

Subject: Mathematics

Topic: Arithmetic Progressions

Exam Prep 1 Class: X

- 1. Which of the following sequences form an AP?
 - (i) 2, 4, 8, 16......
 - (ii) 2, 3, 5, 7, 11.....
 - (iii) -1, -1.25, -1.5, -1.75......
 - (iv) 1, -1, -3, -5.....
 - **A.** (i) and (iv)
 - B. (ii) and (iv)
 - C. (iii) and (iv)
 - **D.** (i),(iii) and (iv)

Consider each list of numbers:

Difference between the first two terms = 4 - 2 = 2

Difference between the third and second term = 8 - 4 = 4

Since $a_2-a_1 \neq a_3-a_2$, this sequence is not an AP.

Difference between the first two terms = 3 - 2 = 1

Difference between the third and second term = 5 - 3 = 2

Since $a_2-a_1 \neq a_3-a_2$, this sequence is not an AP.

Difference between the first two terms = -1.25 - (-1) = -0.25

Difference between the third and second term = -1.5 - (-1.25) = -0.25

Difference between the fourth and third term = -1.75 - (-1.5) = -0.25

Since a_2 - a_1 = a_3 - a_2 = a_4 - a_3 , this sequence is an AP.

Difference between the first two terms = -1 - 1 = -2

Difference between the third and second term = -3 - (-1) = -2

Difference between the fourth and third term = -5 - (-3) = -2

Since a_2 – a_1 = a_3 – a_2 = a_4 – a_3 , this sequence is an AP

- 2. A player who was playing video game was given 20 coins to begin with the game. To go to the next level, he needs to spend 4 coins and if he succeeds the particular level, he earns 6 coins. Find the number of coins he collects after clearing each level (assuming he clears every level).
 - **A.** 20, 25, 30, 35, 36......
 - **B.** 20, 22, 24, 26, 28......
 - **C.** 20, 24, 28, 30, 34......
 - **D.** 20, 26, 32, 38, 44......

Initial coins the player has is 20 coins

Net no. of coins he gain after clearing a level = coins gained - coins spent

= 2

 \therefore Coins he has after clearing first level = 20 + 2 = 22

No. of coins after clearing second level = 22 + 2 = 24

No. of coins after clearing third level = 24 + 2 = 26

So, the series of coins after clearing each level is 20, 22, 24, 26, 28.......

- 3. Find the 20^{th} term of the AP 2, 5, 8, 11, 14 ,...
 - **X A**. 57
 - **x B**. 58
 - **C**. 59
 - **x D**. 60
 - 2, 5, 8, 11, 14 ,...
 - \therefore nth term of an AP is a + (n-1)d

Here, a = 2 & d = 8-5 = 3

∴
$$20^{th}$$
 term = 2 + (20-1)3
= 2+ (19 × 3)
= 59

- 4. An arithmetic sequence has 6^{th} term as 52 and 15^{th} term as 142. Find a & d
 - **A**. 2, 10
 - **B**. 10, 2
 - **x c**. 2, 20
 - **D**. 20, 2

Given
$$a_6 = a + (6 - 1) d = 52$$

and
$$a_{15} = a + (15 - 1) d = 142$$

equation (ii) – equation (i)
$$\Rightarrow$$
 9d = 90

$$d = 10$$

Substituting d = 10 in (i)

$$a + 50 = 52$$

$$a = 2$$

- 5. Does the sequence of odd numbers form an AP?
 - **x A.** Yes, with a common difference of 1.
 - × B. No
 - C. Yes, with a common difference of 2.
 - **x D.** Yes, with a common difference of -1.

Odd numbers are 1,3,5,7,...

First term = 1.

Second term = 3

difference = 3 - 1 = 2

Similarly, 5-3 = 7-5 = 2

Observe that the difference between any two consecutive terms is 2 . Hence it forms an AP.

- 6. A twenty storied building was observed from outside, each floor has a kite shaped figure which gets on magnifying as observed from the 1^{st} to 20^{th} floor. The area of first five kites on each floor was calculated and they were found to develop a pattern. These five areas are $10m^2$, $15m^2$, $20m^2$, $25m^2$, $30m^2$ and so on. The area of the kite on the top floor is
 - **A.** $100m^2$
 - **B.** $105m^2$
 - lacktriangle C. $110m^2$
 - **D.** $200m^2$

The sequence of the areas on each floor forms an Arithmetic Progression, with first term as 10 and common difference as 5.

