## Practice Challenge - Objective

Subject: Mathematics
Topic : Arithmetic Progressions
Exam Prep 1
Class: X

1. Which of the following sequences form an AP?
(i) $2,4,8,16 \ldots \ldots$.
(ii) $2,3,5,7,11 \ldots \ldots$
(iii) $-1,-1.25,-1.5,-1.75 \ldots \ldots$
(iv) $1,-1,-3,-5$.
x A. (i) and (iv)
X B. (ii) and (iv)
( $)$ C. (iii) and (iv)
x D. (i),(iii) and (iv)

## Practice Challenge - Objective

Consider each list of numbers:
(i) $2,4,8,16 \ldots \ldots$.

Difference between the first two terms $=4-2=2$
Difference between the third and second term $=8-4=4$
Since $a_{2}-a_{1} \neq a_{3}-a_{2}$, this sequence is not an AP.
(ii) $2,3,5,7,11 \ldots \ldots$.

Difference between the first two terms $=3-2=1$
Difference between the third and second term $=5-3=2$
Since $a_{2}-a_{1} \neq a_{3}-a_{2}$, this sequence is not an AP.
(iii) $-1,-1.25,-1.5,-1.75 \ldots \ldots$.

Difference between the first two terms $=-1.25-(-1)=-0.25$
Difference between the third and second term $=-1.5-(-1.25)=-0.25$
Difference between the fourth and third term $=-1.75-(-1.5)=-0.25$
Since $a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}$, this sequence is an AP.
(iv) $1,-1,-3,-5$

Difference between the first two terms $=-1-1=-2$
Difference between the third and second term $=-3-(-1)=-2$
Difference between the fourth and third term $=-5-(-3)=-2$
Since $a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}$, this sequence is an AP

## Practice Challenge - Objective

2. 

A player who was playing video game was given 20 coins to begin with the game. To go to the next level, he needs to spend 4 coins and if he succeeds the particular level, he earns 6 coins. Find the number of coins he collects after clearing each level (assuming he clears every level).
A. $20,25,30,35,36 \ldots \ldots \ldots$
(v)
B. $20,22,24,26,28 \ldots \ldots \ldots$
$\times$
C. $20,24,28,30,34 \ldots \ldots \ldots$
$x$
D. $20,26,32,38,44 \ldots \ldots \ldots$

Initial coins the player has is 20 coins

Net no. of coins he gain after clearing a level = coins gained - coins spent

$$
\begin{aligned}
& =6-4 \\
& =2
\end{aligned}
$$

$\therefore$ Coins he has after clearing first level $=20+2=22$
No. of coins after clearing second level $=22+2=24$
No. of coins after clearing third level $=24+2=26$
So, the series of coins after clearing each level is $20,22,24,26,28 \ldots \ldots$.

## Practice Challenge - Objective

3. 

Find the $20^{\text {th }}$ term of the AP $2,5,8,11,14, \ldots$
( A. 57
( B. 58
(v) C. 59
(D) 60
$2,5,8,11,14, \ldots$
$\because \mathrm{n}^{\text {th }}$ term of an AP is a $+(\mathrm{n}-1) \mathrm{d}$

Here, $a=2 \& d=8-5=3$

$$
\begin{aligned}
\therefore 20^{t h} \text { term } & =2+(20-1) 3 \\
& =2+(19 \times 3) \\
& =59
\end{aligned}
$$

## Practice Challenge - Objective

4. An arithmetic sequence has $6^{t h}$ term as 52 and $15^{t h}$ term as 142 . Find a \& d
(v)
A. 2,10
$x$
B. 10,2
$x$
C. 2,20
$x$
D. 20,2

Given $a_{6}=\mathrm{a}+(6-1) \mathrm{d}=52$
$a+5 d=52$
and $a_{15}=\mathrm{a}+(15-1) \mathrm{d}=142$

$$
\begin{equation*}
a+14 d=142 \tag{ii}
\end{equation*}
$$

equation (ii) - equation (i) $\Rightarrow 9 \mathrm{~d}=90$
$d=10$
Substituting $d=10$ in (i)

$$
\begin{aligned}
& a+50=52 \\
& a=2
\end{aligned}
$$

## Practice Challenge - Objective

5. 

Does the sequence of odd numbers form an AP?
( A. Yes, with a common difference of 1.
( B. NoC. Yes, with a common difference of 2 .
$\times$
D. Yes, with a common difference of -1 .

Odd numbers are $1,3,5,7, \ldots$
First term $=1$.

Second term $=3$
difference $=3-1=2$

Similarly, 5-3 = 7-5 = 2
Observe that the difference between any two consecutive terms is 2 .
Hence it forms an AP.

## Practice Challenge - Objective

6. 

