 36.

2. Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube.

(i) 243 Solution:

By resolving 243 into prime factor,



 $243 = 3 \times 3 \times 3 \times 3 \times 3$

By grouping the factors in triplets of equal factors, $243 = (3 \times 3 \times 3) \times 3 \times 3$ Here, 3 cannot be grouped into triplets of equal factors. \therefore We will multiply 243 by 3 to get perfect **cube**

By resolving 256 into prime factor,

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

 $256 = 2 \times 2$

By grouping the factors in triplets of equal factors, 256 = $(2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 2 \times 2$

Here, 2 cannot be grouped into triplets of equal factors. ∴ We will multiply 256 by 2 to get perfect **cube**

(iii) 72

Solution:

By resolving 72 into prime factor,

2	72
2	36
2	18
3	9
3	3
	1

 $72 = 2 \times 2 \times 2 \times 3 \times 3$

By grouping the factors in triplets of equal factors, $72 = (2 \times 2 \times 2) \times 3 \times 3$

Here, 3 cannot be grouped into triplets of equal factors. \therefore We will multiply 72 by 3 to get perfect cube

(iv) 675 Solution:

By resolving 675 into prime factor,

3	675	
3	225	
3	75	
5	25	
5	5	-
	1	

 $675 = 3 \times 3 \times 3 \times 5 \times 5$

By grouping the factors in triplets of equal factors, 675 = $(3 \times 3 \times 3) \times 5 \times 5$

Here, 5 cannot be grouped into triplets of equal factors. \therefore We will multiply 675 by 5 to get perfect cube

(v) 100

Solution:

By resolving 100 into prime factor,

2	100
2	50
5	25
5	5
	1

 $100 = 2 \times 2 \times 5 \times 5$ Here, 2 and 5 cannot be grouped into triplets of equal factors. \therefore We will multiply 100 by (2×5) 10 to get perfect **cube**

3. Find the smallest number by which each of the following numbers must be divided to obtain a perfect

cube. (i) 81

Solution:

By resolving 81 into prime factor,

3	81
3	27
3	9
3	3
1	1

 $81 = 3 \times 3 \times 3 \times 3$

By grouping the factors in triplets of equal factors, $81 = (3 \times 3 \times 3) \times 3$ Here, 3 cannot be grouped into triplets of equal factors. \therefore We will divide 81 by 3 to get perfect cube

(ii) 128

Solution:

By resolving 128 into prime factor,

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

 $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

By grouping the factors in triplets of equal factors, $128 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 2$

Here, 2 cannot be grouped into triplets of equal factors.

... We will divide 128 by 2 to get perfect **cube**

(iii) 135 Solution:

By resolving 135 into prime factor,

3	135
3	45
3	15
5	5
	1

 $135 = 3 \times 3 \times 3 \times 5$

By grouping the factors in triplets of equal factors, $135 = (3 \times 3 \times 3) \times 5$ Here, 5 cannot be grouped into triplets of equal factors. \therefore We will divide 135 by 5 to get perfect **cube**

(iv) 192 Solution:

By resolving 192 into prime factor,

2	192		
2	96		
2	48		
2	24		
2	12		
2	6		
3	3		
	1		

 $192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$

By grouping the factors in triplets of equal factors, $192 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 3$ Here, 3 cannot be grouped into triplets of equal factors.

 \div We will divide 192 by 3 to get perfect cube

(v) 704 Solution:

By resolving 704 into prime factor,

2	704	
2	352	
2	176	_
2	88	_
2	44	
2	22	
11	11	
	1	_

 $704 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$

By grouping the factors in triplets of equal factors, $704 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times 11$

Here, 11 cannot be grouped into triplets of equal factors. ∴ We will divide 704 by 11 to get perfect cube 4. Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube?

Solution:

Given, side of cube is 5 cm, 2 cm and 5 cm. \therefore Volume of cube = $5 \times 2 \times 5 = 50$

2	50		
5	25		
5	5		
	1		

 $50 = 2 \times 5 \times 5$

Here, 2, 5 and 5 cannot be grouped into triplets of equal factors. \therefore We will multiply 50 by (2×2×5) 20 to get perfect cube. Hence, 20 cuboid is needed.

Page: 116

Exercise 7.2

1. Find the cube root of each of the following numbers by prime factorisation method.

(i) **64**

Solution:

 $64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$ By grouping the factors in triplets of equal factors, 64 $= (2 \times 2 \times 2) \times (2 \times 2 \times 2)$ Here, 64 can be grouped into triplets of equal factors, $\therefore 64 = 2 \times 2 = 4$ Hence, 4 is cube root of 64.

