# Mock Board Exam 

Mathematics- Basic Class- X, Session: 2021-22 TERM II

| Q.No. | HINTS/SOLUTION | Marks |
| :---: | :---: | :---: |
|  | SECTION A |  |
| 1 | $\begin{aligned} & \Rightarrow 3 x^{2}-2 \sqrt{6} x+2=0 \\ & \Rightarrow 3 x^{2}-\sqrt{6} x-\sqrt{6} x+2=0 \\ & \Rightarrow \sqrt{3} x(\sqrt{3} x-\sqrt{2})-\sqrt{2}(\sqrt{3} x-\sqrt{2})=0 \\ & \Rightarrow(\sqrt{3} x-\sqrt{2})(\sqrt{3} x-\sqrt{2})=0 \\ & \Rightarrow \sqrt{3} x-\sqrt{2}=0 \text { or } \sqrt{3} x-\sqrt{2}=0 \\ & \Rightarrow \sqrt{3} x=\sqrt{2} \text { or } \sqrt{3} x=\sqrt{2} \\ & \Rightarrow x=\sqrt{\frac{2}{3}} \text { or } x=\sqrt{\frac{2}{3}} \end{aligned}$ <br> $\therefore$ The two equal roots of $3 x^{2}-2 \sqrt{6} x+2=0$ are $\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}$. <br> OR $\begin{array}{r} k x(x-2)+6=0 \\ \Rightarrow k x^{2}-2 k x+6=0(a=k, b=-2 k, c=6) \end{array}$ <br> Since the roots are real and equal, $\therefore D=b^{2}-4 a c=0$ $\begin{gathered} \Rightarrow(-2 k)^{2}-4 \times k \times 6=0 \\ \Rightarrow 4 k^{2}=24 k \\ \Rightarrow k=6 \end{gathered}$ | $\frac{1}{2}$ <br> $\frac{1}{2}$ <br> 1 <br> $\frac{1}{2}$ $\frac{1}{2}$ <br> 1 |
| 2 | We have, <br> Radius of the cone, $r_{1}=1 \mathrm{~cm}$ <br> Height of the cone, $h_{1}=1 \mathrm{~cm}$ <br> Radius of the hemisphere, $r_{2}=1 \mathrm{~cm}$ <br> Volume of the solid = volume of the cone + volume of the hemisphere <br> $\Rightarrow$ Volume of the solid $=\frac{1}{3} \pi r_{1}^{2} h_{1}+\frac{2}{3} \pi r_{2}^{3}$ | $\frac{1}{2}$ |



|  |  | 1 |
| :---: | :---: | :---: |
| 5 | Here, modal class $=3-5$ $\Rightarrow l=3, f_{o}=7, f_{1}=8, f_{2}=2 \text { and } h=2$ $\begin{aligned} & \text { Mode }=l+\frac{f_{1}-f_{o}}{2 f_{1}-f_{o}-f_{2}} \times h \\ & \Rightarrow \text { Mode }=3+\frac{8-7}{2 \times 8-7-2} \times 2=3+0.286=3.286 \\ & \Rightarrow \text { Mode }=3.286 \end{aligned}$ | $\frac{1}{2}$ $\frac{1}{2}$ 1 |
| 6 | To prove: XY \|| MN <br> Given: <br> A circle with centre O and diameter DE. <br> Let XY be the tangent at point D \& MN be the tangent at point E. <br> Proof: Since XY is a tangent at point $D$. <br> $\mathrm{OD} \perp \mathrm{XY}$ (Tangent at any point of a circle is perpendicular to the radius through the point of contact). $\begin{aligned} & \angle O D Y=90^{\circ} \quad--(1) \\ & O E \perp M N \\ & \angle O E M=90^{\circ} \quad--(2) \end{aligned}$ <br> From (1) and (2), $\angle O D Y=\angle O E M$ <br> i.e., $\angle E D Y=\angle D E M$ <br> For lines XY \& MN and transversal DE <br> $\angle E D Y=\angle D E M$ i.e., both alternate angles are equal. <br> So, the given lines are parallel. <br> Therefore, XY \|| MN. | $\frac{1}{2}$ <br>  <br>  <br> 1 <br> $\frac{1}{2}$ <br> 1 |



