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CIRCULAR MOTION

1. Kinematics of Circular Motion :

 Acceleration a


 = 
dv
dt


 = 

d
dt

 (


 × r


) = 
d
dt



 × r


 + 


  × 
dr
dt


 = 


 × r


 + 


 × v


 = ta


 + ca


 Tangential acceleration at = 
dv
dt


= r

[ ta


 = component of a


   along v


 = ( a
 . v̂ ) v̂ ]

 Centripetal acceleration ac = v = 
2v

r
 = 2r or ca


 = 2r(– r̂ )

 Magnitude of net acceleration a = 2 2
c 1a a = 

22v dv
r dt


      

  
 The concept of radius of curvature : The normal on tangent at a point on the curve gives

the direction of radius.

i.e., R = 

3/2

2 2

dy
1

dx

d y / dx

    
   

2. Centripetal and Centrifugal Forces :

2.1 Centripetal Force :
Centripetal force can be expressed as

F


 = – m2 r


 = –m2 r̂  = – 
2mv

r
 
 
 

r̂

(a) If the body comes to rest on a circular path i.e.,  v
   0, the body will move along the

radius towards the centre and if ar vanishes, the body will fly off tangentially, so a
tangential velocity and radial acceleration are necessary for uniform circular motion.

(b) As F  0, so the body is not in equilibrium and linear momentum of the particle does
not reamin conserved but angular momentum is conserved as the force is central
i.e.  = 0

(c) In the case of circular motion, centripetal force changes only the direction of velocity
of the particle.
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2.2 Centrifugal Force :
(a) In a non-inertial frame Centrifugal force exist which is equal and opposite to centripetal

force which exist in an inertial frame.
(b) Under centrifugal force body moves only along a sraight line. It appears when centripetal

force ceases to exist. Since the body is viewed from a non-inertial frame.

 

 

v

Centrifugal force
on string 

O T

mg

(c) In an inertial frame, the centrifugal force does not act on the object.
(d) In non-inertial frames, centrifugal force arises as pseudo forces and need to be considered.
(e) Under centrifugal forces arises as pseudo force and need to be considered.

3. Maximum Speed of Vehicle on Circular Turning Roads
 On Unbanked Roads (Friction Only) :

vmax = Rg

 On Frictionless Banked Road :

vmax = Rgtan
where Banking angle

 On Frictional Banked Road :

Vmin = 
tan – tan

Rg
1 tan tan
  
    

= Rgtan( – ) 

vmax = 
tan tan

Rg
1 – tan tan
   
   

 = Rgtan( ) 

Where,  = angle of friction = tan–1 ()
 = angle of banking

 Death Well :
f = mg

N = 
2mv

R
 = mR2

          
 

RN

f

mg


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 Bending of Cyclist :

tan  = 
2v

rg 

mg

N

4. Conical Pendulum
If the bob of a simple pendulum is pulled to a side and whirled to move along a circle in
horizontal plane, the string sweeps a cone and this arrangment is called conical pendulum.
If l is length of the pendulum, F is tension in the string, r is radius of the horizontal circle
and  is the semivertical angle of the cone, then     

 

h
F 

F cos  

mg



r

l 

F sin  

F sin  = mr2 and F cos = mg

tan  = 
2r

g


   = 
g tan

r


Time period T = 2 
r

gtan  =  
h
g  = 2

lcos
g


(from r = l sin )

5. Circular Motion in Vertical Plane
A. Condition to Complete Vertical Circle :

u 5gR

If u 5gR then Tension att C is equal to 0

and tension at A is equal to 6 mg

B

C

R

A
u

Velocity at B : 
Bv 3gR

Velocity at C : Cv gR          

B

C

R

A u

T
V

mgcos
mg



mgcos

 

B

C

R

A

T

V

mgcos
mg

mgcos

From A to B : T = mg cos + 
2mv

R

From B to C : T = 
2mv

R
 – mg cos 

B. Condition to Pendulum Motion (Oscillation Condition)

u 2gR  (in between A to B)
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Velocity can be zero but T never be zero between A & B.

Because T is given by T = mg cos  + 
2mv

R

C. Condition for Leaving Path :

2gR u 5gR 
B

C

R

V

T=0, v 0



Particle crosses the point B but not complete the vertical circle.
Tension will be zero in between B to C  & the angle where T = 0

2u – 2gR
cos

3gR
 

 is from vertical line.

Note : After leaving the circle the particle will follow a parabolic path.

