Class 12 Maths Chapter 12 Linear Programming MCQs For Practice

1. The corner points of the feasible region determined by the system of linear constraints are (0,0$),(0,40)$, $(\mathbf{2 0}, 40),(60,20),(60,0)$, The objective function is $Z=4 x+3 y$. Compare the quantity in Column A and Column B

Column A	Column B
Maximum of Z	325

(a) The quantity in column A is greater
(b) The quantity in column B is greater
(c) The two quantities are equal
(d) The relationship cannot be determined.
2. The corner points of the feasible region for an LPP are $(0,2),(3,0),(6,0),(6,8)$ and $(0,5)$. Let $F=4 x+6 y$ be the objective function. The minimum value of F occurs at
(a) $(0,2)$ only
(b) $(3,0)$ only
(c) the mid-point of the line segment joining the points $(0,2)$ and $(3,0)$ only
(d) any point on the line segment joining the points $(0,2)$ and $(3,0)$
3. The corner points of the feasible region determined by the system of linear constraints are $(0,3),(1,1)$ and $(3,0)$. Let $Z=p x+q y$, where $p, q>0$. Condition on p and q so that the minimum of Z occurs at $(3,0)$ and $(1,1)$ is
(a) $p=2 q$
(b) $p=q / 2$
(c) $p=3 q$
(d) $p=q$
4. In an LPP, if the objective function $Z=a x+b y$ has the same maximum value on two corner points of the feasible region, then the number of points of which $\mathbf{Z}_{\text {max }}$ occurs is
(a) 0
(b) 2
(c) finite
(d) infinite
5. The feasible region for an LPP is shown below:

Let $Z=3 x-4 y$ be the objective function. Minimum of Z occurs at

(a) $(0,0)$
(b) $(0,8)$
(c) $(5,0)$
(d) $(4,10)$
6. The optimal value of the objective function is attained at the points
(a) given by the intersection of inequation with y-axis only
(b) given by the intersection of inequation with x-axis only
(c) given by the corner points of the feasible region
(d) none of the given
7. The feasible region for an LPP is always a \qquad polygon.
(a) Convex
(b) Concave
(c) bounded
(d) could be any
8. The feasible region represented by $x+y \geq 1, x \geq 0$ and $y \geq 0$ is
(a) bounded region
(b) is a polygon
(c) unbounded
(d) none of the above
9. The corner points of the feasible region determined by the system of linear constraints are $(0,0),(0,8)(4$, $10),(6,8),(5,0)$ and $(6,5)$. Let $Z=3 x-4 y$ be the objective function. Then maximum Z occurs at
(a) $(5,0)$
(b) $(6,5)$
(c) $(6,8)$
(d) $(4,10)$
10. The corner points of the feasible region for an LPP are $(0,2),(3,0),(6,0),(6,8)$ and $(0,5)$. Let $F=4 x+6 y$ be the objective function. Then Maximum of $F-$ Minimum of $F=$
(a) 60
(b) 48
(c) 42
(d) 18

\[

\]

