Thermodynamics

1. The correct order of bond dissociation enthalpy of halogens is

A.
$$Cl_2 > Br_2 > F_2 > I_2$$

B.
$$F_2 > Cl_2 > Br_2 > I_2$$

C.
$$Cl_2 > F_2 > Br_2 > I_2$$

D.
$$I_2 > Br_2 > Cl_2 > F_2$$

- 2. During which of the following processes, does entropy decrease?
 - (A) Freezing of water to ice at $0^{o}C$
 - (B) Freezing of water to ice at $-10^{\circ}C$
 - (C) $N_2(g)+3H_2(g) o 2NH_3(g)$
 - (D) Adsorption of CO(g) on lead surface
 - (E) Dissolution of NaCl in water

Choose the correct answer from the options given below.

- 3. The statement that is incorrect about Ellingham diagram is:
 - A. provides idea about the reaction rate.
 - **B.** provides idea about free energy change.
 - C. provides idea about changes in the phases during the reaction
 - D. provides idea about reduction of metal oxide

Thermodynamics

- 4. Which one of the following statements is incorrect?
 - A. Bond dissociation enthalpy of H_2 is highest among diatomic gaseous molecules which contain a single bond
 - **B.** Atomic hydrogen is produced when H_2 molecules at a high temperature are irradiated with UV radiation
 - C. At around 2000~K, the dissociation of dihydrogen into its atoms is nearly 8.1%
 - **D.** Dihydrogen is produced on reacting zinc with HCl as well as $NaOH\ (aq)$
- 5. The incorrect expression among the following is:

A. For isothermal process
$$w_{reversible} = -nRT \, ln rac{V_f}{V_i}$$

$$\textbf{B.} \quad \frac{\Delta G_{system}}{\Delta S_{Total}} = -T_{(at\ constant\ P)}$$

$$\textbf{C.} \quad lnK = \frac{\Delta H^o - T\Delta S^o}{RT}$$

D.
$$K = e^{-\Delta G^o/RT}$$

- 6. Enthalpy of sublimation of iodine is $24 \ cal \ g^{-1}at \ 200^{0}C$. If specific heat $I_{2}(s) and \ I_{2}(vap)$ are $0.055 \ and \ 0.031 \ cal \ g^{-1}K^{-1}$ respectively, then enthalpy of sublimation of iodine $250^{0}C \ in \ cal \ g^{-1}$ is :
 - **A.** 2.85
 - **B.** 5.7
 - C. 22.8
 - **D.** 11.4

Thermodynamics

- 7. For silver, $C_p(JK^{-1}mol^{-1})=23+0.01T$. If the temperature (T) of moles of silver is raised from 300 K to 1000K at 1 atm pressure, the value of ΔH will be close to:
 - **A.** 62 kJ
 - **B**. 16 kJ
 - **C**. 21 kJ
 - **D**. 13 kJ
- 8. The enthalpy change on freezing of 1 mol of water at $5^{0}C$ is ice at $-5^{0}C$ is :

(Given
$$\Delta_{fus}H=6kJ \ mol^{-1} \ at \ 0^{0}C$$
 ,

$$C_p(H_2O,1) = 75.3 Jmol^{-1}K^{-1}$$

$$C_p(H_2O,s) = 36.8 J \, mol^{-1} K^{-1}))$$

- **A.** $5.44 \, kJ \, mol^{-1}$
- **B.** $5.81 \, kJ \, mol^{-1}$
- C. $6.56 \, kJ \, mol^{-1}$
- ${\rm D.} \quad _{6.00\,kJ\,mol^{-1}}$
- 9. A gas undergoes change from state A to state B. In this process, the heat absorbed and work done by the gas is 5J and 8J, respectively. Now gas is brought back at A by another process during which 3J of heat is evolved. In this reverse process of B to A:
 - A. 10 J of the work will be done by the gas.
 - **B.** 6 J of the work will be done by the gas.
 - **C.** 10 J of the work will be done by the surrounding on gas.
 - D. 6 J of the work will be done by the surrounding on gas