 When a body is to move along a vertical circle it should have certain critical velocities at
various points. Tension in string also changes from point to point. Tension will be maximum
when the body is at the lower position.

 If the body has velocity less than the critical velocity, body cannot complete vertical circle.
In such a case body may execute simple harmonic motion or it may leave the circle.

 Consider a body of m tied to one end of a string be whirled in a vertical circle of radius r in
the vertical plane.

(a) For just completing vertical circle,

         

 
 

   

A A

B B

C D C D

at the lowest point A is V 5gr  i.e.V 5gr ,

Velocity of body at highest point B is V gr  i.e.V gr ,  

at horizontal point C or D is V  or V  = 3gr  i.e.V  or V 3gr

  
 
   
 
  

(b) For the body to complete the veritcal circle,
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A

B

C D

at the lowest point A is T 6 mg,
Tension in the string  at height point B is T 0,  

at horizontal point C or D is (T  or T ) 3mg

 
  
  

 



A
VA 

VP 

O 

VD 

D C

B 

VC 

VB 

P

(c) If the body at point P has critical velocity for just completing vertical circle

VP  = gr(3 2cos )   and tension in the string is TP = 3 mg (1 + cos )

 TP = 
  2

PM V g r – h

r


(where h is height of P above A)

Here at A,  = 0° and VP = VA = 5gr

at B,  = 180° and VP = VB = gr

at C,  = 90° and VP = VC = 3gr
We can obtain tension also.

(d) gr  is the least velocity at the top for the body to describe vertical circle if V gr
string slackens

(e) If the velocity of the body at the lowest point is less than 5gr , it cannot completee

vertical cirlce.

(i) If VA < 2gr , velocity of the body becomes zero at a certain point before tension of

the string vanishes. So, body will oscillate about A.

(ii) If VA = 2gr  here also body will oscilatles about A but along semcircle DAC.

(iii) If 2gr  < VA < 5gr , tension in the string vanishes before velocity of the body

becomes zero. Then the body will leave the circle along the tangent at that point
(This occurs at a point between C and B).

CIRCULAR MOTION
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 When a body moves along a vertical circle by first maintaining its critical velocities at various
points, then difference in the tension of the string when it is at the bottom most and top
most points is equal to six times the weight of the body. Here tension in the string when
the body is at the top most point is zero.
If the body just complete vertical circle.

TA – TB = 6 mg
TA – TC = 3 mg

 A body can move along a vertical circle with uniform speed but the tension in the string
should be adjusted from point to point.

 When a body moves along a vertical circle with uniform speed, difference in the tension in
the string when the body is at the lowest and top most positioin is equal to twice the
weight of the body.

 When a body just moves in a vertical circle, its total energy only is constant. Its speed,
linear velocity, linear momentum, angular momentum, angular velocity, P.E., K.E., centrip-
etal force, tension in the string all the variable.

 When a body slides along an inclined plane of height ‘h’ and describes vertical cirlce of
radius ‘r’ on reaching the bottom, then h = 5r/2.

Here mgh = 
1
2

 mvv2 where V = 5gr
5r

 h
2

  
 


 When a vehicle moving with certain speed is at the top of a convex shaped bridge or speed
braker, the normal force on it is less than its weight. If that vehicle is at the lowest portion
of a dip or concave shaped bridge, the normal force on it is greater than its weight.

 A car moving with speed V enters on a concave bridge of radius of curvature r. At the top

most point of that bridge, normal reaction on the car is N = mg – 
2mV

r
.

If the car moves on concave bridge and the bottom most point, N = mg  + 
2mV

r

 

 
 If a bucket filled with water is whirled in a vertical circle at the end of a rope, water will not
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fall down when it is at the highest point if its velocity at the point is V  gr 

Here its period of revolution is T  2
r
g  , where r is the lenght of rope.

 A block of mass M hangs at the end of a string of length ‘l’. A bullet of mass m flying
horizontally hits the block and sticks to it. If the block now completes vertical circle, mini-

mum velocity of the bullet is V = 
M m

m


 5gl

 A particle begins to slide without any friction from the top of a hemisphere of radius R as
shown. If leaves the surface of hemisphere at height ‘h’ above the centre, such that h = 2r/3
and cos  = 2/3.

 

 

R

If its velocity at the highest point is gR , it leaves the hemisphere along the tangent att

that point without sliding down.

