

Subject: Mathematics Class: Standard XII

- 1. The value of $\cos^2 10^\circ \cos 10^\circ \cos 50^\circ + \cos^2 50^\circ$ is:
 - **A.** $\frac{3}{4} + \cos 20^{\circ}$
 - **B.** $\frac{3}{4}$
 - **c.** $\frac{3}{2}(1+\cos 20^{\circ})$
 - **D.** $\frac{3}{2}$
- 2. The value of $\cos^3 \frac{\pi}{8} \cos \frac{3\pi}{8} + \sin^3 \frac{\pi}{8} \sin \frac{3\pi}{8}$ is :
 - **A.** $\frac{1}{4}$
 - $\mathbf{B.} \quad \frac{1}{2\sqrt{2}}$
 - **c**. $\frac{1}{2}$
 - $\mathbf{D.} \quad \frac{1}{\sqrt{2}}$
- 3. Let $f_k(x)=rac{1}{k}\Bigl(\sin^kx+\cos^kx\Bigr)$ for $k=1,2,3,\ldots$ Then for all $x\in\mathbb{R},$ the value of $f_4(x)-f_6(x)$ is equal to:
 - **A.** $\frac{1}{12}$
 - **B.** $\frac{-1}{12}$
 - **C.** $\frac{1}{4}$
 - **D.** $\frac{5}{12}$

4. The angle of elevation of the top of a vertical tower standing on a horizontal plane is observed to be 45° from a point A on the plane. Let B be the point 30° m vertically above the point A. If the angle of elevation of the top of the tower from B be 30° , then the distance (in m) of the foot of the tower from the point A is :

A.
$$15(3-\sqrt{3})$$

B.
$$15(3+\sqrt{3})$$

c.
$$15(1+\sqrt{3})$$

D.
$$15(5-\sqrt{3})$$

5. Let $P=\{\theta:\sin\theta-\cos\theta=\sqrt{2}\cos\theta\}$ and $Q=\{\theta:\sin\theta+\cos\theta=\sqrt{2}\sin\theta\}$ be two sets. Then :

A.
$$P \subset Q \text{ and } Q - P \neq \phi$$

$$\mathbf{B.} \quad P = Q$$

C.
$$Q \not\subset P$$

D.
$$P \not\subset Q$$

6. The maximum value of $3\cos\theta + 5\sin\left(\theta - \frac{\pi}{6}\right)$ for any real value of θ is:

A.
$$\frac{\sqrt{79}}{2}$$

B.
$$\sqrt{19}$$

C.
$$\sqrt{31}$$

$$\mathbf{D.} \quad \sqrt{34}$$

7. For any $\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, the expression $3(\sin \theta - \cos \theta)^4 + 6(\sin \theta + \cos \theta)^2 + 4\sin^6 \theta$ equals:

A.
$$13-4\cos^2\theta+6\sin^2\theta\cos^2\theta$$

B.
$$13 - 4\cos^2\theta + 6\cos^4\theta$$

C.
$$13 - 4\cos^4\theta + 2\sin^2\theta\cos^2\theta$$

D.
$$13 - 4\cos^6\theta$$

- 8. If $\cos(\alpha+\beta)=\frac{3}{5},\sin(\alpha-\beta)=\frac{5}{13}$ and $0<\alpha,\beta<\frac{\pi}{4},$ then $\tan(2\alpha)$ is equal to:
 - **A.** $\frac{21}{16}$
 - B. $\frac{63}{16}$
 - **C**. $\frac{63}{52}$
 - **D.** $\frac{33}{52}$
- 9. The angle of elevation of the top of a vertical tower from a point A, due east of it is 45° . The angle of elevation of the top of the same tower from a point B, due south of A is 30° . If the distance between A and B is $54\sqrt{2}$ m, then the height of the tower (in metres), is
 - **A.** 108
 - B. $54\sqrt{3}$
 - C. $36\sqrt{3}$
 - $\mathbf{D.}\quad _{54}$

10. A bird is sitting on the top of a vertical pole 20~m high and its elevation from a point O on the ground is 45° . It flies off horizontally straight away from the point O. After one second, the elevation of the bird from O is reduced to 30° . Then the speed (in m/s) of the bird is

