Class 11 Maths Chapter 14 Mathematical Reasoning MCQs For Practice

1. Which of the following is a statement?
(a) There are 35 days in a month.
(b) Mathematics is difficult
(c) May you live long
(d) All of the above
2. The negation of the statement " All integers are rational numbers" is:
(a) All integers are not rational numbers
(b) There exists an integer that is not a rational number
(c) Both a \& b
(d) None of the above
3. The truth set of the open sentence $p(x): x+5<9, x \in N$ is
(a) $\{x \in N \mid x<4\}$
(b) $\{x \in N \mid x+5<9\}$
(c) $\{1,2,3\}$
(d) All of the above
4. The contrapositive statement of $p \Rightarrow q$ is
(a) $q \Rightarrow p$
(b) $\sim p \Rightarrow q$
(c) $p \Rightarrow \sim q$
(d) $\sim q \Rightarrow \sim p$
5. The converse of the statement " Something is cold \Rightarrow it has low temperature" is:
(a) If something does not have a low temperature, then it is not cold
(b) If something has a low temperature, then it is cold
(c) Both $\mathrm{a} \& \mathrm{~b}$
(d) None of the above
6. Which of the following is a biconditional statement?
(a) $p \Leftrightarrow q$
(b) $(\mathrm{p} \Rightarrow \mathrm{q}) \wedge(\mathrm{q} \Rightarrow \mathrm{p})$
(c) Both a \& b
(d) None of the above
7. The contrapositive statement of " If x is a prime number, then x is odd" is:
(a) If x is not a prime number, then also x could be odd.
(b) If x is not an odd number, then it is not prime.
(c) If x is an odd number, then it is prime.
(d) None of the above
8. Which of the following is a biconditional statement?
(a) If it is an odd number then it is a multiple of 3
(b) Having four sides is necessary but not sufficient for being a square.
(c) Having a son is sufficient but not necessary for being a parent.
(d) Matrix A is invertible if and only if $|\mathrm{A}|$ is non-zero.
9. If $\mathbf{p} \Rightarrow(\mathbf{q} \vee \mathbf{r})$ is false, then the truth values of $\mathbf{p}, \mathbf{q}, \mathbf{r}$ are respectively
(a) T, F, F
(b) F, F, T
(c) F, T, F
(d) F, F, F
10. $(\mathbf{p} \wedge \sim q) \wedge(\sim q \wedge q)$ is
(a) a tautology
(b) a contradiction
(c) neither a tautology nor a contradiction
(d) both a tautology and contradiction

Q. 1 - (a)	Q. 2 - (c)	Q. 3 - (d)	Q.4. - (d)	Q. 5 - (b)
Q.6-(c)	Q. 7 - (b)	Q. 8 - (d)	Q. 9 - (a)	Q. 10 - (b)