(ii) 512 Solution:

```
512 = 2 \times 2
By grouping the factors in triplets of equal factors, 512 = (2 \times 2 \times 2) \times (2 \times 2 \times 2) \times (2 \times 2 \times 2)
Here, 512 can be grouped into triplets of equal factors,
\therefore 512 = 2 \times 2 \times 2 = 8
Hence, 8 is cube root of 512.
```

(iii) 10648

Solution:

```
10648 = 2 \times 2 \times 2 \times 11 \times 11
By grouping the factors in triplets of equal factors,
10648 = (2 \times 2 \times 2) \times (11 \times 11 \times 11)
Here, 10648 can be grouped into triplets of equal factors,
\therefore 10648 = 2 \times 11 = 22
Hence, 22 is cube root of 10648.
```

(iv) 27000

Solution:

```
27000 = 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5
By grouping the factors in triplets of equal factors,
27000 = (2 \times 2 \times 2) \times (3 \times 3 \times 3) \times (5 \times 5 \times 5)
Here, 27000 can be grouped into triplets of equal factors,
\therefore 27000 = (2 \times 3 \times 5) = 30
Hence, 30 is cube root of 27000.
```

(v) 15625

Solution:

 $15625 = 5 \times 5 \times 5 \times 5 \times 5 \times 5$ By grouping the factors in triplets of equal factors, $15625 = (5 \times 5 \times 5) \times (5 \times 5 \times 5)$ Here, 15625 can be grouped into triplets of equal factors, $\therefore 15625 = (5 \times 5) = 25$ Hence, 25 is cube root of 15625.

(vi) 13824

Solution:

(vii) 110592

Solution:

(viii) 46656

Solution:

(ix) 175616

Solution:

(x) 91125

Solution:

 $91125 = 3 \times 5 \times 5 \times 5$ By grouping the factors in triplets of equal factors, $91125 = (3 \times 3 \times 3) \times (3 \times 3 \times 3) \times (5 \times 5 \times 5)$ Here, 91125 can be grouped into triplets of equal factors, $\therefore 91125 = (3 \times 3 \times 5) = 45$ Hence, 45 is cube root of 91125.

2. State true or false.

(i) Cube of any odd number is even.

Solution:

False

(ii) A perfect cube does not end with two zeros. Solution:

True

(iii) If square of a number ends with 5, then its cube ends with 25. Solution:

False

- (iv) There is no perfect cube which ends with 8. Solution: False
- (v) The cube of a two digit number may be a three digit number. Solution: False
- (vi) The cube of a two digit number may have seven or more digits. Solution:

False

(vii) The cube of a single digit number may be a single digit number. Solution:

True

3. You are told that 1,331 is a perfect cube. Can you guess without factorisation what is its cube root? Similarly, guess the cube roots of 4913, 12167, 32768. Solution:

(i) By grouping the digits, we get 1 and 331
We know that, since, the unit digit of cube is 1, the unit digit of cube root is 1.
∴ We get 1 as unit digit of the cube root of 1331.
The cube of 1 matches with the number of second group.
∴ The ten's digit of our cube root is taken as the unit place of smallest number.
We know that, the unit's digit of the cube of a number having digit as unit's place 1 is 1.
∴ ³√1331 = 11

(ii) By grouping the digits, we get 4 and 913 We know that, since, the unit digit of cube is 3, the unit digit of cube root is 7. \therefore we get 7 as unit digit of the cube root of 4913. We know $1^3 = 1$ and $2^3 = 8$, 1 > 4 > 8. Thus, 1 is taken as ten digit of cube root. $\therefore \sqrt[3]{4913} = 17$

(iii) By grouping the digits, we get 12 and 167. We know that, since, the unit digit of cube is 7, the unit digit of cube root is 3. \therefore 3 is the unit digit of the cube root of 12167 We know $2^3 = 8$ and $3^3 = 27$, 8 > 12 > 27.

Thus, 2 is taken as ten digit of cube root. $\therefore \sqrt[3]{12167} = 23$

(iv) By grouping the digits, we get 32 and 768. We know that, since, the unit digit of cube is 8, the unit digit of cube root is 2. \therefore 2 is the unit digit of the cube root of 32768. We know $3^3 = 27$ and $4^3 = 64$, 27 > 32 > 64. Thus, 3 is taken as ten digit of cube root. $\therefore \sqrt[3]{32768} = 32$