General term
$$T_n = a + (n-1)d$$

= $10 + (n-1)5$

We require,
$$T_{20} = 10 + (20 - 1)5 = 10 + 19 \times 5 = 105$$

- 7. If the first term of an AP is -8 and the common difference is 4, then the sum of the first ten terms is
 - **x A**. 92
 - **x** B. 96
 - **c**. 100
 - **x D**. 104

$$S_n=rac{n}{2}[2a+(n-1)d]$$

$$S_{10} = \frac{10}{2}(2(-8) + 9(4))$$

$$S_{10}=100$$

- 8. The sides of a right triangle are in an AP. The area and the perimeter of the triangle are numerically equal. Find its perimeter.
 - A. 24 units
 - **B.** 34 units
 - x C. 44 units
 - **x D**. 66 units

Let us take the sides of the triangle to be (a - d), a and (a+d), with a and d both positive. We assume this so that we have positive values for the sides.

Perimeter P = (a - d) + a + (a + d) = 3a

Since the triangle is right angled, (a + d) is the hypotenuse as it is the largest side.

So, by Pythagoras theorem

$$(a+d)^2 = a^2 + (a-d)^2$$

Simplifying the equation, we get $2ad = a^2 - 2ad$

$$\Rightarrow a^2 - 4ad = 0$$

$$\Rightarrow a(a-4d)=0$$

$$\Rightarrow a=0 \text{ or } a=4d$$

we cannot take a = 0 as side of a triangle cannot be zero.

Since (a + d) is the hypotenuse, the other sides a and (a - d) form the base and altitude of the right angled triangle, as shown below:

$$=rac{1}{2} imes a imes (a-d)$$
 $=rac{1}{2} imes 4d imes (4d-d)$
 $=6d^2$

Given that area and perimeter are numerically equal, $\Rightarrow 3a = 6d^2$

We have a = 4d and hence

$$12d = 6d^2$$

$$\Rightarrow 6d^2 - 12d = 0$$

$$\Rightarrow d(6d-12) = 0$$

$$\Rightarrow d=0 \text{ or } d=2$$

(we cannot take d = 0, because it will make all sides equal)

Hence, d = 2 and a = 4d = 8

Therefore, the sides are 6, 8 and 10 and perimeter = 24 units

- 9. The sum of 'n' terms of a finite AP is $\frac{13}{2}$ times the sum of its first and last terms. Which term would be the middle term in this AP?
 - A. 3rd term
 - B. 5th term
 - C. 7th term
 - x D. 9th term

For a finite AP having first term as a and last term as I, the formula for the sum of n terms would become $\frac{n}{2}(a+l)=\frac{n}{2}(first\ term+last\ term)$.

Now, in the question it is given that the sum of n terms is $\frac{13}{2}$ times the sum of its first and last terms, which means,

n = 13

Since, the AP has 13 terms.

So, the 7th term is the middle term.

BYJU'S The Learning App

Practice Challenge - Objective

- 10. If 8 times the $8^{\rm th}$ term of an AP is equal to 15 times the $15^{\rm th}$ term of the AP, then the $23^{\rm rd}$ term of the AP is ____.
 - **x A**. ₁₄₄
 - **x** B. ₁
 - **c**. 0
 - **x D**. 8

Given,

 $8a_8 = 15a_{15}$.

Since the $n^{
m th}$ term of an AP of first term a and common difference d is given by

$$a_n = a + (n-1)d$$
, we have

$$8[a + (8 - 1)d] = 15[a + (15 - 1)d].$$
 $\Rightarrow 8(a + 7d) = 15(a + 14d)$
 $\Rightarrow 8a + 56d = 15a + 210d$
 $\Rightarrow 7a + 154d = 0$
 $\Rightarrow a + 22d = 0$
 $\Rightarrow a + (23 - 1)d = 0$

Hence, the $23^{\rm rd}$ term of the AP is zero.