A twenty storied building was observed from outside, each floor has a kite shaped figure which gets on magnifying as observed from the $1^{\text {st }}$ to $20^{t h}$ floor. The area of first five kites on each floor was calculated and they were found to develop a pattern. These five areas are $10 m^{2}, 15 m^{2}, 20 m^{2}, 25 m^{2}$, $30 m^{2}$ and so on. The area of the kite on the top floor is $\qquad$ .
(A. $100 m^{2}$
B. $105 \mathrm{~m}^{2}$
$\times$
C. $110 m^{2}$
$x$
D. $200 m^{2}$

The sequence of the areas on each floor forms an Arithmetic Progression, with first term as 10 and common difference as 5 .

General term $T_{n}=a+(n-1) d$

$$
=10+(n-1) 5
$$

We require, $T_{20}=10+(20-1) 5=10+19 \times 5=105$
7. If the first term of an AP is -8 and the common difference is 4 , then the sum of the first ten terms is
x A. 92
x B. 96
C. 100
x D. 104
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{10}=\frac{10}{2}(2(-8)+9(4))$
$S_{10}=100$

## Practice Challenge - Objective

8. The sides of a right triangle are in an AP. The area and the perimeter of the triangle are numerically equal. Find its perimeter.
(v)
A. 24 units
x B. 34 units
x C. 44 units
x D. 66 units

## Practice Challenge - Objective

Let us take the sides of the triangle to be $(a-d)$, $a$ and $(a+d)$, with a and $d$ both positive. We assume this so that we have positive values for the sides.

Perimeter $\mathrm{P}=(\mathrm{a}-\mathrm{d})+\mathrm{a}+(\mathrm{a}+\mathrm{d})=3 \mathrm{a}$
Since the triangle is right angled, $(a+d)$ is the hypotenuse as it is the largest side.
So, by Pythagoras theorem
$(a+d)^{2}=a^{2}+(a-d)^{2}$
Simplifying the equation, we get $2 a d=a^{2}-2 a d$
$\Rightarrow a^{2}-4 a d=0$
$\Rightarrow a(a-4 d)=0$
$\Rightarrow a=0$ or $a=4 d$
we cannot take $\mathrm{a}=0$ as side of a triangle cannot be zero.
Since $(a+d)$ is the hypotenuse, the other sides $a$ and $(a-d)$ form the base and altitude of the right angled triangle, as shown below:


So, area
$=\frac{1}{2} \times a \times(a-d)$
$=\frac{1}{2} \times 4 d \times(4 d-d)$
$=6 d^{2}$
Given that area and perimeter are numerically equal,
$\Rightarrow 3 a=6 d^{2}$
We have $a=4 d$ and hence
$12 d=6 d^{2}$
$\Rightarrow 6 d^{2}-12 d=0$
$\Rightarrow d(6 d-12)=0$
$\Rightarrow d=0$ or $d=2$
(we cannot take $d=0$, because it will make all sides equal)
Hence, $d=2$ and $a=4 d=8$
Therefore, the sides are 6, 8 and 10

## Practice Challenge - Objective

9. The sum of ' $n$ ' terms of a finite AP is $\frac{13}{2}$ times the sum of its first and last terms. Which term would be the middle term in this AP?
x A. 3rd term
x B. 5th term
C. 7th term

X D. 9th term
For a finite AP having first term as a and last term as I, the formula for the sum of n terms would become $\frac{n}{2}(a+l)=\frac{n}{2}$ (first term + last term $)$.

Now, in the question it is given that the sum of $n$ terms is $\frac{13}{2}$ times the sum of its first and last terms, which means,
$\mathrm{n}=13$
Since, the AP has 13 terms.
So, the 7th term is the middle term.

## Practice Challenge - Objective

10. If 8 times the $8^{\text {th }}$ term of an AP is equal to 15 times the $15^{\text {th }}$ term of the AP, then the $23^{\text {rd }}$ term of the AP is $\qquad$ .
x A. 144
X B. 1
(v)
C. 0
x D. 8
Given,
$8 a_{8}=15 a_{15}$.
Since the $n^{\text {th }}$ term of an AP of first term $a$ and common difference $d$ is given by
$a_{n}=a+(n-1) d$, we have

$$
\begin{aligned}
8[a+(8-1) d] & =15[a+(15-1) d] . \\
\Rightarrow 8(a+7 d) & =15(a+14 d) \\
\Rightarrow 8 a+56 d & =15 a+210 d \\
\Rightarrow 7 a+154 d & =0 \\
\Rightarrow a+22 d & =0 \\
\Rightarrow a+(23-1) d & =0
\end{aligned}
$$

Hence, the $23^{\text {rd }}$ term of the AP is zero.

