1. The value of $\cos ^{2} 10^{\circ}-\cos 10^{\circ} \cos 50^{\circ}+\cos ^{2} 50^{\circ}$ is:
A. $\frac{3}{4}+\cos 20^{\circ}$
B. $\frac{3}{4}$
C. $\frac{3}{2}\left(1+\cos 20^{\circ}\right)$
D. $\frac{3}{2}$
2. The value of $\cos ^{3} \frac{\pi}{8} \cos \frac{3 \pi}{8}+\sin ^{3} \frac{\pi}{8} \sin \frac{3 \pi}{8}$ is :
A. $\frac{1}{4}$
B. $\frac{1}{2 \sqrt{2}}$
C. $\frac{1}{2}$
D. $\frac{1}{\sqrt{2}}$
3. Let $f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)$ for $k=1,2,3, \ldots$. Then for all $x \in \mathbb{R}$, the value of $f_{4}(x)-f_{6}(x)$ is equal to:
A. $\frac{1}{12}$
B. $\frac{-1}{12}$
C. $\frac{1}{4}$
D. $\frac{5}{12}$
4. The angle of elevation of the top of a vertical tower standing on a horizontal plane is observed to be $45^{\circ}$ from a point $A$ on the plane. Let $B$ be the point 30 m vertically above the point $A$. If the angle of elevation of the top of the tower from $B$ be $30^{\circ}$, then the distance (in m ) of the foot of the tower from the point $A$ is :
A. $15(3-\sqrt{3})$
B. $15(3+\sqrt{3})$
C. $15(1+\sqrt{3})$
D. $15(5-\sqrt{3})$
5. Let $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets. Then :
A. $\quad P \subset Q$ and $Q-P \neq \phi$
B. $P=Q$
C. $Q \not \subset P$
D. $P \not \subset Q$
6. The maximum value of $3 \cos \theta+5 \sin \left(\theta-\frac{\pi}{6}\right)$ for any real value of $\theta$ is:
A. $\frac{\sqrt{79}}{2}$
B. $\sqrt{19}$
C. $\sqrt{31}$
D. $\sqrt{34}$
7. For any $\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, the expression $3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}+4 \sin ^{6} \theta$ equals:
A. $13-4 \cos ^{2} \theta+6 \sin ^{2} \theta \cos ^{2} \theta$
B. $13-4 \cos ^{2} \theta+6 \cos ^{4} \theta$
C. $13-4 \cos ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta$
D. $13-4 \cos ^{6} \theta$
8. If $\cos (\alpha+\beta)=\frac{3}{5}, \sin (\alpha-\beta)=\frac{5}{13}$ and $0<\alpha, \beta<\frac{\pi}{4}$, then $\tan (2 \alpha)$ is equal to:
A. $\frac{21}{16}$
B. $\frac{63}{16}$
C. $\frac{63}{52}$
D. $\frac{33}{52}$
9. The angle of elevation of the top of a vertical tower from a point $A$, due east of it is $45^{\circ}$. The angle of elevation of the top of the same tower from a point $B$, due south of $A$ is $30^{\circ}$. If the distance between $A$ and $B$ is $54 \sqrt{2} \mathrm{~m}$, then the height of the tower (in metres), is
A. 108
B. $54 \sqrt{3}$
C. $36 \sqrt{3}$
D. 54
10. A bird is sitting on the top of a vertical pole $20 m$ high and its elevation from a point $O$ on the ground is $45^{\circ}$. It flies off horizontally straight away from the point $O$. After one second, the elevation of the bird from $O$ is reduced to $30^{\circ}$. Then the speed (in $m / s$ ) of the bird is
A. $40(\sqrt{2}-1)$
B. $40(\sqrt{3}-\sqrt{2})$
C. $20 \sqrt{2}$
D. $20(\sqrt{3}-1)$
11. The expression $\frac{\tan A}{1-\cot A}+\frac{\cot A}{1-\tan A}$ can be written as :
A. $\sin A \cdot \cos A+1$
B. $\sec A \cdot \operatorname{cosec} A+1$
C. $\tan A+\cot A$
D. $\sec A+\operatorname{cosec} A$
12. The value of $\cos \frac{\pi}{2^{2}} \cdot \cos \frac{\pi}{2^{3}} \cdot \ldots \cdot \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}}$ is :
A. $\frac{1}{1024}$
B. $\frac{1}{2}$
C. $\frac{1}{512}$
D. $\frac{1}{256}$
13. If $5\left(\tan ^{2} x-\cos ^{2} x\right)=2 \cos 2 x+9$, then the value of $\cos 4 x$ is:
A. $\frac{-3}{5}$
B. $\frac{1}{3}$
C. $\frac{2}{9}$
D. $\frac{-7}{9}$
14. Consider a triangular plot $A B C$ with sides $A B=7 m, B C=5 m$ and $C A=6 m$. A vertical lamp-post at the mid point $D$ of $A C$ subtends an angle $30^{\circ}$ at $B$. The height (in $m$ ) of the lamp-post is :
A. $\frac{3}{2} \sqrt{21}$
B. $7 \sqrt{3}$
C. $2 \sqrt{21}$
D. $\frac{2}{3} \sqrt{21}$
15. If $15 \sin ^{4} \alpha+10 \cos ^{4} \alpha=6$, for some $\alpha \in \mathbb{R}$, then the value of $27 \sec ^{6} \alpha+8 \operatorname{cosec}^{6} \alpha$ is equal to
A. 250
B. 500
C. 400
D. 350
16. If the equation $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ has real solutions for $\theta$, then $\lambda$ lies in the interval:
A. $\left(-\frac{1}{2},-\frac{1}{4}\right]$
B. $\left[-1,-\frac{1}{2}\right]$
C. $\left[-\frac{3}{2},-\frac{5}{4}\right]$
D. $\left(-\frac{5}{4},-1\right)$
17. The minimum value of $2^{\sin x}+2^{\cos x}$ is
A. $2^{1-\sqrt{2}}$
B. $2^{1-\frac{1}{\sqrt{2}}}$
C. $2^{-1+\sqrt{2}}$
D. $2^{-1+\frac{1}{\sqrt{2}}}$
18. If $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ and $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$, then:
A. $\quad M=\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}$
B. $\quad M=\frac{1}{4 \sqrt{2}}+\frac{1}{4} \cos \frac{\pi}{8}$
C. $L=-\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}$
D. $\quad L=\frac{1}{4 \sqrt{2}}-\frac{1}{4} \cos \frac{\pi}{8}$
19. The value of $\cot \frac{\pi}{24}$ is
A. $3 \sqrt{2}-\sqrt{3}-\sqrt{6}$
B. $\sqrt{2}-\sqrt{3}-2+\sqrt{6}$
C. $\sqrt{2}+\sqrt{3}+2-\sqrt{6}$
D. $\sqrt{2}+\sqrt{3}+2+\sqrt{6}$
20. If $\sin \theta+\cos \theta=\frac{1}{2}$, then $16(\sin (2 \theta)+\cos (4 \theta)+\sin (6 \theta))$ is equal to
A. 23
B. -23
C. 27
D. -27
21. Two poles, $A B$ of length $a$ meters and $C D$ of length $a+b(b \neq a)$ meters are erected at the same horizontal level with bases at $B$ and $D$. If $B D=x$ and $\tan \angle A C B=\frac{1}{2}$, then
A. $x^{2}-2 a x+a(a+b)=0$
B. $x^{2}+2(a+2 b) x-b(a+b)=0$
C. $x^{2}+2(a+2 b) x+a(a+b)=0$
D. $x^{2}-2 a x+b(a+b)=0$
22. A spherical gas balloon of radius 16 meter subtends an angle $60^{\circ}$ at the eye of the observer A while the angle of elevation of its center from the eye of $A$ is $75^{\circ}$. Then the height (in meter) of the top most point of the balloon from the level of the observer's eye is
A. $8(2+2 \sqrt{3}+\sqrt{2})$
B. $8(\sqrt{6}-\sqrt{2}+2)$
C. $8(\sqrt{2}+2+\sqrt{3})$
D. $8(\sqrt{6}+\sqrt{2}+2)$
23. The range of the function
$f(x)=\log _{\sqrt{5}}\left(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)-\cos \left(\frac{3 \pi}{4}-x\right)\right)$
is
A. $[0,2]$
B. $[-2,2]$
C. $(0, \sqrt{5})$
D. $\left[\frac{1}{\sqrt{5}}, \sqrt{5}\right]$
24. If $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ and $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}, \alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, then $\tan (\alpha+2 \beta)$ is equal to
25. The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be $45^{\circ}$. After walking a distance of 80 meters towards the top, up a slope inclined at an angle of $30^{\circ}$ to the horizontal plane, the angle of elevation of the top of the hill becomes $75^{\circ}$. Then the height of the hill (in meters) is
 satisfy the equation :
A. $\sin x=2 \sin y$
B. $2 \sin x=\sin y$
C. $\sin x=|\sin y|$
