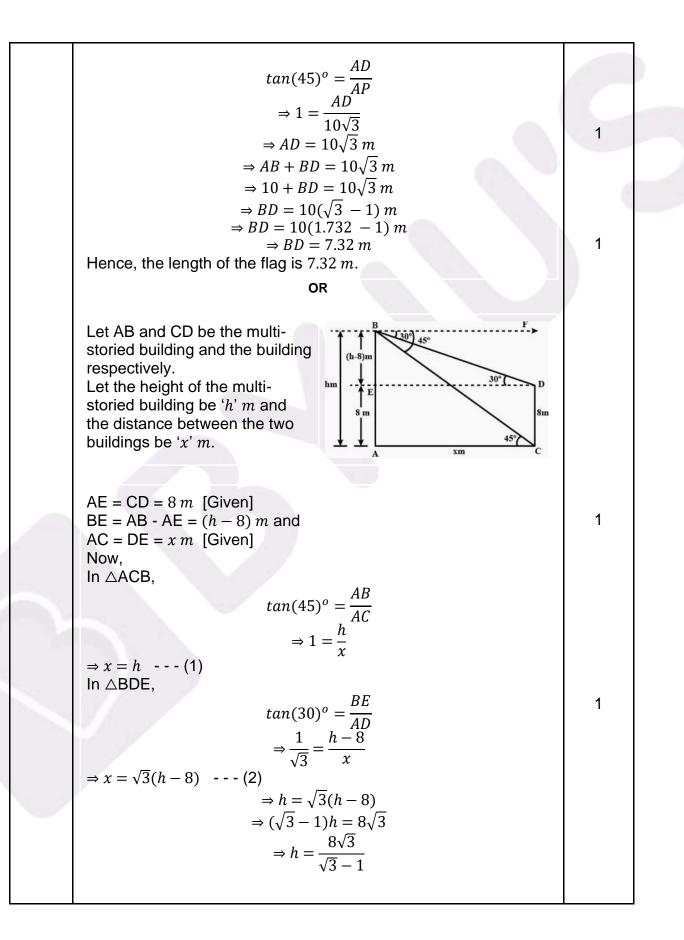
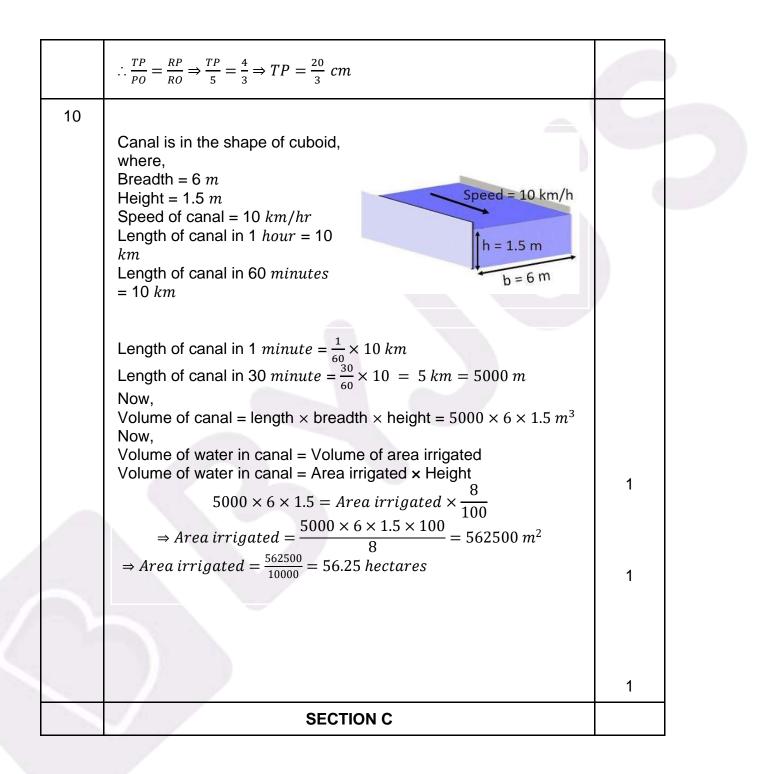
