Class 11 Maths Chapter 12 Introduction to Three-dimensional Geometry MCQs For Practice

1. The point which is equidistant from the four points $O(0,0,0), A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$ is
(a) $(\mathrm{a} / 3, \mathrm{~b} / 3, \mathrm{c} / 3)$
(b) $(\mathrm{a} / 2, \mathrm{~b} / 2, \mathrm{c} / 2)$
(c) $(\mathrm{a} / 2,0,0)$
(d) $(0, b / 2,0)$
2. The ratio in which the line segment joining the points $(4,8,10)$ and $(6,10,-8)$ is divided by the yz-plane is
(a) $1: 2$
(b) $2: 1$
(c) $2: 3$
(d) $1: 3$
3. The length of the perpendicular drawn from the point $P(a, b, c)$ from z-axis is
(a) $\sqrt{ }\left(a^{2}+b^{2}\right)$
(b) $\sqrt{ }\left(b^{2}+c^{2}\right)$
(c) $\sqrt{ }\left(\mathrm{a}^{2}+\mathrm{c}^{2}\right)$
(d) $\sqrt{ }\left(a^{2}+b^{2}+c^{2}\right)$
4. What is the locus of the points for which $y=0$?
(a) yz-plane
(b) xz-plane
(c) xy-plane
(d) z-axis and x-axis
5. The coordinates of the foot of the perpendicular drawn from the point $P(3,4,5)$ on the yz-plane are
(a) $(0,4,5)$
(b) $(3,0,0)$
(c) $(3,0,5)$
(d) $(3,4,0)$
6. The locus of the point which is equidistant from the points $A(0,2,3)$ and $B(2,-2,1)$ is
(a) $x+2 y-2 z+1=0$
(b) $2 x+y-2 z+1=0$
(c) $\mathrm{x}-2 \mathrm{y}-\mathrm{z}+1=0$
(d) None of these
7. The ratio in which the line segment joining points $(2,1,5)$ and $(3,4,3)$ is divided by the plane $\mathbf{x}+\mathbf{y}-\mathbf{z}=1 / 2$ is:
(a) $7: 5$
(b) $5: 7$
(c) $2: 7$
(d) $7: 2$
8. The three points $A(-2,3,5), B(1,2,3)$ and $C(7,0,-1)$ are
(a) vertices of an equilateral triangle
(b) vertices of an isosceles triangle
(c) collinear
(d) B is equidistant from A and C
9. The values of a, b, c respectively if the triangle with vertices $(a, 1,3),(-2, b,-5)$ and $(4,7, c)$ have centroid at origin
(a) vertices of an equilateral triangle
(b) vertices of an isosceles triangle
(c) collinear
(d) B is equidistant from A and C
10. The coordinates of a point on y-axis which is at a distance of $5 \sqrt{ } 2$ from the point $P(3,-2,5)$ are
(a) $(0,2,0)$
(b) $(0,-6,0)$
(c) Both a and b
(d) None point exist

\[

\]

