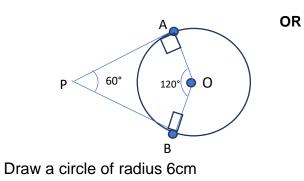
76G9'7`Ugg'% Maths Basic Marking Scheme HYfa '&'Zcf'&\$&%&&

Marking Scheme

Mathematics –Basic(241)

Class- X Session- 2021-22

TERM II


Q.N.	HINTS/SOLUTION			Marks	
1	$3x^2 - 7x - 6 = 0$				
	$\Rightarrow 3x^2 - 9x + 2x - 6 = 0$			1/2	
	$\Rightarrow 3x(x-3) + 2(x$	(-3) = 0			
	$\Rightarrow (x-3)(3x+2) = 0$			1/2	
	$x = 3, -\frac{2}{3}$				
	$x = 3, -\frac{1}{3}$				1
			OR		
			$\therefore D = b^2 - 4ac = 0$		
	$\Rightarrow k^2 - 4 \times 3 \times 3 = 0 $	$\therefore a = 3, b = k, c$	= 3)		1
	\Rightarrow k ² = 36				1/2 +1/2
	\Rightarrow k = 6 or -6				1/2 1 1/2
2			B, H be the dimensions of	of the cuboid	1/2
	Since $l^3 = 64 \ cm^3 :$				1/2
			BH + HL], Where L=12, B=	-4 and H=4	1/2
	$=2(12 \times 4 + 4 \times 4 \times$	$-4 \times 12) cm^2 =$	$224cm^2$	20	1
3	Runs scored	Frequency	Cumulative Frequency	11000	
	0-20	4	4	100	
	20-40	6	10		
	40-60	5	15		
	60-80	3	18		1/2
	80-100	4	22		,
	Total frequer	ncy (N) - 22			
	A7				4 /2
	$\frac{N}{2}$ = 11; So 40-60 is the	le median diass.			1/2
	(N)				
	Median = $l + \frac{\left(\frac{N}{2}\right) - cf}{f} >$: h			1/2
	,				
	$= 40 + \frac{11-10}{5} x$	20			
	= 44 runs				1/2
4	The common differer	nce is 9 - 4-5			1
-	If the first term is 6 and common difference is 5, then new AP is, 6, 6+5, 6+10				_
	=6,11,16				1
5	∵ Mode = 38.				
	∴ The modal class is	30-40.			1/2
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2}$	× h			1/2
	2/1 /0 /2				1/2
	I				I

	$=30 + \frac{16 - 12}{32 - 12 - x} \times 10 = 38$	1/2
	32 12 X	
	$\frac{4}{20-x} \times 10 = 8$	
	8(20-x) = 40	
	20-x= 5	
	X= 15	1/2
6	X D Y	
	0	
	M E N	
	∴ XY is the tangent to the circle at the point D ∴ OD \perp XY \Rightarrow \angle ODX = 90 0 \Rightarrow \angle EDX = 90 0	1/2
	Also, MN is the tangent to the circle at E	
	$\therefore OE \perp MN \Rightarrow \angle OEN = 90^{0} \Rightarrow \angle DEN = 90^{0}$	1/2
	$\Rightarrow \angle EDX = \angle DEN (each 90^{\circ}).$	
	which are alternate interior angles. ∴ XY MN	1
	OR	
	DRC	
	: Tangent segments drawn from	
	an external point to a circle are equal ∴ BP=BQ	
	CR=CQ	
	DR=DS	
	AP=AS A P B	
	⇒BP+CR+DR+AP = BQ+CQ+DS+AS	1
	⇒ AB+DC = BC+AD	
	∴ AD= 10-7= 3 cm	1
	Section-B	
<u> </u>		

_		
7	First Term of the AP(a) = 5	
	Common difference (d) = 8-5=3	
	Last term = a_{40} = a+(40-1) d	
	$= 5 + 39 \times 3 = 122$	1
	Also $a_{31} = a + 30d = 5 + 30 \times 3 = 95$	1
		_
	Sum of last 10 terms = $\frac{n}{2}(a_{31} + a_{40})$	
	1	
	$=\frac{10}{2}(95+122)$	
	$= 5 \times 217 = 1085$	1
8		
	Let, AB be the tree broken at C,	
	Also let $AC = x$	
	In \triangle CAD, $\sin 30^{\circ} = \frac{AC}{DC}$	1
		1
	$\Rightarrow \frac{1}{2} = \frac{x}{8}$	
	$\Rightarrow x = 4 m$	1/2
	⇒the length of the tree is = 8+4 =12m	1/2
	2 the length of the free is = 8+4 = 12111	
	X X	
	30 •	4/22
	Δ	1(correct
	OR	Fig.)
	Let AB and CD be two poles of height h meters also let P be a point between them on	
	the road which is x meters away from foot of first pole AB, PD= (80-x) meters.	
	In $\triangle ABP$, $tan60^o = \frac{h}{r} \Rightarrow h = x\sqrt{3}$ (1)	
	x	1
	$h = ACDD + m = 200 \qquad h \qquad h = 80 - x \qquad (2)$	1/2
	In $\triangle CDP$, $tan 30^o = \frac{h}{80-x} \implies h = \frac{80-x}{\sqrt{3}}$ (2)	1/2
	$x\sqrt{3} = \frac{80 - x}{\sqrt{3}} [\because LHS(1) = LHS(2), so equating RHS]$	
	$\Rightarrow 3x = 80 - x \Rightarrow 4x = 80 \Rightarrow x = 20m$	
	So, $80 - x = 80 - 20 = 60m$	1/2
	Hence the point is 20m from one pole and 60 meters from the other pole.	
	A _N	
	h h	
		1(correct
	B 60° 30° D	Fig.)
	х Р 80-х	
-		