 A bob of mass m is suspended from point ‘O’ using an ideal string of length ‘l’. If the bob is
pulled to a position P such that string makes an angle  to the vertical and released, then

velocity of the bob on reaching bottom most point B is V = 2gl(1 – cos )  and in this position

in the string is

T = 
2mV

l
 + mg = mg (3–2 cos )

 
B 

P



 A shell of mass M hangs at the end of a string of length l. It explodes into two pieces, a
piece of mass m flies of horizontally and the remaining fragment attached to the string
just completes vertical circle.
mu = (M – m) V (numerically)
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Where V = 5gl

u = 
(M – m) 5gl

m


M
– 1

m
 
 
 

 5gl

KEY POINTS
 Average angular velocity is a scalar physical quantity whereas instantaneous angular

velocity is a vector physical quanity.
 Small Angular displacement d


 is a vector quantity, but large angular displacement is

scalar quantity.

1 2 2 1d d d d      
   

 But 1 2 2 1      
   

Relative Angular Velocity
Relative angular velocity of a particle 'A' w.r.t. other moving particle 'B' is the angular
velocity of the position vector of 'A' w.r.t. 'B'.

That means it is the rate at which position vector of 'A' w.r.t. 'B' rotates at that instant

AB = AB

AB

(v )
r

  = 
Relative velocity of A w.r.t. B perpendicular to line AB

seperation between A and B
here (vAB)  = vA sin + vB sin 

 
A 1 B 2v sin v sin

r
  

CIRCULAR MOTION
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WORK, ENERGY AND POWER

1. Work done :
W dW F.dr Fdrcos     

 

For constant force W = F.d
  = Fdcos

For Unidirectional force

W dW Fdx    = Area between F – x curve and x-axis.
 Calculation of work done from force-displacement graph :

 

P1 

M 

P2 

N 
r O r1 r2 

F 

dr


total work done, 
2 2

1 1

r r

r r

W dW F.dr     area of P1P2 NM = 
2

1

r

r

Fdr

2. Nature of work done :
Although work done is a scalar quantity, yet its value may be positive,negative or even zero
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3. Work done by variable force :
B B

AB A A
W F.ds Fds cos   

 

In term of ractangular components

x y z
ˆˆ ˆF F i F j F k  


 and ˆˆ ˆds dxi dyj dzk  



then work done is

 B

AB x y zA
ˆ ˆˆ ˆ ˆ ˆW (F i F j Fk). dxi dyj dzk    

or 
B B B

A B A

x y z

AB x x y zx y Z
W F d F dy F dz      

ds


F


B 



A 

4. Conservative Forces :
Work done does not depend upon path.
 Work done in a round trip is zero.
 Central forces, spring forces etc. are conservative forces
 When only a conservative force acts within a system, the kinetic energy and potential

energy can change into each other. However, their sum, the mechanical energy of the
system, doesn't change.

 Work done is completely recoverable.
 If F


 is a conservative force then F 0 

 
 (i.e. curl of F


 is zero)o)

5. Non-conservative Forces :
 Work done depends upon path.
 Work done in a round trip is not zero.
 Force are velocity- dependent & retarding in nature e.g. friction, viscous force etc.
 Work done against a non-conservative force may be dissipated as heat energy.
 Work done is not recoverable.

6. Kinetic energy :
 The energy possessed by a body, by the virtue of its motion is called kinetic energy.

21 1
K mv m(v.v)

2 2
 

 

 Kinetic energy can never be negative, it is always positive.

 Relation between kinetic energy (K.E) and linear momentum (P) :

2P
K.E.

2m
  P 2m(K.E.)
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Graphs -

K.E. 

P=Constant 

m 

   K.E. 

m = Constant 

m 

  

 

P 

K.E.

7. Work-Energy Theorem :
According to this theorem work done by net force on a body is equal to change in its
kinetic energy.

W K.E.   or  2 2
2 1

1 1
W mv mv

2 2
 

Note -
(i) If K.E. of the body decreases then work done is negative i.e. the force opposes the

motion.
(ii) If K.E. of the body increases then work done is positive. i.e. the force supports the

motion.

8. Potential energy :
 The energy which a body has by virtue of its position or configuration in a conservative

force field.
 Potential energy is a relative quantity.
 Potential energy is defined only for conservative force field.
 Relationship between conservative force field and potential energy :

U U U ˆˆ ˆF grad(U) i j k
x y z

  
     

  



 If force varies only with one dimension (along x-axis) then 
2

1

x

x

dU
F U Fdx

dx
    
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9. Potential energy curve and equilibrium :

It is a curve which shows change in potential energy with position of a particle.