A.
$$40(\sqrt{2}-1)$$

B.
$$40(\sqrt{3}-\sqrt{2})$$

c.
$$20\sqrt{2}$$

D.
$$20(\sqrt{3}-1)$$

11. The expression $\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}$ can be written as :

A.
$$\sin A \cdot \cos A + 1$$

B.
$$\sec A \cdot \csc A + 1$$

C.
$$\tan A + \cot A$$

D.
$$\sec A + \csc A$$

12. The value of $\cos \frac{\pi}{2^2} \cdot \cos \frac{\pi}{2^3} \cdot \ldots \cdot \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}}$ is :

A.
$$\frac{1}{1024}$$

B.
$$\frac{1}{2}$$

C.
$$\frac{1}{512}$$

D.
$$\frac{1}{256}$$

- 13. If $5(\tan^2 x \cos^2 x) = 2\cos 2x + 9$, then the value of $\cos 4x$ is:
 - **A.** $\frac{-3}{5}$
 - **B.** $\frac{1}{3}$
 - **c**. $\frac{2}{9}$
 - **D.** $\frac{-7}{9}$
- 14. Consider a triangular plot ABC with sides AB=7m, BC=5m and CA=6m. A vertical lamp-post at the mid point D of AC subtends an angle 30° at B. The height (in m) of the lamp-post is :
 - **A.** $\frac{3}{2}\sqrt{21}$
 - **B.** $7\sqrt{3}$
 - **c**. $2\sqrt{21}$
 - **D.** $\frac{2}{3}\sqrt{21}$
- 15. If $15\sin^4\alpha+10\cos^4\alpha=6$, for some $\alpha\in\mathbb{R}$, then the value of $27\sec^6\alpha+8\csc^6\alpha$ is equal to
 - **A.** 250
 - **B.** 500
 - **c**. 400
 - **D**. 350

16. If the equation $\cos^4 \theta + \sin^4 \theta + \lambda = 0$ has real solutions for θ , then λ lies in the interval:

A.
$$\left(-\frac{1}{2}, -\frac{1}{4}\right]$$

B.
$$\left[-1, -\frac{1}{2}\right]$$

C.
$$\left[-\frac{3}{2}, -\frac{5}{4} \right]$$

$$\mathbf{D.} \quad \left(-\frac{5}{4}, -1\right)$$

17. The minimum value of $2^{\sin x} + 2^{\cos x}$ is

A.
$$2^{1-\sqrt{2}}$$

B.
$$2^{1-\frac{1}{\sqrt{2}}}$$

C.
$$2^{-1+\sqrt{2}}$$

D.
$$2^{-1+\frac{1}{\sqrt{2}}}$$

18. If $L=\sin^2\!\left(\frac{\pi}{16}\right)-\sin^2\!\left(\frac{\pi}{8}\right)$ and $M=\cos^2\!\left(\frac{\pi}{16}\right)-\sin^2\!\left(\frac{\pi}{8}\right)$, then:

A.
$$M = \frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$$

B.
$$M = \frac{1}{4\sqrt{2}} + \frac{1}{4}\cos\frac{\pi}{8}$$

C.
$$L = -\frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$$

D.
$$L = \frac{1}{4\sqrt{2}} - \frac{1}{4}\cos\frac{\pi}{8}$$

19. The value of $\cot \frac{\pi}{24}$ is

A.
$$3\sqrt{2} - \sqrt{3} - \sqrt{6}$$

B.
$$\sqrt{2} - \sqrt{3} - 2 + \sqrt{6}$$

c.
$$\sqrt{2} + \sqrt{3} + 2 - \sqrt{6}$$

D.
$$\sqrt{2} + \sqrt{3} + 2 + \sqrt{6}$$

- 20. If $\sin \theta + \cos \theta = \frac{1}{2}$, then $16(\sin(2\theta) + \cos(4\theta) + \sin(6\theta))$ is equal to
 - **A**. 23
 - **B.** -23
 - **C**. 27
 - **D.** -27
- 21. Two poles, AB of length a meters and CD of length a+b ($b\neq a$) meters are erected at the same horizontal level with bases at B and D. If BD=x and $\tan \angle ACB=\frac{1}{2}$, then