Thermodynamics

10.
$$q_{AB}=2kJ/mol$$

$$\Delta U_{BC} = -5kJ/mol$$

$$W_{AB} = -5kJ/mol$$

$$W_{CA}=3kJ/mol$$

Heat absorbed by the system during process CA is:

A.
$$-5kJ \ mol^{-1}$$

B.
$$+5kJ \ mol^{-1}$$

C.
$$18kJ \ mol^{-1}$$

D.
$$-18kJ \ mol^{-1}$$

11. At 298.2 K the relationship between enthalpy of bond dissociation (in kJ mol^{-1}) for hydrogen (E_H) and its isotope, deuterium (E_D) , is best described by

A.
$$E_H \simeq E_D - 7.5$$

$$\mathbf{B.} \quad E_H = 2E_D$$

C.
$$E_H=rac{1}{2}E_D$$

$$\mathbf{D.} \quad E_H = E_D$$

12. Assuming ideal behaviour, the magnitude of log K for the following reaction at $25^{\circ}C$ is $x \times 10^{-1}$. The value of x is _____(integer answer)

$$3HC \equiv CH_{(g)}
ightleftharpoons C_6H_{6(l)}$$

$$[Given:\Delta_f G^0(HC\equiv CH)=-2.04 imes 10^5 Jmol^{-1};$$

$$\Delta G_f^0(C_6H_6) = -1.24 imes 10^5 J \; mol^{-1}; R = 8.314 J \; K^{-1} mol^{-1}]$$

Thermodynamics

13. The reaction of cyanamide, $NH_2CN(s)$ with oxygen was run in a bomb calorimeter and ΔU was found to be $-742.24~kJ~mol^{-1}$. The magnitude of ΔH_{298} for the reaction

 $NH_2CN(s)+rac{3}{2}(g) o N_2(g)+CO_2(g)+H_2O(l)$ is _____ kJ. (Rounded off to the nearest integer)

[Assume ideal gases and $R=8.314~J~mol^{-1}K^{-1}$]

- 14. The ionization enthalpy of Na^+ formation from Na(g) is $495.8~kJ~mol^{-1}$, while the electron gain enthalpy of Br is $-325.0~kJ~mol^{-1}$. Given the lattice enthalpy of NaBr is $-728.4~kJ~mol^{-1}$. The energy for the formation of NaBr ionic solid from Na(g) and Br(g) is (-)_______ $\times 10^{-1}kJ~mol^{-1}$
- 15. For a chemical reaction $A+B \rightleftharpoons C+D$ ($\Delta_r H^0=80~kJ~mol^{-1}$) the entropy change $\Delta_r S^0$ depends on the temperature T (in K) as $\Delta_r S^0=2T(J~K^{-1}~mol^{-1}).$ Minimum temperature at which it will become spontaneous is _____K (Integer)
- 16. Five moles of an ideal gas at 293 K is expanded isothermally from an initial pressure of 2.1 MPa to 1.3 MPa against at constant external pressure 4.3 MPa. The heat transferred in this process is $____kJ \ mol^{-1}$. (Rounded-off to the nearest integer)

 $[R = 8.314 \ J \ mol^{-1}K^{-1}]$

17. The average S-F bond energy in $kJ \ mol^{-1}$ of SF_6 is _____.(Rounded off to the nearest integer

[Given : The values of standard enthalpy of formation of $SF_6(g),\ S(g) and F(g)$ are - 1100, 275 and 80 kJ mol^{-1} respectively]

Thermodynamics

18. At $25^{0}C$, 50~g of iron reacts with HCl to form $FeCl_{2}$. The evolved hydrogen gas expands against a constant pressure of 1 bar. The work done by the gas during this expansion is ______J (Round off to the Nearest Integer).