 Nature of Forces :

At point C : slope 
dU
dx

 is negative so F is positive.

At point D : slope  
dU
dx

 is positive so F is negative.

At point E : slope 
dU
dx

 is positive so F is negative.

At point G : slope 
dU
dx

 is negative so F is positive.

 Stable Equilibrium :
When a particle is slightly displaced from equilibrium position and it tends to come
back towards equilibrium then  it is said to be in stable equilibrium.

At point A :  it is the point of stable equilibrium.

At point A : U = Umin , 
dU
dx

 = 0 and 
2

2

d U
dx

 = positivee

 Unstable equilibrium :
When a particle is slightly displaced from equilibrium and it tends to move away from
equilibrium position then it is said to be in unstable equilibrium.

At point B : it is the point of unstable equilibrium.

At point B : U = Umax, 
dU
dx

 = 0 and 
2

2

d U
dx

 = negativee

 Neutral equilibrium :
When a particle is slightly displaced from equilibrium position and no force acts on it
then equilibrium is said to be neutral equilibrium. Point H is at neutral equilibrium 

U = constant ; 
2

2

dU d U
0, 0

dx dx
 
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10. Law of conservation of Mechanical energy :
Total mechanical (kinetic + potential) energy of a system remains constant if only
conservative forces are acting on the system of particles or the work done by all other
forces is zero. From work energy theorem W = KE
Proof :
For internal conservative forces Wint = –U
So W = Wext + Wint = 0 + Wint = –U
–U = KE (KE + U) = 0 KE + U = (constant)

 Spring force F = –kx, Elastic potential energy stored in spring U(x) = 
1
2

kx2

 Mass and energy are equivalent and are related by E = mc2

11. Power
 Power is a scalar quantity with dimension M1L2T–3

 SI unit of power is J/s or watt
 1 horsepower = 746 watt = 550 ft-lb/sec.

Average power Pav = W/t

 Instantaneous power dW dr
P F. F.v

dt dt
    
 

  

T time

work

W
W2

W1

t1 t2time

w
or

k

po
w

e r

timedt
instantaneous power average powerW Pdt

 tan
dt
dWP t

W
t

 
t

W W
PP

12

12 




fig. (a) fig. (b) fig. (c)

avg.

–

–

・ For a system of varying mass d dv dm
F (mv) m v

dt dt dt
  

  

・ If v = constant then dm
F v

dt


   then 2 dm
P F.v v

dt
 
 

・ In rotatory motion : d
P .

dt


   
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12. Key Points :
 A body may gain kinetic energy and potential energy simultaneously because principle

of conservation of mechanical energy may not be valid every time.
 Comets move around the sun in elliptical orbits. The gravitational force on the comet

due to sun is not normal to the comet's velocity but the work done by the gravitational
force is zero in complete round trip because gravitational force is a conservative force.

 Work done by static friction may be positive because static friction may acts along the
direction of motion of an object.

13. Efficiency :

Efficiency of a machine in % 
Work done

100%
energy input

 

or Efficiency = 
output

input

P
100%

P


Pinput Perfect machine Poutput 

output

input

P
Efficiency 1 100%

P
  

Pinput Realistic machine Poutput 

Plost (usually waste heat) 

output

input

P
Efficiency 1 (lessthan100%)

P
 
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14. Circular Motion in a Vertical Plane:

 Vertical circular motion using a string:
Suppose a body is tied to a string and rotated in a vertical circle as shown

Y

R

c
X

Z

Between X and Y, tension will balance out weight and hence the string will always be taut.
So the velocity required to reach Y can be found out by conserving mechanical energy.

Ex(Energy at X) = 21
mu

2

Since the particle just reaches point Y hence Velocity at Y is zero.
Ey=mgR

Equating both we get, u = 2gR

Now if want to find the minimum velocity to reach point Z, can I assume velocity to be zero
at Z? The answer is no because if the velocity is zero at Z then weight will not be balanced
and the string will become slack So at Z, velocity should be such that the weight is equal to
the centripetal force making tension just to be zero.


2mv

mg
R

...(1)

 
2

z

mv
E mg(2R)

2
Substituting the value of v we get
Ez= 2.5mgR
Equating Ex and Ez we get,

u = 5gR

So now we have our critical values we can frame our cases,
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Case I : u 2gR;

The ball will oscillate and never reach point Y.

Case II :  2gR u 5gR

The ball will lose contact somewhere between Y and Z and start projectile motion.

Case III: u 5gR

The string will never become slack and complete the circle.

