Class 11 Maths Chapter 9 Sequence and Series For Practice

1. In an $A P$, if m th term is n and the nth term is m, where $m \neq n$, then the $p^{\text {th }}$ term is
(a) $m+n-p$
(b) $m-n+p$
(c) $m+n-1$
(d) $m+n+p$
2. If m, n, p are in arithmetic progression, then the value of $(m+2 n-p)(2 n+p-m)(m+2 n+c)$ is
(a) 4 mnp
(b) 8 mnp
(c) 16 mnp
(d) 3 mnp
3. The $r^{\text {th }}$ term of an $A P$, whose sum of first n terms is $\mathbf{2 n}+3 \mathbf{n}^{2}$ is given by
(a) $11 \mathrm{r}-6$
(b) $6 \mathbf{r}+1$
(c) $6 \mathrm{r}-1$
(d) $11 r+6$
4. If the angles of any quadrilateral are in AP and their common difference is 10 , then the angles are
(a) $75^{\circ}, 85^{\circ}, 95^{\circ}$ and 105°
(b) $75^{\circ}, 80^{\circ}, 90^{\circ}$ and 100°
(c) $75^{\circ}, 85^{\circ}, 90^{\circ}$ and 105°
(d) $70^{\circ}, 85^{\circ}, 95^{\circ}$ and 105°
5. The sum of an infinite GP is $\mathbf{8 0 / 9}$ and its common ratio is $\mathbf{- 4 / 5}$ then its first term is equal to
(a) 10
(b) 14
(c) 15
(d) 16
6. A person has 2 parents, 4 grandparents, 8 great grandparents and so $\mathbf{o n}$. Then, the number of ancestors during the ten generations preceding his own is
(a) 1084
(b) 2048
(c) 2250
(d) 1024
7. If $\mathbf{x}, \mathbf{2 y}, \mathbf{3 z}$ are in AP, where the distinct numbers $\mathbf{x}, \mathbf{y}, \mathrm{z}$ are in GP then the common ratio of the GP is
(a) $1 / 2$
(b) $1 / 3$
(c) $1 / 4$
(d) Insufficient information
8. If a be the arithmetic mean of b and c and G_{1}, G_{2} be the two geometric means between them, then $\mathbf{G}_{1}{ }^{3}+\mathrm{G}_{2}{ }^{3}=$
(a) $\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{a}$
(b) $2 \mathrm{G}_{1} \mathrm{G}_{2} \mathrm{a}$
(c) $3 \mathrm{G}_{1} \mathrm{G}_{2} \mathrm{a}$
(d) None of the above
9. The $1025^{\text {th }}$ term of the sequence $\mathbf{1}, \mathbf{2 2}, 4444,88888888$, \qquad is
(a) 2^{9}
(b) 2^{10}
(c) 2^{11}
(d) None of the above
10. If $a_{1}, a_{2}, a_{3} \ldots \ldots . a_{10}$ are in A.P. and $h_{1}, h_{2}, h_{3}, \ldots . . h_{10}$ are in H.P. If $a_{1}=h_{1}=2$ and $a_{10}=h_{10}=3$, then $a_{4} h_{7}$ is (a) 6
(b) 7
(c) 18
(d) None of the above

	$* * * * * * * * * *$	ANSWER KEYS $* * * * * * * * * *$		
Q. $1-$ (a)	Q. $2-$ (c)	Q.3-(c)	Q.4. - (a)	Q. $5-(\mathrm{d})$
Q. $6-(\mathrm{b})$	Q. $7-$ (b)	Q. $8-$ (b)	Q. $9-$ (b)	Q. $10-$ (a)

