76G9'7`Ugg'%&'A Uh\ g'GUa d`Y'DUdYf' HYfa '&'Zcf'&\$&%&&''

Sample Question Paper

Subject Code - 041

CLASS: XII

Session: 2021-22

Mathematics (Code-041)

Term - 2

Time Allowed: 2 hours

Maximum Marks: 40

General Instructions:

- 1. This question paper contains **three sections A, B and C**. Each part is compulsory.
- 2. **Section A** has 6 **short answer type (SA1) questions** of 2 marks each.
- 3. **Section B** has 4 **short answer type (SA2) questions** of 3 marks each.
- 4. **Section C** has 4 **long answer type questions (LA)** of 4 marks each.
- 5. There is an **internal choice** in some of the questions.
- 6. Q14 is a **case-based problem** having 2 sub parts of 2 marks each.

 Find ∫ logx / (1+logx)² dx OR Find ∫ sin2x / √9-cos⁴x dx Write the sum of the order and the degree of the following differential equation: d/dx (dy/dx) = 5 If â and b̂ are unit vectors, then prove that â + b̂ = 2cos θ/2, where θ is the angle between them. 	2	
OR Find $\int \frac{\sin 2x}{\sqrt{9-\cos^4 x}} dx$ 2. Write the sum of the order and the degree of the following differential equation: $\frac{d}{dx} \left(\frac{dy}{dx} \right) = 5$ 3. If \hat{a} and \hat{b} are unit vectors, then prove that	2	
 Write the sum of the order and the degree of the following differential equation:	2	
 Write the sum of the order and the degree of the following differential equation: \$\frac{d}{dx}\left(\frac{dy}{dx}\right) = 5\$ If \$\hat{a}\$ and \$\hat{b}\$ are unit vectors, then prove that 	2	
equation: $\frac{d}{dx} \left(\frac{dy}{dx} \right) = 5$ 3. If \hat{a} and \hat{b} are unit vectors, then prove that	_	
$\frac{\hat{a}}{dx} \left(\frac{dy}{dx} \right) = 5$ 3. If \hat{a} and \hat{b} are unit vectors, then prove that		
3. If \hat{a} and \hat{b} are unit vectors, then prove that		
	2	
a b 2005 ₂ , where o is the digit between them.		
4. Find the direction cosines of the following line:	2	
3-x $2y-1$ z		
$\frac{3-x}{-1} = \frac{2y-1}{2} = \frac{z}{4}$ 5. A bag contains 1 red and 3 white balls. Find the probability distribution of		
5. A bag contains 1 red and 3 white balls. Find the probability distribution of	of 2	
the number of red balls if 2 balls are drawn at random from the bag one-	by-	
one without replacement.Two cards are drawn at random from a pack of 52 cards one-by-one with	nout 2	
replacement. What is the probability of getting first card red and second		
card Jack?		
<u>SECTION - B</u>		
7. Find: $\int \frac{x+1}{(x^2+1)x} dx$	3	
8. Find the general solution of the following differential equation:	3	
$x \frac{dy}{dx} = y - x \sin(\frac{y}{x})$		
$ u \lambda \lambda$		
OR Find the particular solution of the following differential equation, given to	that	
Find the particular solution of the following differential equation, given $y = 0$ when $x = \frac{\pi}{4}$:	mat	
<u> </u>		
$\frac{dy}{dx} + ycotx = \frac{2}{1 + sinx}$		
$\frac{dy}{dx} + ycotx = \frac{2}{1 + sinx}$ 9. If $\vec{a} \neq \vec{0}$, \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$.	3	

10.	Find the shortest distance between the following lines:	3
	$\vec{r} = (\hat{\imath} + \hat{\jmath} - \hat{k}) + s(2\hat{\imath} + \hat{\jmath} + \hat{k})$	
	$\vec{r} = (\hat{\imath} + \hat{\jmath} + 2\hat{k}) + t(4\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$	
	OR	
	Find the vector and the cartesian equations of the plane containing the point $(2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	
	$\hat{i} + 2\hat{j} - \hat{k}$ and parallel to the lines $\vec{r} = (\hat{i} + 2\hat{j} + 2\hat{k}) + s(2\hat{i} - 3\hat{j} + 2\hat{k}) = 0$	
	and $\vec{r} = (3\hat{\imath} + \hat{\jmath} - 2\hat{k}) + t(\hat{\imath} - 3\hat{\jmath} + \hat{k}) = 0$	
SECTION - C		
11.	Evaluate: $\int_{-1}^{2} x^3 - 3x^2 + 2x dx$	4
12.	Using integration, find the area of the region in the first quadrant enclosed	4
	by the line $x + y = 2$, the parabola $y^2 = x$ and the x-axis. OR	
	Using integration, find the area of the region	
	$\{(x,y): 0 \le y \le \sqrt{3}x, x^2 + y^2 \le 4\}$	
13.	Find the foot of the perpendicular from the point (1, 2, 0) upon the plane	4
20.	x - 3y + 2z = 9. Hence, find the distance of the point $(1, 2, 0)$ from the given	-
	plane.	
	Fig 3	
	An insurance company believes that people can be divided into two classes: the	nose who
	are accident prone and those who are not. The company's statistics show that an	
	accident-prone person will have an accident at sometime within a fixed one-year period	
	with probability 0.6, whereas this probability is 0.2 for a person who is not	accident
	prone. The company knows that 20 percent of the population is accident prone	e.
	Based on the given information, answer the following questions.	
	(i) what is the probability that a new policyholder will have an accident	2
	within a year of purchasing a policy? (ii) Suppose that a new policyholder has an accident within a year of	2
	purchasing a policy. What is the probability that he or she is accident prone?	_
	paramonia a ponej at the probability diatric of one is decident profic.	