 Vertical circular motion using a rod:
The situation is similar when the ball is tied to a rod and moved in vertical circle. The only
difference is now the velocity at the top can be zero. As now the normal reaction of the
rod can balance the weight at that point. Solving similarly as above we get the following
cases for a rod:

Case I : u 2gR

The body will oscillate and not reach point Y.

Case II :  2gR u 4gR

The ball will oscillate and cross point Y but not reach point Z.

Case III : u 4gR

The body will complete the circle.
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CENTRE OF MASS

 Centre of mass :
For a system of particles, centre of mass is that point at which its total mass is supposed to
be concentrated.

 Centre of mass of system of discrete particles :
 

z 

y 

x 
(0, 0, 0) 

m1(x1, y1, z1) 
m2(x2, y2, z2) 

m3(x3, y3, z3) 

mn (xn, yn, zn) 

𝑟1
→ 

𝑟2
→ 

𝑟3
→ 

𝑟𝑛
→ 

Total mass of the body : M = m1 + m2 + ....... + mn then

 
i n

1 1 2 2 3 3 n n
CM i i

i 11 2 3 n

m r m r m r ... m r 1
R m r

m m m ... m M





   
 

    
    

co-ordinates of centre of mass :
i n i n i n

cm i i cm i i cm i i
i 1 i 1 i 1

1 1 1
x  m x ,  y m y  and z m z

M M M

  

  

    
 For a two particle system, distances of particles from centre of mass are in the reverse

ratio of the masses i.e. m1r1 = m2 r2 
1 2

2 1

r m
.

r m


 Two circular discs/sphere of the same material are kept in contact as shown, then distance

of centre of mass from the centre of the first disc is    
2
2

1 22 2
1 2

r
r r .

r r


   Similarly distance of

centre of mass from the centre of the second disc is
   

2
1

1 22 2
1 2

r
r r .

r r



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Centre of mass of continuous distribution of particles

CM
1

R rdm
M

 
 

com

x dm 1
X x dm

Mdm
  

y

x
(0, 0, 0)

z

dm
r

com

ydm 1
Y ydm

Mdm
  

com

z dm 1
Z zdm

Mdm
  

x, y, z are the co-ordinate of the COM of the dm mass.

 The centre of mass after removal of a part of a body
Original mass (M) – mass of the removed part (m)
 = {original mass (M)} + {– mass of the removed part (m)}

When a part is removed from a rigid body. then the position of COM of the remaining
portion will be :

COM

1 2r r
r

M m
M m



 

 The co-oradinates of COM is given by

 1 2
COM

Mx mx
x

M m





1 2
COM

My my
y

M m





1 2
COM

M z mz
z

M m





  Centre of mass of some common objects

    

Shape Figure 𝐱ത 𝐲ത 
 
 
 
Triangular area 

 

 
 
 
 

 
 
 

h

3
 

 

h 
yത 

b

2
 

b

2
 

C 

CENTRE OF MASS

M - m
m

R
2

R

(0,0)



 
3© 2022, BYJU’S. All rights reserved

    

Shape Figure 𝐱ത 𝐲ത 
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CENTRE OF MASS

       

Shape  Figure 𝐱ത 𝐲ത 
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CENTRE OF MASS

     

Solid Cone

Hollow Cone

Shape Figure x
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0

y

yCM

CM

x

y

h

yCM

CM
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h

CM
h

y
3

=

CM
h

y
4

=

 Motion of centre of mass

For a system of particles,

velocity of centre of mass
CM 1 1 2 2 n n

CM
1 2 n

dR m v m v ... m v
v

dt m m ... m
  

 
  

   

Similarly acceleration   1 1 2 2 n n
CM CM

1 2 n

m a m a ... m ad
a v

dt m m ... m
  

 
  

   

 Analysis of Dynamics of COM

  COM

sys
net ext

sys

dP
F F Ma

dt
  

  

 COM is rest 
n et

CO M

F 0

V 0








 COM moves with  constant velocity 
net

COM

F 0

V 0







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CENTRE OF MASS

 COM moves with acceleration     n e tF 0


 If a system is at rest intially and there is no net external force acting on it then there will

   be no shift in position of the COM of the system.

   net COM COMF 0 V 0 r 0     
  

 Law of conservation of linear momentum
Linear momentum of a system of particles is equal to the product of mass of the system

with velocity of its centre of mass.