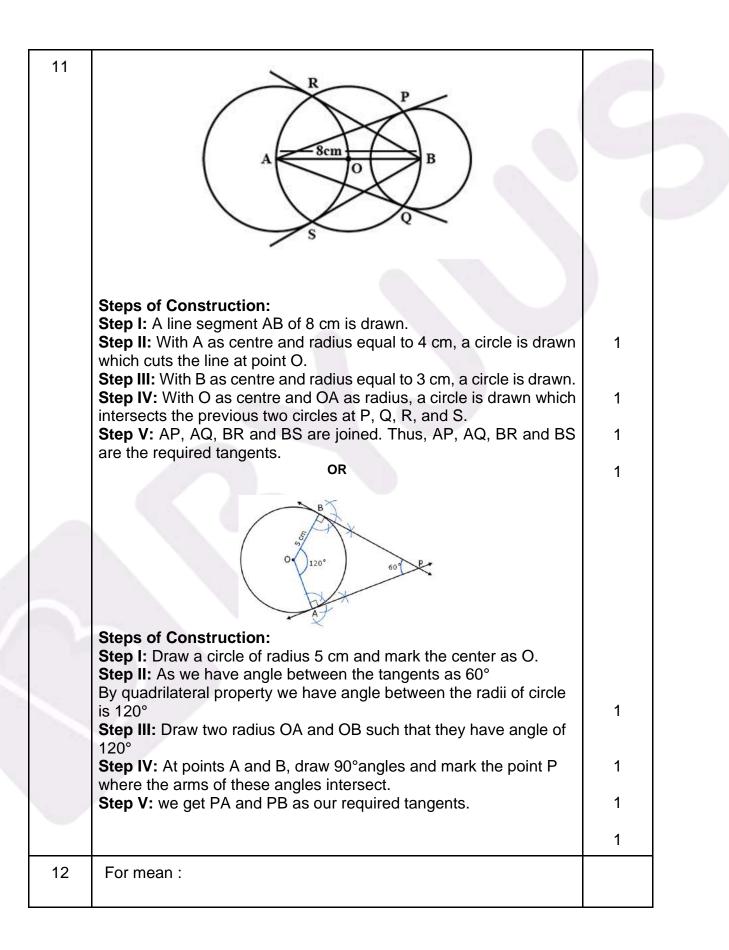