	DA DD (Tangent aggregate drawn to a sirals from an external point are equal)	
9	PA = PB (Tangent segments drawn to a circle from an external point are equal)	
	\therefore In $\triangle APB$, \angle PAB = \angle PBA	
	Also, \angle APB = 60°	1
	In $\triangle APB$, sum of three angles is 180° .	
	Therefore, \angle PAB + \angle PBA = 180° - \angle APB= 180° – 60° = 120°.	
	$\therefore \angle PAB = \angle PBA = 60^{\circ} (\because \angle PAB = \angle PBA)$	1
	, ,	1
	$\therefore \Delta APB$ is an equilateral triangle.	1
	So, $AB = 6cm$	_
10	Let the three consecutive multiples of 5 be 5x, 5x+5, 5x+10.	
	Their squares are $(5x)^2$, $(5x + 5)^2$ and $(5x + 10)^2$.	
	$(5x)^2 + (5x+5)^2 + (5x+10)^2 = 725$	1
	$\Rightarrow 25x^2 + 25x^2 + 50x + 25 + 25x^2 + 100x + 100 = 725$	
	$\Rightarrow 75x^2 + 150x - 600 = 0$	
	$\Rightarrow x^2 + 2x - 8 = 0$	
	$\Rightarrow (x+4)(x-2) = 0$	
	$\Rightarrow x = -4, 2$	1
	$\Rightarrow x = 2$ (ignoring –ve value)	
	So the numbers are 10, 15 and 20	1
	Section-C	

11	Draw two concentric circles with center O and radii 3cm and 7cm respectively. Join OP and bisect it at $0'$, so $P0' = 0'0$ Construct circle with center $0'$ and radius $0'0$ Join PA and PB	1 1 1

Draw a circle of radius 6cm

Draw OA and Construct $\angle AOB = 120^{\circ}$ Draw $\angle OAP = \angle OBP = 90^{\circ}$ PA and PB are required tangents

Join OP and apply $\tan \angle APO = \tan 30^{\circ} = \frac{6}{PA}$

⇒ Length of tangent = $6\sqrt{3}$ cm

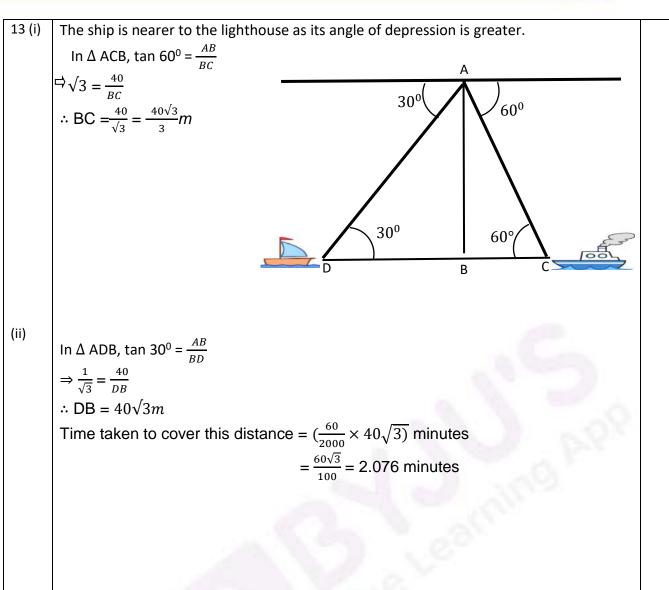
Converting the cumulative frequency table into exclusive classes, we get:

Age	No of passengers(fi)	Xi	$f_i x_i$
0-10	14	5	70
10-20	30	15	450
20-30	38	25	950
30-40	52	35	1820
40-50	50	45	2250
50-60	61	55	3355
60-70	42	65	2730
70-80	13	75	975
	$\Sigma f_i = 300$	111	$\sum f_i x_i =$ 12600

Mean age = $\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{12600}{300}$

 $\bar{x} = 42$

1


1

2

1

1

1

	100	
14 (i)	Let r_1 and r_2 be respectively the radii of apples and oranges	
	$\therefore 2r_1: 2r_2 = 2: 3 \Rightarrow r_1: r_2 = 2: 3$	1/2
	$4\pi r_1^2 : 4\pi r_2^2 = \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{2}{3}\right)^2 = 4:9$	$1\frac{1}{2}$
(ii)	Let the height of the drum be h.	
	Volume of the drum = volume of the cylinder + volume of the sphere	1
	$\pi 3^2 h = (\pi 3^2 \times 8 + \frac{4}{3} \pi 3^3) cm^3$	
	$\Rightarrow h = (8+4)cm$	
	$\Rightarrow h = 12cm$	1