A.
$$x^2 - 2ax + a(a+b) = 0$$

B.
$$x^2 + 2(a+2b)x - b(a+b) = 0$$

C.
$$x^2 + 2(a+2b)x + a(a+b) = 0$$

D.
$$x^2 - 2ax + b(a+b) = 0$$

22. A spherical gas balloon of radius 16 meter subtends an angle 60° at the eye of the observer A while the angle of elevation of its center from the eye of A is 75° . Then the height (in meter) of the top most point of the balloon from the level of the observer's eye is

A.
$$8(2+2\sqrt{3}+\sqrt{2})$$

B.
$$8(\sqrt{6}-\sqrt{2}+2)$$

c.
$$8(\sqrt{2}+2+\sqrt{3})$$

D.
$$8(\sqrt{6} + \sqrt{2} + 2)$$

23. The range of the function

$$f(x) = \log_{\sqrt{5}} \left(3 + \cos\left(\frac{3\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{4} - x\right) - \cos\left(\frac{3\pi}{4} - x\right) \right)$$
 is

A.
$$[0, 2]$$

B.
$$[-2,2]$$

C.
$$(0, \sqrt{5})$$

$$\mathbf{D.} \quad \left[\frac{1}{\sqrt{5}}, \sqrt{5}\right]$$

Subject: Mathematics Class: Standard XII

1. If
$$\frac{\sqrt{2}\sin\alpha}{\sqrt{1+\cos2\alpha}}=\frac{1}{7}$$
 and $\sqrt{\frac{1-\cos2\beta}{2}}=\frac{1}{\sqrt{10}}, \alpha,\beta\in\left(0,\frac{\pi}{2}\right)$, then $\tan(\alpha+2\beta)$ is equal to

2. The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be 45° . After walking a distance of 80 meters towards the top, up a slope inclined at an angle of 30° to the horizontal plane, the angle of elevation of the top of the hill becomes 75° . Then the height of the hill (in meters) is

Subject: Mathematics Class: Standard XII

1. All the pairs (x,y) that satisfy the inequality $2^{\sqrt{\sin^2 x - 2 \sin x + 5}} \cdot \frac{1}{4^{\sin^2 y}} \le 1$ also satisfy the equation :

$$\mathbf{A.} \quad \sin x = 2\sin y$$

$$\mathbf{B.} \quad 2\sin x = \sin y$$

$$\mathbf{C.} \quad \sin x = |\sin y|$$

D.
$$2|\sin x| = 3\sin y$$

2. The number of solutions of the equation

$$1+\sin^4x=\cos^23x,\;\;x\in\left[-rac{5\pi}{2},rac{5\pi}{2}
ight]$$
 is :

- 3. The triangle of maximum area that can be inscribed in a given circle of radius $^\prime r^\prime$ is:
 - f A. A right-angle triangle having two of its sides of length 2r and r

B. An equilateral triangle of height
$$\frac{2r}{3}$$

- ${f C}.$ Isosceles triangle with base equal to 2r
- **D.** An equilateral triangle having each of its side of length $\sqrt{3}r$

4. If in a triangle ABC, AB=5 units, $\angle B=\cos^{-1}\left(\frac{3}{5}\right)$ and radius of circumcircle of $\triangle ABC$ is 5 units, then the area (in sq. units) of $\triangle ABC$ is

A.
$$10 + 6\sqrt{2}$$

B.
$$6 + 8\sqrt{3}$$

c.
$$8 + 2\sqrt{2}$$

D.
$$4 + 2\sqrt{3}$$

5. If $0 < x,y < \pi$ and $\cos x + \cos y - \cos(x+y) = \frac{3}{2}$, then $\sin x + \cos y$ is equal to :

$$\mathbf{A.} \quad \frac{1+\sqrt{3}}{2}$$

B.
$$\frac{1-\sqrt{3}}{2}$$

$$\mathbf{C}. \quad \frac{\sqrt{3}}{2}$$

D.
$$\frac{1}{2}$$

6. If the angle of elevation of a cloud from a point P which is $25~\mathrm{m}$ above a lake be 30° and the angle of depression of reflection of the cloud in the lake from P be 60° , then the height of the cloud (in meters) from the surface of the lake is :