Mock Board Exam Mathematics- Basic Class- X, Session: 2021-22 TERM II

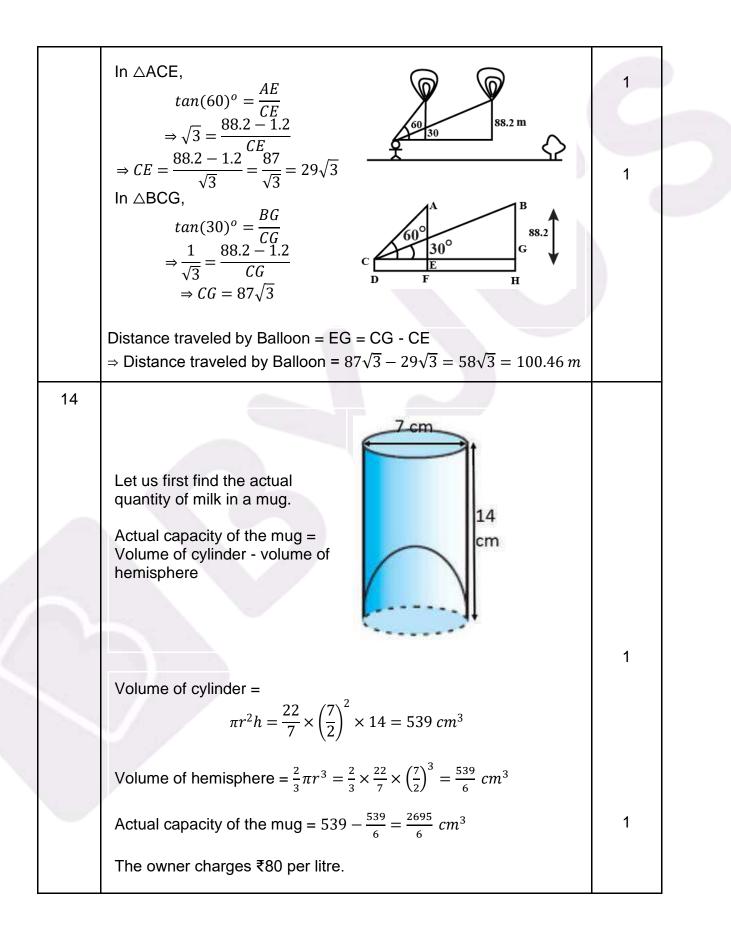

Q.No.	HINTS/SOLUTION	Marks
	SECTION A	
1	$3x^2 - 2\sqrt{6}x + 2 = 0$	
	$\Rightarrow 3x^2 - 2\sqrt{6}x + 2 = 0$	$\frac{1}{2}$
	$\Rightarrow 3x^2 - \sqrt{6}x - \sqrt{6}x + 2 = 0$	2
	$\Rightarrow \sqrt{3}x(\sqrt{3}x - \sqrt{2}) - \sqrt{2}(\sqrt{3}x - \sqrt{2}) = 0$	
	$\Rightarrow (\sqrt{3}x - \sqrt{2})(\sqrt{3}x - \sqrt{2}) = 0$	$\frac{1}{2}$
	$\Rightarrow \sqrt{3}x - \sqrt{2} = 0 or \sqrt{3}x - \sqrt{2} = 0$	2
	$\Rightarrow \sqrt{3}x = \sqrt{2} or \sqrt{3}x = \sqrt{2}$	
	$\Rightarrow x = \sqrt{\frac{2}{3}} \text{ or } x = \sqrt{\frac{2}{3}}$	1
	. The two equal roots of $3x^2 - 2\sqrt{6}x + 2 = 0$ are $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{2}{3}}$.	
	OR $kx(x-2) + 6 = 0$	
	$\Rightarrow kx^{2} - 2kx + 6 = 0 \ (a = k, b = -2k, c = 6)$	$\frac{1}{2}$
	Since the roots are real and equal, $\therefore D = b^2 - 4ac = 0$	
	$\Rightarrow (-2k)^2 - 4 \times k \times 6 = 0$	$\frac{1}{2}$
	$\Rightarrow 4k^2 = 24k$ $\Rightarrow k = 6$	2 1
	$\rightarrow \kappa = 0$	1
2	We have,	
	Radius of the cone, $r_1 = 1 \ cm$	
	Height of the cone, $h_1 = 1 cm$	
	Radius of the hemisphere, $r_2 = 1 cm$ Volume of the solid = volume of the cone + volume of the hemisphere	$\frac{1}{2}$
	\Rightarrow Volume of the solid = $\frac{1}{3}\pi r_1^2 h_1 + \frac{2}{3}\pi r_2^3$	

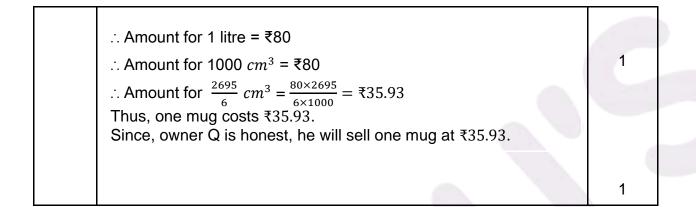
3	 ⇒ Volume of the solid = ⇒ Volume of the solid = 	1 2 1		
	Class Interval	Frequency	Cumulative Frequency	$\frac{1}{2}$
	0 - 10	7	7	
	10 - 20	15	22	V
	20 - 30	16	38	
	30 - 40	12	50	
	Total frequency, N = 50 So 20 - 30 is the media l = 20, cf = 22, f = 16 Median = $l + \frac{\binom{N}{2} - cf}{f} \times h$ \Rightarrow Median = $20 + \frac{\binom{50}{2} - 22}{16}$	n class.		$\frac{1}{2}$
	⇒ Median = 20 + 1.875	1		
4	We know that n^{th} term Where, a and d be the $t_3 = a + 2d = 5 (2)$ $t_7 = a + 6d = 9 (2)$	$\frac{1}{2}$		
	Subtract equation (1) fr Substitute the value of AP = 3, 4, 5, 6, 7, 8, 9, .	$\frac{1}{2}$		