D. $2|\sin x|=3 \sin y$
26. The number of solutions of the equation
$1+\sin ^{4} x=\cos ^{2} 3 x, x \in\left[-\frac{5 \pi}{2}, \frac{5 \pi}{2}\right]$ is :
A. 7
B. 3
C. 4
D. 5
27. The triangle of maximum area that can be inscribed in a given circle of radius ' $r$ ' is:
A. A right-angle triangle having two of its sides of length $2 r$ and $r$
B. An equilateral triangle of height $\frac{2 r}{3}$
C. Isosceles triangle with base equal to $2 r$
D. An equilateral triangle having each of its side of length $\sqrt{3} r$
28. If in a triangle $A B C, A B=5$ units, $\angle B=\cos ^{-1}\left(\frac{3}{5}\right)$ and radius of circumcircle of $\triangle A B C$ is 5 units, then the area (in sq. units) of $\triangle A B C$ is
A. $10+6 \sqrt{2}$
B. $6+8 \sqrt{3}$
C. $8+2 \sqrt{2}$
D. $4+2 \sqrt{3}$
29. If $0<x, y<\pi$ and $\cos x+\cos y-\cos (x+y)=\frac{3}{2}$, then $\sin x+\cos y$ is equal to :
A. $\frac{1+\sqrt{3}}{2}$
B. $\frac{1-\sqrt{3}}{2}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{2}$
30. If the angle of elevation of a cloud from a point $P$ which is 25 m above a lake be $30^{\circ}$ and the angle of depression of reflection of the cloud in the lake from $P$ be $60^{\circ}$, then the height of the cloud (in meters) from the surface of the lake is :
A. 60
B. 50
C. 45
D. 42
31. If the lengths of the sides of a triangle are in A.P. and the greatest angle is double the smallest, then a ratio of lengths of the sides of this triangle is :
A. $5: 6: 7$
B. $5: 9: 13$
C. $4: 5: 6$
D. $3: 4: 5$
32. $A B C D$ is a trapezium such that $A B$ and $C D$ are parallel and $B C \perp C D$. If $\angle A D B=\theta, B C=p$ and $C D=q$, then $A B$ is equal to :
A. $\frac{\left(p^{2}+q^{2}\right) \sin \theta}{p \cos \theta+q \sin \theta}$
B. $\frac{p^{2}+q^{2} \cos \theta}{p \cos \theta+q \sin \theta}$
C. $\frac{p^{2}+q^{2}}{p \cos \theta+q \sin \theta}$
D. $\frac{\left(p^{2}+q^{2}\right) \sin \theta}{(p \cos \theta+q \sin \theta)^{2}}$
33. The angles $A, B$ and $C$ of a triangle $A B C$ are in $A$. $P$. and $a: b=1: \sqrt{3}$. If $c=4 \mathrm{~cm}$, then the area (in sq.cm) of this triangle is:
A. $4 \sqrt{3}$
B. $2 \sqrt{3}$
C. $\frac{4}{\sqrt{3}}$
D. $\frac{2}{\sqrt{3}}$
34. In the circle given below, let $O A=1$ unit, $O B=13$ unit and $P Q \perp O B$. Then, the area of the triangle $P Q B$ (in square units) is :

A. $26 \sqrt{3}$
B. $24 \sqrt{2}$
C. $24 \sqrt{3}$
D. $26 \sqrt{2}$
35. The number of roots of the equation, $(81)^{\sin ^{2} x}+(81)^{\cos ^{2} x}=30$ in the interval $[0, \pi]$ is equal to:
A. 3
B. 2
C. 4
D. 8
36. A man is observing, from the top of a tower, a boat speeding towards the tower from a certain point $A$, with uniform speed. At that point, angle of depression of the boat with the man's eye is $30^{\circ}$ (Ignore man's height). After sailing for 20 seconds, towards the base of the tower (which is at the level of water), the boat has reached a point $B$, where the angle of depression is $45^{\circ}$ . Then the time taken (in seconds) by the boat from $B$ to reach the base of the tower is :
A. $10(\sqrt{3}-1)$
B. $10 \sqrt{3}$
C. 10
D. $10(\sqrt{3}+1)$
37. A pole stands vertically inside a triangular park $A B C$. Let the angle of elevation of the top of the pole from each corner of the park be $\frac{\pi}{3}$. If the radius of the circumcircle of $\triangle A B C$ is 2 , then the height of the pole is equal to:
A. $\frac{1}{\sqrt{3}}$
B. $\sqrt{3}$
C. $2 \sqrt{3}$
D. $\frac{2 \sqrt{3}}{3}$
38. The angle of elevation of a cloud $C$ from a point $P, 200 \mathrm{~m}$ above a still lake is $30^{\circ}$. If the angle of depression of the image of $C$ in the lake from the point $P$ is $60^{\circ}$, then $P C$ (in m ) is equal to
A. $200 \sqrt{3}$
B. $400 \sqrt{3}$
C. 400
D. 100
39. A vertical pole fixed to the horizontal ground is divided in the ratio $3: 7$ by a mark on it with lower part shorter than the upper part. If the two parts subtend equal angles at a point on the ground 18 m away from the base of the pole, then the height of the pole (in meters) is:
A. $8 \sqrt{10}$
B. $12 \sqrt{10}$
C. $12 \sqrt{15}$
D. $6 \sqrt{10}$
40. Let in a right angled triangle, the smallest angle be $\theta$. If a triangle formed by taking the reciprocal of its sides is also a right angled triangle, then $\sin \theta$ is equal to :
A. $\frac{\sqrt{5}+1}{4}$
B. $\frac{\sqrt{2}-1}{2}$
C. $\frac{\sqrt{5}-1}{2}$
D. $\frac{\sqrt{5}-1}{4}$
41. If $n$ is the number of solutions of the equation
$2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$
and $S$ is the sum of all these solutions, then the ordered pair $(n, S)$ is :
A. $\left(3, \frac{5 \pi}{3}\right)$
B. $\left(3, \frac{13 \pi}{9}\right)$
C. $\left(2, \frac{2 \pi}{3}\right)$
D. $\left(2, \frac{8 \pi}{9}\right)$
42. The number of solutions of the equation $x+2 \tan x=\frac{\pi}{2}$ in the interval $[0,2 \pi]$ is :
A. 5
B. 2
C. 4
D. 3
43. The sum of solutions of the equation
$\frac{\cos x}{1+\sin x}=|\tan 2 x|, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ is
A. $\frac{\pi}{10}$
B. $-\frac{7 \pi}{30}$
C. $-\frac{11 \pi}{30}$
D. $-\frac{\pi}{15}$
44. All possible values of $\theta \in[0,2 \pi]$ for which $\sin 2 \theta+\tan 2 \theta>0$ lie in :
A. $\left(0, \frac{\pi}{2}\right) \cup\left(\pi, \frac{3 \pi}{2}\right)$
B. $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{5 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{7 \pi}{4}\right)$
C. $\left(0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\pi, \frac{7 \pi}{6}\right)$
D. $\left(0, \frac{\pi}{4}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\frac{3 \pi}{2}, \frac{11 \pi}{6}\right)$
45. The sum of all values of $\theta \in\left(0, \frac{\pi}{2}\right)$ satisfying $\sin ^{2} 2 \theta+\cos ^{4} 2 \theta=\frac{3}{4}$ is :
A. $\pi$
B. $\frac{\pi}{2}$
C. $\frac{5 \pi}{4}$
D. $\frac{3 \pi}{8}$
46. In $\triangle A B C$, the lengths of sides $A C$ and $A B$ are 12 cm and 5 cm , respectively. If the area of $\triangle A B C$ is $30 \mathrm{~cm}^{2}$ and $R$ and $r$ are respectively the radii of circumcircle and incircle of $\triangle A B C$, then the value of $2 R+r(i n \mathrm{~cm})$ is equal to
47. The number of distinct solutions of the equation, $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi]$, is
48. Let $A D$ and $B C$ be two vertical poles at $A$ and $B$ respectively on a horizontal ground. If $A D=8 m, B C=11 m$ and $A B=10 m$; then the distance (in meters) of a point $M$ on $A B$ from the point $A$ such that $M D^{2}+M C^{2}$ is minimum is
49. Let $S$ be the sum of all solutions (in radians) of the equation $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ in $[0,4 \pi]$. Then $\frac{8 S}{\pi}$ is equal to