C.
$$_{45}$$

7. If the lengths of the sides of a triangle are in A.P. and the greatest angle is double the smallest, then a ratio of lengths of the sides of this triangle is :

C.
$$4:5:6$$

D.
$$3:4:5$$

8. ABCD is a trapezium such that AB and CD are parallel and $BC \perp CD$. If $\angle ADB = \theta, BC = p$ and CD = q, then AB is equal to :

A.
$$\frac{(p^2+q^2)\sin\theta}{p\cos\theta+q\sin\theta}$$

$$\textbf{B.} \quad \frac{p^2 + q^2 \cos \theta}{p \cos \theta + q \sin \theta}$$

$$\textbf{C.} \quad \frac{p^2 + q^2}{p\cos\theta + q\sin\theta}$$

$$\textbf{D.} \quad \frac{(p^2+q^2)\sin\theta}{(p\cos\theta+q\sin\theta)^2}$$

9. The angles A,B and C of a triangle ABC are in A.P. and $a:b=1:\sqrt{3}$. If c=4 cm, then the area (in sq.cm) of this triangle is:

A.
$$4\sqrt{3}$$

B.
$$2\sqrt{3}$$

C.
$$\frac{4}{\sqrt{3}}$$

$$\mathbf{D.} \quad \frac{2}{\sqrt{3}}$$

10. In the circle given below, let OA=1 unit, OB=13 unit and $PQ\perp OB$. Then, the area of the triangle PQB (in square units) is :

- $\mathbf{A.} \quad 26\sqrt{3}$
- $\mathbf{B.} \quad _{24\sqrt{2}}$
- C. $24\sqrt{3}$
- D. $26\sqrt{2}$
- 11. The number of roots of the equation, $(81)^{\sin^2 x} + (81)^{\cos^2 x} = 30$ in the interval $[0,\pi]$ is equal to:
 - **A**. 3
 - **B**. 2
 - **C**. 4
 - D. 8

12. A man is observing, from the top of a tower, a boat speeding towards the tower from a certain point A, with uniform speed. At that point, angle of depression of the boat with the man's eye is 30° (Ignore man's height). After sailing for 20 seconds, towards the base of the tower (which is at the level of water), the boat has reached a point B, where the angle of depression is 45° . Then the time taken (in seconds) by the boat from B to reach the base of the tower is :

A.
$$10(\sqrt{3}-1)$$

B.
$$10\sqrt{3}$$

c.
$$_{10}$$

D.
$$10(\sqrt{3}+1)$$

13. A pole stands vertically inside a triangular park ABC. Let the angle of elevation of the top of the pole from each corner of the park be $\frac{\pi}{3}$. If the radius of the circumcircle of ΔABC is 2, then the height of the pole is equal to:

$$\mathbf{A.} \quad \frac{1}{\sqrt{3}}$$

B.
$$\sqrt{3}$$

C.
$$2\sqrt{3}$$

D.
$$\frac{2\sqrt{3}}{3}$$

14. The angle of elevation of a cloud C from a point P, 200 m above a still lake is 30° . If the angle of depression of the image of C in the lake from the point P is 60° , then PC (in m) is equal to

A.
$$200\sqrt{3}$$

B.
$$400\sqrt{3}$$

$$c._{400}$$

- 15. A vertical pole fixed to the horizontal ground is divided in the ratio 3: 7 by a mark on it with lower part shorter than the upper part. If the two parts subtend equal angles at a point on the ground 18 m away from the base of the pole, then the height of the pole (in meters) is:
 - **A.** $8\sqrt{10}$
 - **B.** $12\sqrt{10}$
 - **c.** $12\sqrt{15}$
 - **D.** $6\sqrt{10}$
- 16. Let in a right angled triangle, the smallest angle be θ . If a triangle formed by taking the reciprocal of its sides is also a right angled triangle, then $\sin \theta$ is equal to :
 - **A.** $\frac{\sqrt{5}+1}{4}$
 - **B.** $\frac{\sqrt{2}-1}{2}$
 - **C.** $\frac{\sqrt{5}-1}{2}$
 - **D.** $\frac{\sqrt{5}-1}{4}$
- 17. If n is the number of solutions of the equation