From Newton's second law CM
ext.

d(Mv )
F

dt




If ext.F 0


, then  cmMv


 = constantt

If no external force acts on a system the velocity of its centre of mass remains constant,

i.e., velocity of centre of mass is unaffected by internal forces.

 Impulse-Momentum theorem

Impulse of a force is equal to the change of momentum.

Force-time graph area gives change in momentum. 
2

1

t

t

Fdt P 
 

 Reduced Mass For Two Body System

1. A two body system can be made equivalent to a single body system by introducing the

concept of reduced mass.

2. Let m1 and m2 be the masses of two particles with position vectors 1r


 and 2r


 and 12F


 be the

forces exerted by second body on first body and 21F


 by first body on second body

respectively.

2 2
1 2

12 1 21 22 2

d r d r
F m  and F m

dt dt
 

  

As no external force acts on the system, 12 21F F F  
  

2 2
1 2 1 2
2 2

1 2 1 2

d r d r m m1 1
 F F

dt dt m m m m
   

       
   

   
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1 2Let r r r 
  

2 2
1 2 1 2

2 2
1 2 1 2

d r m m m m d r
 F or F

dt m m m m dt
    

     
   

  

2

2

d r
or F

dt
 

 

Here 
1 2

1 2

m m
m m
 

    
 is called reduced mass.

 Classical Example of Application of COM :-

(1) The earth revolves around the sun in an elliptical orbit whereas the moon revolves round
the earth in circular orbit. Both the earth and the moon move in circles about a common
centre of mass. The internal force which act on the earth moon system are the gravitational
force of attraction on each other. The earth and the moon are always on opposite sides of
the centre of mass. Since the earth is heavier than moon, So the centre of mass of the
system is very close to the earth. It is this centre of mass which revolves around the sun in
an elliptical orbit.

 

(2) In radioactive decay, the process is caused by the internal forces of the system. Therefore,
initial and final momenta are zero. Hence, the decay products fly off in the opposite
directions. The centre of mass of the system remains at rest. The heavy mass move with
less speed than that of the light mass.

 

(3) Explosion of a projectile (e.g. fire cracker) in mid air. Let us consider a projectile which
explodes in air. Before explosion, the projectile move along a parabolic path. After explosion,

CENTRE OF MASS
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CENTRE OF MASS

each fragment move along its own parabolic path but the centre of mass of the projectile
continues to move in the same parabolic path.

Explanation. The projectile follows a parabolic path under the action of gravity (i.e. earth’s
gravitational force) Explosion of the projectile occurs due to the internal forces i.e, without
any external force. These internal forces cannot change the total momentum of the system
al though they may change the momenta of the individual fragments. Thus the centre of
mass will remain unaffected after the explosion and hence follow the same parabolic path.

(4) When a diver jumps into water form a height, then body can moves in any path but centre
of mass of his body traverses in parabolic path.

So centre of mass follow laws of motion.
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COLLISIONS

1. Collision of bodies :
The event or the process, in which two bodies either coming in contact with each other or

due to mutual interaction at distance apart, affect each others motion (velocity, momentum,

energy or direction of motion) is defined as a collision.

2. In collision :
• The particles come closer before collision and after collision they either stick together or

move away from each other.

• The particles need not come in contact with each other for a collision.

• The law of conservation of linear momentum is necessarily applicable in a collision,

   whereas the law of conservation of mechanical energy is not.

 

Two dimensional collision
or

Oblique collision

On the basis of direction On the basis of kinetic energy

One dimensional collision
or

Head on collision

Elastic 
collision

Inelastic
collision 

Perfectly inelastic
collision 

The collision in which 
the particles move
along the same straight
line before and after the 
collision, is defined as one 
dimensional collision 

The collision, in which the 
particles move in the same 
plane at different angles 
before and after collision, 
is defined as oblique 
collision 

A collision is
said to be 
elastic, if the
total kinetic
energy before
and after 
collision 
remains the 
same

A collision is 
said to be 
inelastic, if
the total 
kinetic 
energy does 
not remains 
constant

The collision, in which 
particles get sticked 
together after the 
collision. It is called 
perfectly inelastic 
collision. In this type 
of inelastic collision, 
loss of energy is 
maximum.

Types of Collisions 

COLLISIONS
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2.1 Head on collision :

 

2.2 Elastic Collision :

1. For one dimensional collision between two bodies
     Total momentum before collision = Total momentum after collision.

