Class 12 Maths Chapter 1 Relations and Functions MCQs For Practice

1. Let T be the set of all triangles in a plane, and let R be a relation defined on T as aRb if a is congruent to $\mathbf{b} \forall \mathbf{a}, \mathbf{b} \in \mathbf{T}$. Then \mathbf{R} is
(a) reflexive but not transitive
(b) transitive but not symmetric
(c) equivalence relation
(d) anti-symmetric relation
2. If set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is
(a) 720
(b) 120
(c) 0
(d) only one
3. Let $f: R \rightarrow R$ be defined as $f(x)=3 x$. Then $f(x)$ is
(a) one-one and onto
(b) many-one and onto
(c) one-one but not onto
(d) neither one-one nor onto
4. Which of the following functions from Z into Z is a bijection?
(a) $f(x)=x^{3}$
(b) $f(x)=x+2$
(c) $f(x)=2 x+1$
(d) $f(x)=x^{2}+1$
5. Given function $f: R-\{4 / 3\} \rightarrow R-\{4 / 3\}$ defined by $f(x)=(4 x+3) /(3 x+4)$ is a bijection. Then, f^{-1} is
(a) $\mathrm{f}^{-1}(\mathrm{x})=(4 \mathrm{x}+3) /(4-3 \mathrm{x})$
(b) $f^{-1}(x)=(4 x-3) /(3-4 x)$
(c) $f^{-1}(x)=(3 x-4) /(4-3 x)$
(d) $f^{-1}(x)=(4 x-3) /(4-3 x)$
6. The domain and range of the real function, defined by $f(x)=1 /\left(1-x^{2}\right)$ is
(a) $\operatorname{dom}(\mathrm{f})=\mathrm{R}-[-1,1]$ and range $(\mathrm{f})=[1, \infty)$
(b) $\operatorname{dom}(\mathrm{f})=\mathrm{R}-\{-1,1\}$ and range $(\mathrm{f})=[1, \infty)$
(c) $\operatorname{dom}(\mathrm{f})=\mathrm{R}-(-1,1)$ and range $(\mathrm{f})=(1, \infty)$
(d) $\operatorname{dom}(\mathrm{f})=\mathrm{R}-[-1,1]$ and range(f) $=[-1,1]$
7. Let R be the relation in the set $\{1,2,3,4\}$ given by $R=\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$. Then \mathbf{R} is:
(a) reflexive and symmetric but not transitive
(b) reflexive and transitive but not symmetric
(c) symmetric and transitive but not reflexive
(d) equivalence relation
8. Let $A=\{1,2,3, \ldots, n\}$ and $B=\{a, b\}$. Then the number of surjections from A into B is:
(a) ${ }^{n} \mathrm{P}_{2}$
(b) $2^{\mathrm{n}}-1$
(c) $2^{n}-2$
(d) n
9. Let $f: R \rightarrow R$ be defined by $f(x)=1 / x$, for every x in R. Then f is:
(a) one-one
(b) onto
(c) bijection
(d) f is not defined
10. Let f be the greatest integer function and g be an absolute value function, then the value of $(\mathbf{f o g})(-5 / 2)+$ (gof)(-5/2) is
(a) 0
(b) 2
(c) 4
(d) 6

	$* * * * * * * * * *$	ANSWER KEYS $* * * * * * * * * *$		
Q. $1-$ (c)	Q.2-(c)	Q.3-(a)	Q.4. - (b)	Q. $5-$ (d)
Q. $6-$ (b)	Q. $7-$ (b)	Q. $8-$ (c)	Q. $9-$ (d)	Q. $10-$ (c)