		1	
5	Here, modal class = 3 - 5 $\Rightarrow l = 3, f_o = 7, f_1 = 8, f_2 = 2 \text{ and } h = 2$ Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$	$\frac{1}{2}$	
	⇒Mode = $3 + \frac{8-7}{2 \times 8-7-2} \times 2 = 3 + 0.286 = 3.286$ ⇒Mode = 3.286	1 2 1	
6			
0	To prove: XY MN Given: X A circle with centre O and diameter DE.	$\frac{1}{2}$	
	Let XY be the tangent at point D & MN be the tangent at point E. <u>M</u> E N		
	Proof: Since XY is a tangent at point D.		
0	OD \perp XY (Tangent at any point of a circle is perpendicular to the radius through the point of contact). $\angle ODY = 90^{\circ}(1)$ OE \perp MN $\angle OEM = 90^{\circ}(2)$ From (1) and (2), $\angle ODY = \angle OEM$	$\frac{1}{2}$	
	 i.e., ∠EDY = ∠DEM For lines XY & MN and transversal DE ∠EDY = ∠DEM i.e., both alternate angles are equal. So, the given lines are parallel. Therefore, XY MN. 	1	
	OR		



	1
SECTION B	
7 Given:	
a = 21, d =?, n =? Sum of n terms in an AP,	
$S_n = \frac{n}{2}(2a + (n-1)d)$	
From the given data,	
$\Rightarrow 93 = \frac{3}{2}(2 \times 21 + (3 - 1)d)$	
$\Rightarrow 93 \times 2 = 3(2 \times 21 + 2d)$	
$\Rightarrow 186 = 126 + 6d$	1
$\Rightarrow d = 10$	
n th terms in an AP,	
$t_n = a + (n - 1)d$ It is given that the sum of the last two terms is 272.	1
$t_{n-1} + t_n = 272$	
$\Rightarrow a + ((n-1) - 1)d + a + (n-1)d = 272$	
$\Rightarrow 2a + (2n - 3)d = 272$	1
$\Rightarrow 2 \times 21 + (2n - 3) \times 10 = 272$	
$\Rightarrow n = 13$	
8	
In $\triangle BAP$,	
un(30) = AP	ag
$\Rightarrow \frac{1}{\sqrt{3}} = \frac{10^{11}}{x}$	
$\rightarrow x = 10\sqrt{2} m$	1
	uilding
$P \text{ is } 10\sqrt{3} m.$ $P \longleftarrow x \longrightarrow A$	
Now,	
In △PAD	




		1	1
	$\Rightarrow h = \frac{8\sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$ $\Rightarrow h = \frac{8\sqrt{3}(\sqrt{3}+1)}{2}$ $\Rightarrow h = \frac{8(3+\sqrt{3})}{2}$ $\Rightarrow h = 4(3+\sqrt{3})$ $\Rightarrow h = x = (12+4\sqrt{3}) m$ ∴ The height of the multi-storied building and the distance between the two buildings is $(12+4\sqrt{3}) m$.	1	
9			
5	△TPQ is isosceles and TO is the angle bisector of ∠PTO. [: TP = TQ = Tangents from T upon the circle]	$\frac{1}{2}$	
	$:OT \perp PQ$		
	∴OT bisects PQ (The perpendicular from the centre of a circle to	$\frac{1}{2}$	
2	a chord bisects the chord.) PR = RQ = 4 cm Now,		
	$OR = \sqrt{OP^2 - PR^2} = \sqrt{5^2 - 4^2} = 3 \ cm$	$\frac{1}{2}$	
S	Now,		
	∠TPR + ∠RPO = 90° [∵ ∠TPO = 90°]		
	∠TPR + ∠PTR = 90 ⁰ [∵ ∠TRP = 90 ⁰]		
		$\frac{1}{2}$	
	∴ ∠RPO = ∠PTR	2	
	∴ △TRP <u>~</u> △PRO [by AA symmetry]		
		1	

	Class Interval	x _i	f_i	$f_i x_i$	1
	0 - 10	5	3	15	
	10 - 20	15	8	120	
	20 - 30	25	10	250	
	30 - 40	35	15	525	
	40 - 50	45	7	315	
	50 - 60	55	4	220	
	60 - 70	65	3	195	
			$\sum f_i = 50$	$\sum f_i x_i$	
				= 1640	
	$Mean = \frac{\sum f_i x_i}{\sum f_i} =$	$=\frac{1640}{50}=32.8$			
	For mode, Modal and $l = 30, f_1 =$				1
			$a = 30 + \frac{15}{30} - \frac{15}{3$	-10×10	
	moue – t i			10 - 7	
		= 30 +			
		= 30	$+\frac{50}{13}$		
		= 30 + 3.8			1
13					
					1
					1