2. m1 and m2 are masses of two bodies moving with velocities u1 and u2 in the same direction
     (u2 < u1). After collision their velocities are v1 and v2. Then

• For one dimensional collision between two bodies,
   m1u1 + m2u2 = m1v1 + m2v2  (conservation of momentum)

• If the second body is at rest before collision, u2 = 0
• If they approach each other before collision, u2 = – u1

• If they move together with velocity v after collision,
   m1 u1 + m2 u2 = (m1 + m2) v

     1 1 2 2

1 2

m u m u
v

(m m )





 (perfect inelastic collision)

3. Coefficient of restitution e = 1
     v2 – v1 = u1 – u2

Or relative velocity of separation after collision is equal to relative velocity of approach before
collision.

4. For perfect elastic collision between two bodies which is head on,

    m1u1 + m2u2 = m1v1 + m2v2  and  2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1
m u m u m v m v

2 2 2 2
  

    (v2– v1) = (u1– u2)

    Here
    (i)   If m1 = m2 = m, then v2 = u1 and v1 = 0
    (ii)  If m2>>m1, then v1 = – u1 and v2 = 0
    (iii) If m1>>m2 then v1 = u1 and v2= 2u1

5. When a lighter body collides with a stationary heavy body elastically, the second body starts
moving with the velocity of the first body while the first body stops.

6. When a heavy body collides elastically with a stationary lighter body, then heavy body continues
to move with the same velocity but the lighter body starts moving with double the velocity of
heavy body.

COLLISIONS
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7. When a lighter body collides with a heavy body at rest, then it returns with the same velocity but
heavy body remains at rest.

8. When perfect elastic collision takes place between two bodies of same mass moving along a
direction, the two bodies interchange their velocities after collision.

9. For perfect elastic collision between a moving body m1 and stationary body m2

Fraction of K.E transferred to the second body = Fraction of K.E retained by the first body.

10. A ball is dropped from certain height. If the collision is perfectly elastic, it rebounds to the same
height.

11. When two bodies of equal mass moving towards each other collide elastically with same velocity
in magnitude, after collision, they move away with the same velocity in magnitude.

12. A body makes an oblique elastic collision with another body of same mass at rest. After collision,
they will move in mutually perpendicular directions.

13. Collisions between atomic, nuclear and fundamental particles are examples of elastic collisions.

2.3 Perfect Inelastic Collision :

1. For one dimensional collision between two bodies
Total momentum before collision = Total momentum after collision

2. After perfect inelastic collision the two bodies stick together and move with same velocity


 


1 1 2 2

1 2

m u m u
v

m m

3. The collision between a bullet and a target is perfectly inelastic if the bullet remains embedded
in the target.

4. Coefficient of restitution e = 0

 v1 = v2 = v

5. Only momentum is conserved and kinetic energy is not conserved.

6. If a body of mass m1 collides with a body of mass m2 at rest and the collision is perfectly
inelastic, 1

1 2

Final K.E m
Initial K.E (m m )




  (for the system)

If K is initial K.E of m1, then loss in K.E 2

1 2

m
K

m m
 

   

Fractional loss in K.E is 
2

1 2

m
m m

 
  

7. Loss in kinetic energy during perfect inelastic collision  


21 2
1 2

1 2

m m1
(u u )

2 m m

COLLISIONS
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8. If the two bodies approach each other before collision, common velocity after collision is





1 1 2 2

1 2

m u m u
v

m m  Loss in kinetic energy in the case is 
 

  
21 2

1 2
1 2

m m1
(u u )

2 m m

Coefficent of Restitution :

1. The ratio between relative velocity of separation after collision and relative velocity of approach

before collision is know as coefficient of restitution 



2 1

1 2

v v
u u

e

2. The value of ‘e’ is given by  0 1e
If e = 0, the collision is perfectly inelastic
If e = 1 the collision is perfectly elastic
If 0 < e < 1 the collision is semi elastic

3. e is dimensionless and has no units.

4. The value of e is independent of masses and the velocities of the colliding bodies

5. e depends on the nature of material of the colliding bodies

6. If a body is dropped from a height ‘h’ and after first rebound it rises to a height h1 the coefficient

of restitution    21
1

h
h h

h
e e  After nth rebound hn = e2nh

If the body strikes the ground with velocity v and rebounds with velocity v1 then

  1
1

v
v v

v
e e  After nth rebound vn= en v

7. A ball dropped from a height h. It strikes the ground and rebounds. Here ‘e’ is coefficient of
restitution and this collisions took place repeatedly. The total distance travelled by the ball before

coming to rest is 
 

   