|  |  | 1 |
| :---: | :---: | :---: |
|  | SECTION B |  |
| 7 | Given: $a=21, d=?, n=?$ <br> Sum of $n$ terms in an AP, $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ <br> From the given data, $\begin{aligned} & \Rightarrow 93=\frac{3}{2}(2 \times 21+(3-1) d) \\ & \Rightarrow 93 \times 2=3(2 \times 21+2 d) \\ & \Rightarrow 186=126+6 d \\ & \Rightarrow d=10 \end{aligned}$ <br> $\mathrm{n}^{\text {th }}$ terms in an AP, $t_{n}=a+(n-1) d$ <br> It is given that the sum of the last two terms is 272. $\begin{aligned} & \quad t_{n-1}+t_{n}=272 \\ & \Rightarrow a+((n-1)-1) d+a+(n-1) d=272 \\ & \Rightarrow 2 a+(2 n-3) d=272 \\ & \Rightarrow 2 \times 21+(2 n-3) \times 10=272 \\ & \Rightarrow n=13 \end{aligned}$ | 1 1 1 |
| 8 | In $\triangle B A P$, $\begin{gathered} \tan (30)^{\circ}=\frac{A B}{A P} \\ \Rightarrow \frac{1}{\sqrt{3}}=\frac{10}{x} \\ \Rightarrow x=10 \sqrt{3} \mathrm{~m} \end{gathered}$ <br> Distance of building from point $P$ is $10 \sqrt{3} \mathrm{~m}$. <br> Now, <br> In $\triangle P A D$ | 1 |



|  | $\begin{gathered} \Rightarrow h=\frac{8 \sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\ \Rightarrow h=\frac{8 \sqrt{3}(\sqrt{3}+1)}{2} \\ \Rightarrow h=\frac{8(3+\sqrt{3})}{2} \\ \Rightarrow h=4(3+\sqrt{3}) \\ \Rightarrow h=x=(12+4 \sqrt{3}) m \end{gathered}$ <br> $\therefore$ The height of the multi-storied building and the distance between the two buildings is $(12+4 \sqrt{3}) m$. | 1 |
| :---: | :---: | :---: |
| 9 | $\triangle T P Q$ is isosceles and $T O$ is the angle bisector of $\angle \mathrm{PTO}$. $[\because T P=T Q=$ Tangents from $T$ upon the circle] <br> $\therefore \mathrm{OT} \perp \mathrm{PQ}$ <br> $\therefore$ OT bisects PQ (The perpendicular from the centre of a circle to a chord bisects the chord.) $\mathrm{PR}=\mathrm{RQ}=4 \mathrm{~cm}$ <br> Now, $\mathrm{OR}=\sqrt{O P^{2}-P R^{2}}=\sqrt{5^{2}-4^{2}}=3 \mathrm{~cm}$ <br> Now, $\begin{aligned} & \angle \mathrm{TPR}+\angle \mathrm{RPO}=90^{\circ}\left[\because \angle \mathrm{TPO}=90^{\circ}\right] \\ & \angle \mathrm{TPR}+\angle \mathrm{PTR}=90^{\circ}\left[\because \angle \mathrm{TRP}=90^{\circ}\right] \\ & \therefore \angle \mathrm{RPO}=\angle \mathrm{PTR} \end{aligned}$ <br> $\therefore \triangle \mathrm{TRP} \sim \triangle \mathrm{PRO}$ [by AA symmetry] |  |