[Given : $R=8.314\ J\ mol^{-1}K^{-1}$ Assume, hydrogen is an ideal gas] [Atomic mass of Fe is 55.85 u]

- 19. The standard enthalpies of formation of Al_2O_3 and CaO are $-1675~k~J~mol^{-1}$ and $-635~kJ~mol^{-1}$ respectively. For the reaction, $3CaO + 2Al \rightarrow 3Ca + Al_2O_3$ the standard reaction enthalpy, $\Delta_r H^0 =$ ____kJ (Rounded off to the Nearest Integer).
- 20. For a given chemical reaction $A \to B$ at 300~K the free energy change is $-49.4~kJ~mol^{-1}$ and the enthalpy of reaction is $51.4~kJ~mol^{-1}$. The entropy change of the reaction is $___J~K^{-1}mol^{-1}$.
- 21. If the standard molar enthalpy change for combustion of graphite powder is $-2.48 \times 10^2~kJ~{\rm mol}^{-1}$. the amount of heat generated on combustion of 1g of graphite powder in kJ is (Nearest integer)
- 22. For water $\Delta_{vap}H=41kJ~{
 m mol}^{-1}$ at 373 K and 1 bar pressure. Assuming that water vapour is an ideal gas the that occupies a much larger volume than liquid water, the internal energy change during evaporation of water is ____ $kJ~{
 m mol}^{-1}$.

[Use : $R = 8.3 \ J \ \mathrm{mol}^{-1} K^{-1}$]

Thermodynamics

23. 200 mL of 0.2~M~HCl is mixed with 300 mL of 0.1~M~NaOH. The molar heat of neutralization of this reaction is -57.1~kJ. The increase in temperature in ^{o}C of the system on mixing is $x \times 10^{-2}$. The value of x is (Nearest integer) [Given: Specific heat of water = 4.18 J $g^{-1}~K^{-1}$ Density of water = 1.00 g cm^{-3}]

[Assume no volume change on mixing]

24. Data given for the following reaction is as follows:

$$FeO_{(s)} + C_{(graphite)} \longrightarrow Fe_{(s)} + CO_{(g)}$$

= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$		
Substance	$\Delta_f H^o \ (k J \ ext{mol}^{-1})$	$\Delta S^o \ (J \operatorname{mol}^{-1} K^{-1})$
$FeO_{(s)}$	-266.3	57.49
$\overline{C_{(graphite)}}$	0	5.74
$Fe_{(s)}$	0	27.28
$CO_{(g)}$	-110.5	197.6

minimum temperature in K at which the reaction becomes spontaneous is

25. For the reaction

$$C_2H_6
ightarrow C_2H_4+H_2$$

the reaction enthalpy, $\Delta_r H \underline{\hspace{1cm}} k \ J \ mol^{-1}$.

[Round off to the Nearest Integer]

[Given : Bond enthalpies in $k\ J\ mol^{-1}$

C - C : 347, C = C : 611;

C - H : 414, H - H : 436]

1. (A)
$$HOCl + H_2O_2 \rightarrow H_3O^+ + Cl^- + O_2$$

(B) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2^-$

Choose the correct option.

- **A.** H_2O_2 acts as oxidising agent in equations (A) and (B).
- **B.** H_2O_2 act as oxidizing and reducing agent respectively in equation (A) and (B).
- **C.** H_2O_2 acts as reducing agent in equations (A) and (B).
- **D.** H_2O_2 acts as reducing and oxidising agent respectively in equationa (A) and (B).
- 2. Which of the following equation depicts the oxidizing nature of H_2O_2 ?

A.
$$2I^- + H_2O_2 + 2H^+ \rightarrow I_2 + 2H_2O$$

B.
$$KIO_4 + H_2O_2 \to KIO_3 + H_2O + O_2$$

C.
$$Cl_2 + H_2O_2
ightarrow 2HCl + O_2$$

D.
$$I_2 + H_2 O_2 + 2 O H^- o 2 I^- + 2 H_2 O + O_2$$

3. Given below are two statements:

Statement I : H_2O_2 can act as both oxidising and reducing agent in basic medium.

Statement II: In the hydrogen economy, the energy is transmitted in the form of dihydrogen.

