Class 11 Maths Chapter 11 Conic Sections MCQs For Practice

1. The equation of the circle passing through the point $(2,4)$ and having its centre at the intersection of the lines $x-y=4$ and $2 x+3 y+7=0$ is
(a) $(x-1)^{2}+(y-3)^{2}=50$
(b) $x^{2}+y^{2}-2 x+6 y-40=0$
(c) $(x-1)^{2}+(y-3)^{2}=(\sqrt{ } 50)^{2}$
(d) All of the above
2. The second degree equation $a x^{2}+b y^{2}+2 h x y+2 g x+2 f y+c=0$ will represent a circle if
(a) $a=b$
(b) no term with xy
(c) $\mathrm{h}=0$
(d) All of the above
3. The equation of the parabola with vertex at the origin, passing through the point $P(3,-4)$ and symmetric about the y-axis
(a) $x^{2}=-4 a y$
(b) $x^{2}=4 a y$
(c) $4 x^{2}+9 y=0$
(d) $4 x^{2}-9 y=0$
4. The equation of the directrix of the parabola whose vertex at $(0,0)$ and focus at $(0,2)$ is
(a) $x=2$
(b) $y=2$
(c) $x=-2$
(d) $y=-2$
5. The equation of the ellipse whose foci are $(0,6)$ and $(0,-6)$ and the length of minor axis is 16 is
(a) $x^{2} / 64+y^{2} / 100=1$
(b) $x^{2} / 100+y^{2} / 64=1$
(c) $x^{2} / 144+y^{2} / 100=1$
(d) $x^{2} / 100+y^{2} / 144=1$
6. The length of the major and minor axes of an ellipse whose eccentricity is $\frac{4}{5}$ and vertices at $(0, \pm 10)$
(a) Major axis $=6$ units and Minor axis $=5$ units
(b) Major axis $=12$ units and Minor axis $=20$ units
(c) Major axis $=100$ units and Minor axis $=36$ units
(d) Major axis $=20$ units and Minor axis $=12$ units
7. The eccentricity of the ellipse whose latus rectum is one half of its minor axis
(a) $1 / 2$
(b) $\sqrt{3} / 2$
(c) $2 / 3$
(d) $3 / 2$
8. The equation of the hyperbola whose vertices are $(\pm 2,0)$ and the foci are at $(\pm 3,0)$ is
(a) $x^{2} / 4-y^{2} / 5=1$
(b) $x^{2} / 5-y^{2} / 4=1$
(c) $\mathrm{x}^{2} / 16-\mathrm{y}^{2} / 25=1$
(d) $x^{2} / 25-y^{2} / 16=1$
9. The equation of the hyperbola whose foci are $(\pm 5,0)$ and the transverse axis is of length 8 is
(a) $x^{2} / 16-y^{2} / 4=1$
(b) $x^{2} / 25-y^{2} / 16=1$
(c) $x^{2} / 16-y^{2} / 9=1$
(d) $x^{2} / 8-y^{2} / 6=1$
10. A parabolic reflector is 9 cm deep and its diameter is 24 cm . At what distance from the vertex of the parabolic reflector the source of light should be kept so as to get maximum range of reflection?
(a) 6 cm
(b) 5.5 cm
(c) 4.5 cm
(d) 4 cm

$* * * * * * *$				
Q.1-(b)	Q.2-(d)	Q.3-(c)	Q.4. - (d)	Q. $5-$ (a)
Q.6-(d)	Q. $7-$ (b)	Q. $8-$ (a)	Q. $9-$ (c)	Q. $10-$ (d)