|  | $\therefore \frac{T P}{P O}=\frac{R P}{R O} \Rightarrow \frac{T P}{5}=\frac{4}{3} \Rightarrow T P=\frac{20}{3} \mathrm{~cm}$ |  |
| :---: | :---: | :---: |
| 10 | Canal is in the shape of cuboid, where, <br> Breadth $=6 \mathrm{~m}$ <br> Height $=1.5 \mathrm{~m}$ <br> Speed of canal $=10 \mathrm{~km} / \mathrm{hr}$ <br> Length of canal in 1 hour $=10$ <br> km <br> Length of canal in 60 minutes $=10 \mathrm{~km}$ <br> Length of canal in 1 minute $=\frac{1}{60} \times 10 \mathrm{~km}$ <br> Length of canal in 30 minute $=\frac{30}{60} \times 10=5 \mathrm{~km}=5000 \mathrm{~m}$ <br> Now, <br> Volume of canal $=$ length $\times$ breadth $\times$ height $=5000 \times 6 \times 1.5 \mathrm{~m}^{3}$ <br> Now, <br> Volume of water in canal = Volume of area irrigated <br> Volume of water in canal $=$ Area irrigated $\times$ Height $\begin{gathered} 5000 \times 6 \times 1.5=\text { Area irrigated } \times \frac{8}{100} \\ \Rightarrow \text { Area irrigated }=\frac{5000 \times 6 \times 1.5 \times 100}{8}=562500 \mathrm{~m}^{2} \\ \Rightarrow \text { Area irrigated }=\frac{562500}{10000}=56.25 \text { hectares } \end{gathered}$ | 1 1 1 1 |
|  | SECTION C |  |




\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
In \(\triangle A C E\),
\[
\begin{gathered}
\tan (60)^{\circ}=\frac{A E}{C E} \\
\Rightarrow \sqrt{3}=\frac{88.2-1.2}{C E} \\
\Rightarrow C E=\frac{88.2-1.2}{\sqrt{3}}=\frac{87}{\sqrt{3}}=29 \sqrt{3}
\end{gathered}
\] \\
In \(\triangle B C G\),
\[
\begin{aligned}
\& \tan (30)^{\circ}=\frac{B G}{C G} \\
\& \Rightarrow \frac{1}{\sqrt{3}}=\frac{88.2-1.2}{C G} \\
\& \Rightarrow C G=87 \sqrt{3}
\end{aligned}
\] \\
Distance traveled by Balloon = EG = CG - CE \\
\(\Rightarrow\) Distance traveled by Balloon \(=87 \sqrt{3}-29 \sqrt{3}=58 \sqrt{3}=100.46 \mathrm{~m}\)
\end{tabular} \& 1

1 <br>

\hline 14 \& | Let us first find the actual quantity of milk in a mug. |
| :--- |
| Actual capacity of the mug $=$ Volume of cylinder - volume of hemisphere |
| Volume of cylinder $=$ $\pi r^{2} h=\frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \times 14=539 \mathrm{~cm}^{3}$ |
| Volume of hemisphere $=\frac{2}{3} \pi r^{3}=\frac{2}{3} \times \frac{22}{7} \times\left(\frac{7}{2}\right)^{3}=\frac{539}{6} \mathrm{~cm}^{3}$ |
| Actual capacity of the mug $=539-\frac{539}{6}=\frac{2695}{6} \mathrm{~cm}^{3}$ |
| The owner charges ₹ 80 per litre. | \& 1

1 <br>
\hline
\end{tabular}

|  | $\therefore$ Amount for 1 litre $=₹ 80$ | 1 |
| :--- | :--- | :---: |
| $\therefore$ Amount for $1000 \mathrm{~cm}^{3}=₹ 80$ |  |  |
| $\therefore$ Amount for $\frac{2695}{6} \mathrm{~cm}^{3}=\frac{80 \times 2695}{6 \times 1000}=₹ 35.93$ |  |  |
| Thus, one mug costs ₹35.93. <br> Since, owner Q is honest, he will sell one mug at ₹35.93. |  |  |

