293

Total No. of Questions - 24 Regd. Total No. of Printed Pages - 4 No.
d. $I T I \mid$
t III
CS, Paper-II(B)
Version)

Time:: 3 Hours]
[Max. Marks : 75
Note: This question paper consists of three sections A, B and C.

SECTION - A

$10 \times 2=20$
I. Very short answer type questions :
(i) Attempt all questions.
(ii) Each question carries two marks.

1. Find the value of ' a ' if $2 x^{2}+a y^{2}-3 x+2 y-1=0$ represents a circle. Also find radius of circle.
2. Find the power of point $P(5,-6)$ with respect to the circle

$$
\mathrm{S}=x^{2}+\mathrm{y}^{2}+8 x+12 \mathrm{y}+15=0 .
$$

3. Find k, if the circles $x^{2}+y^{2}-6 x-8 y+12=0, x^{2}+y^{2}-4 x+6 y+k=0$ are orthogonal
4. Find coordinates of points on the parabola $y^{2}=8 x$ whose focal distance is 10 .
5. Define Rectangular hyperbola and find its eccentricity.
6. Evaluate : $\int \cosh x^{\frac{1}{+}} \sinh x \mathrm{~d} x$ on $x \in \mathrm{R}$.
7. Evaluate : $\int x \log x \mathrm{~d} x$ on $(0, \infty)$
8. Evaluate : $\int \begin{gathered}\mathrm{d} x \\ \sqrt{2} x-1\end{gathered}$
9. Find $\int_{0}^{\pi / 2} \sin ^{4} x \cos ^{5} x \mathrm{~d} x$
10. Find the general solution of $\frac{d y}{d x}=\frac{2 y}{x}$

SECTION - B
$5 \times 4=20$
II. Short answer type questions :
(i) Attempt any five questions.
(ii) Each question carries four marks.
11. Find the length of chord intercepted by the circle

$$
x^{2}+y^{2}-8 x-2 y-8=0 \text { on the line } x+y+1=0
$$

12. Find radical centre of the circles

$$
x^{2}+y^{2}+4 x-7=0,2 x^{2}+2 y^{2}+3 x+5 y-9=0, x^{2}+y^{2}+y=0
$$

13. Find eccentricity, coordinates of foci, length of latus rectum and equations of directrices for the ellipse $9 x^{2}+16 y^{2}=144$.
14. A man running on a race course notices that sum of distances of two flag posts from him is always 10 m . and distance between flag posts is 8 m . Find the equation of race course traced by the man.
15. Find equations of tangents to the hyperbola $x^{2}-4 y^{2}=4$ which are (i) parallel to (ii) perpendicular to the line $x+2 y=0$.
16. Evaluate : $\int_{0}^{\pi / 2} \frac{a \sin x+b \cos x}{\sin x+\cos x} d x$
17. Solve : $\frac{\mathrm{dy}}{\mathrm{d} x}=\frac{(x+\mathrm{y})^{2}}{2 x^{2}}$.
SECTION - C
III. Long answer type questions :
(i) Attempt any five questions.
(ii) Each question carries seven marks.
18. Show that the four points $(1,1),(-6,0),(-2,2),(-2,-8)$ are concyclic and find the equation of the circle on which they lie.
19. (a) Find pole of $3 x+4 y-45=0$ with respect to $x^{2}+y^{2}-6 x-8 y+5=0$.
(b) Find the locus of P, if the tangents drawn from P to $x^{2}+y^{2}=a^{2}$ are perpendicular to each other.
20. Prove that the area of the triangle inscribed in the parabola $y^{2}=4 \mathrm{a} x$ is $\begin{gathered}1 \\ 8 \mathrm{a}\end{gathered}\left|\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)\right|$ sq. units where $\mathrm{y}_{1}, \mathrm{y}_{2}, y_{3}$ are ordinates of its vertices.
21. Evaluate : $\int \frac{9 \cos x-\sin x}{4 \sin x+5 \cos x} \mathrm{~d} x$.
22. Obtain the reduction formula for $\operatorname{In}=\int \cot ^{n} x d x, n$ being a positive integer, $\mathrm{n} \geq 2$ and deduce the value of $\int \cot ^{4} x \mathrm{~d} x$.
23. Evaluate : $\int \frac{\log (1+x)}{1+x^{2}} \mathrm{~d} x$.
24. Solve the Differential Equation
$\cos x \cdot \frac{\mathrm{dy}}{\mathrm{d} x}+\mathrm{y} \sin x=\sec ^{2} x$.