2

2

1
d h

1
e
e

 Here total time taken by the ball to come to rest is      

2h 1
t

8 1
e
e

8. A ball of mass m is dropped from height h and after hitting the ground it rises to height less
than ‘h’. If ‘e’ is coefficient of restitution, the change in momentum of the ball in magnitude is

m 2gh(1 )e

9. For one dimensional collision between two bodies of masses m1 and m2 moving with initial
velocities u1 and u2 respectively, final velocities after collision are given by

  
    

1 2 2
1 1 2

1 2 1 2

m m m (1 )
v u u

m m m m
e e

COLLISIONS
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  
    

1 1 2
2 2 1

1 2 1 2

m m m (1 )
v u u

m m m m
e e

Here loss in kinetic energy during collision is 
 

   
2 21 2

1 2
1 2

m m1
(u u ) (1 )

2 m m
e

     2.4 Head on inelastic collision of two particles :

Let the coefficient of restitution for collision is e
(i)  Momentum is conserved m1u1 + m2u2 = m1v1 + m2v2 .....(i)
(ii) Kinetic energy is not conserved.

(iii) According to Newton’s law 2 1

1 2

v - v
e

u - u
  ...(ii)

By solving eq. (i) and (ii)

v1=
221

1
21 1 2

(1 e)mm em
u

m m m m

  
         

 
 1 1 2 2 2 1 2

2
1 2

m u m u – m e u – u
u

m m





v2=
2 1

21 1 2

1
2

m em (1 e)m
u

m m m m

   
         

 
 1 1 2 2 1 2 1

1
1 2

m u m u – m e u – u
u

m m





        2.5 Two Dimensional Collision :

1. Consider two bodies of masses m1 and m2 moving with velocities u1 and u2 along the same
straight line. They collide and after collision they move in directions making angles  and

with the initial direction of motion. Let v1 and v2 be their final velocities. Then

u1

m1

u2

m2

m1v1 sin

m2v2 sin 


 m1v1 cos + m2v2cos

m2

v2

m1
v1 

From conservation of momentum

m1 u1 + m2 u2 = m1 v1 cos + m2 v2 cos

0 = m1 v1 sin – m2 v2 sin

COLLISIONS
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      2.6 Oblique Collision :
Conserving the momentum of system in directions along normal (x-axis in our case) and
tangential (y-axis in our case)
m1u1cos1 + m2u2cos2 = m1v1cos1 + m2v2cos2 and
m2u2sin2 – m1u1sin1   = m2v2sin2 – m1v1sin1

1

2

u2
m2

m1

u1

Before
collision

m1

m2

y

v2

v1

1

2

After
collision

x

Since no force is acting on m1 and m2, along the tangent (i.e. y-axis) the individual
momentum of m1 and m2 remains conserved.
m1u1sin1 = m1v1sin1 & m2u2sin2 =  m2v2sin2

By using Newton’s experimental law along the line of impact

2 2 1 1

1 1 2 2

v cos – v cos
e

u cos – u cos
 


 

3. Rocket propulsion :

Thrust force on the rocket, gas

dm
F v

dt
 

From Newton’s Second law,

–Fgas = Frocket

Therefore,

rocket

dm
F v

dt


From free body diagram,

 
dm

v mg ma
dt

Where,

v is the relative velocity of gases w.r.t. rocket

m is the mass of the rocket

COLLISIONS
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g is the acceleration due to gravity

a is the initial acceleration of the rocket

dm
dt

 is the rate of consumption of fuel

Velocity of rocket at any instant

0
r

m
v u – gt v n

m
    
 



u v

At t=0
v=u
m=m0

At t=t
m=m
v=v

exhaust velocity = vr

4. Ballistic Pendulum :
1. It is used to find velocity of bullet. This arrangement consists of a wooden block suspended

using a rope or wire. A bullet fired horizontally into the block, it gets embedded and both
move together.

2. Let m be mass of the bullet which strikes the wooden block of mass M with velocity u and
gets embedded into it. After this the combined system moves with a velocity v and the
system rises to a height h above the previous level. Then

  mu M m v

 
 


mu

v
M m

As  
 


mu

v 2gh, 2gh
M m

M m
u 2gh

m
   

 

    

2mu
h / 2g

M m

3. In the previous case if the bullet emerges out from the block with velocity u1 and the
block rises to a height h,

  1m u u Mv

COLLISIONS
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COLLISIONS

    
  1 1m u u m u u

v or 2gh
M M

4. Ballistic pendulum is an example for perfect inelastic collision (if the bullet stops in the
block).