In the light of the above statement, choose the correct answer from the options given below:

- A. Both statement I and statement II are false
- B. Statement I is true but statement II is false
- C. Both statement I and statement II are true
- D. Statement I is false but statement II is true

4. An example of a disproportionation reaction is:

$$\textbf{A.} \quad 2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$$

B.
$$2MnO_4^- + 10I^- + 16H^+ o 2Mn^{2+} + 5I_2 + 8H_2O$$

C.
$$2CuBr o CuBr_2 + Cu$$

D.
$$2NaBr+Cl_2
ightarrow 2NaCl+Br_2$$

- 5. In order to oxidise a mixture of one mole of each of FeC_2O_4 , $Fe_2(C_2O_4)_3$, $FeSO_4$ and $Fe_2(SO_4)_3$ in acidic medium, the number of moles of $KMnO_4$ required is :
 - **A**. 2
 - B. ₁
 - **c**. 3
 - **D.** 1.5
- 6. Given standard reduction potentials:

$$Co^{3+} + e^{-} \rightarrow Co^{2+}; E^{o} = +1.81 \ V \ Pb^{4+} + 2e^{-} \rightarrow Pb^{2+}; E^{o} = +1.67 \ V \ Ce^{4+} + e^{-} \rightarrow Ce^{3+}; E^{o} = +1.61 \ V \ Bi^{3+} + 3e^{-} \rightarrow Bi; E^{o} = +0.20 \ V$$

oxidizing power of the species will increase in the order:

A.
$$Ce^{4+} < Pb^{4+} < Bi^{3+} < Co^{3+}$$

B.
$$Bi^{3+} < Ce^{4+} < Pb^{4+} < Co^{3+}$$

C.
$$Co^{3+} < Ce^{4+} < Bi^{3+} < Pb^{4+}$$

$$\textbf{D.} \quad Co^{3+} < Pb^{4+} < Ce^{4+} < Bi^{3+}$$

7. Given that $E^o_{O_2/H_2O}=+1.23V;$

$$E^o_{S_2O_8^{2-}/SO_4^{2-}}=2.05V$$

$$E^{o}_{Br_{2}/Br^{-}} = +1.09 V$$

$$E^o_{Au^{3+}/Au} = +1.4V$$

The strongest oxidising agent is:

- **A.** Au^{3+}
- $\mathbf{B.} \quad O_2$
- **C.** $S_2O_8^{2-}$
- D. Br_2

8. Consider the following reduction processes:

$$Zn^{2+} + 2e^-
ightarrow Zn(s); E^o = -0.76~V \ Ca^{2+} + 2e^-
ightarrow Ca(s); E^o = -2.87~V \ Mg^{2+} + 2e^-
ightarrow Mg(s); E^o = -2.36~V \ Ni^{2+} + 2e^-
ightarrow Ni(s); E^o = -0.25~V$$

The reducing power of the metals increases in the order:

$$\textbf{A.} \quad Ca < Zn < Mg < Ni$$

$$\textbf{B.} \quad Ni < Zn < Mg < Ca$$

$$\textbf{C.} \quad Zn < Mg < Ni < Ca$$

$$\textbf{D.} \quad Ca < Mg < Zn < Ni$$

- 9. In the reaction of oxalate with permanganate in acidic medium, the number of electrons involved in producing one molecule of CO_2 is:
 - **A**. ₁
 - **B**. 10
 - **c**. 2
 - **D**. 5
- 10. Iodine reacts with concentrated HNO_3 to yield Y along with other products. The oxidation state of iodine in Y, is
 - **A**. 5
 - **B**. 3
 - C. 1
 - D. 7
- 11. The correct increasing order of the oxidation states of nitrogen in NO, N_2O, NO_2 and N_2O_3 is:

A.
$$NO_2 < NO < N_2O_3 < N_2O$$

B.
$$N_2O < NO < N_2O_3 < NO_2$$

C.
$$NO_2 < N_2O_3 < NO < N_2O$$

$${\bf D.} \quad N_2O < N_2O_3 < NO < NO_2$$

- 12. The pair in which phosphorus atoms have a formal oxidation state of +3 is :-
 - A. Pyrophosphorus and pyrophosphoric acids
 - B. Orthophosphorus and pyrophosphorus acids
 - C. Pyrophosphorus and hypophosphoric acid
 - **D.** Orthophosphoros and hypophosphoric acids
- 13. The species given below that does NOT show disproportionation reaction is:
 - **A.** BrO_3^-
 - B. BrO^-
 - C. BrO_2^-
 - **D.** BrO_{4}^{-}
- 14. The correct order of following 3d metal oxides, according to their oxidation number is:
 - (a) CrO_3
 - (b) Fe_2O_3
 - (c) MnO_2
 - (d) V_2O_5
 - (e) Cu_2O
 - **A.** (a) > (d) > (c) > (b) > (e)
 - **B.** (d) > (a) > (b) > (c) > (e)
 - **C.** (a) > (c) > (d) > (b) > (e)
 - **D.** (c) > (a) > (d) > (e) > (b)

- 15. The oxidation states of 'P' in $H_4P_2O_7$, $H_4P_2O_5$ and $H_4P_2O_6$, respectively are:
 - **A.** 5, 4 and 3
 - **B.** 7,5 and 6
 - **C.** 6, 4 and 5
 - **D.** 5, 3 and 4
- 16. In polythionic acid, $H_2S_xO_6(x=3\ {
 m to}\ 5)$ the oxidation state(s) of sulphur is/are :
 - **A.** 0 and +5 only
 - B. +5 only
 - **c.** +6 only
 - **D.** +3 and +5 only
- 17. Hydrogen peroxide reacts with iodine in basic medium to give:
 - **A.** IO_3^-
 - B. IO^-
 - C. I^-
 - $\mathbf{D.} \quad IO_4^-$
- 18. The reaction of sulphur in alkaline medium is given below:

$$S_8\left(s
ight) + a~OH^-\left(aq
ight) \longrightarrow b~S^{2-}\left(aq
ight) + c~S_2O_3^{2-}\left(aq
ight) + d~H_2O\left(l
ight)$$

The value of a is (Integer answer)

19. Dichromate ion is treated with base, the oxidation number of Cr in the product formed is

20. A20.0~mL solution containing 0.2~g impure H_2O_2 reacts completely with 0.316~g of $KMnO_4$ in acid solution. The purity of H_2O_2 (in%) is (Nearest integer) (mol.wt.of $H_2O_2=34$ mole.wt.of.KM $nO_4=158$)

21.
$$2MnO_4^- + bC_2O_4^{2-} + cH^+ o xMn^{2+} + yCO_2 + zH_2O$$

If the above equation is balanced with integer coefficients, the value of c is

(Round off to the nearest Integer)

- 22. When 10~mL of an aqueous solution of Fe^{2+} ions was titrated in the presence of dil H_2SO_4 using diphenylamine indicator, 15~mL of 0.02~M solution of $K_2Cr_2O_7$ was required to get the end point. The molarity of the solution containing Fe^{2+} ions is $x\times 10^{-2}M$. The value of x is ____. (Nearest integer)
- 23. In basic medium, CrO_4^{2-} oxidises $S_2O_3^{2-}$ to form $Cr(OH)_4^-$ and SO_4^{2-} . How many mL(nearest integer) of $0.154~M~CrO_4^{2-}$ are required to react with $40.0~\rm mL$ of $0.246~M~S_2O_3^{2-}$?

[Hint :
$$0.0154~M = 0.154 \times 3~N~CrO_4^{2-}$$
 and $0.246~M = 0.246 \times 8~N~S_2O_3^{2-}$]

- 24. The oxidation states of transition metal atoms in $K_2Cr_2O_7$, $KMnO_4$ and K_2FeO_4 , respectively, are x, y and z. The sum of x, y and z is:
- 25. Consider the following equations:

$$2Fe^{2+}+H_2O_2 o xA+yB$$
 (in basic medium) $2MnO_4^-+6H^++5H_2O_2 o x'C+y'D+z'E$ (in acidic medium)

The sum of the stoichiometric coefficients x, y, x', y' and z' for products A, B, C, D and E, respectively, is