$$2\cos x \left(4\sin\!\left(rac{\pi}{4}\!+x
ight)\sin\!\left(rac{\pi}{4}\!-x
ight)-1
ight)=1, x\in[0,\pi]$$

and S is the sum of all these solutions, then the ordered pair (n, S) is :

- $\mathbf{A.} \quad \left(3, \frac{5\pi}{3}\right)$
- $\mathbf{B.} \quad \left(3, \frac{13\pi}{9}\right)$
- **c.** $\left(2, \frac{2\pi}{3}\right)$
- $\mathbf{D.} \quad \left(2, \frac{8\pi}{9}\right)$

- 18. The number of solutions of the equation $x+2\tan x=\frac{\pi}{2}$ in the interval $[0,\ 2\pi]$ is :
 - **A.** 5
 - **B**. 2
 - **C**. 4
 - **D**. 3
- 19. The sum of solutions of the equation

$$rac{\cos x}{1+\sin x}$$
 $= | an 2x|, \; x \in \left(-rac{\pi}{2},rac{\pi}{2}
ight) - \left\{rac{\pi}{4},-rac{\pi}{4}
ight\}$ is

- $\mathbf{A.} \quad \frac{\pi}{10}$
- **B.** $-\frac{7\pi}{30}$
- **C.** $-\frac{11\pi}{30}$
- **D.** $-\frac{\pi}{15}$
- 20. All possible values of $\theta \in [0,2\pi]$ for which $\sin 2\theta + \tan 2\theta > 0$ lie in :
 - **A.** $\left(0, \frac{\pi}{2}\right) \cup \left(\pi, \frac{3\pi}{2}\right)$
 - $\textbf{B.} \quad \left(0,\frac{\pi}{4}\right) \cup \left(\frac{\pi}{2},\frac{3\pi}{4}\right) \cup \left(\pi,\frac{5\pi}{4}\right) \cup \left(\frac{3\pi}{2},\frac{7\pi}{4}\right)$
 - **C.** $\left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\pi, \frac{7\pi}{6}\right)$
 - **D.** $\left(0, \frac{\pi}{4}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \cup \left(\frac{3\pi}{2}, \frac{11\pi}{6}\right)$

- 21. The sum of all values of $heta\in\left(0,\frac{\pi}{2}\right)$ satisfying $\sin^22\theta+\cos^42\theta=\frac{3}{4}$ is :
 - A. π
 - $\mathbf{B.} \quad \frac{\pi}{2}$
 - C. $\frac{5\pi}{4}$
 - $\mathbf{D.} \quad \frac{3\pi}{8}$

Subject: Mathematics Class: Standard XII

- 1. In ΔABC , the lengths of sides AC and AB are $12~\mathrm{cm}$ and $5~\mathrm{cm}$, respectively. If the area of ΔABC is $30~\mathrm{cm}^2$ and R and r are respectively the radii of circumcircle and incircle of ΔABC , then the value of $2R+r~\mathrm{(in~cm)}$ is equal to
- 2. The number of distinct solutions of the equation, $\log_{\frac{1}{2}}|\sin x|=2-\log_{\frac{1}{2}}|\cos x| \text{ in the interval } [0,2\pi], \text{ is }$
- 3. Let AD and BC be two vertical poles at A and B respectively on a horizontal ground. If AD=8m, BC=11m and AB=10m; then the distance (in meters) of a point M on AB from the point A such that MD^2+MC^2 is minimum is
- 4. Let S be the sum of all solutions (in radians) of the equation $\sin^4 \theta + \cos^4 \theta \sin \theta \cos \theta = 0$ in $[0,4\pi]$. Then $\frac{8S}{\pi}$ is equal to