

Subject: Mathematics

Topic : Arithmetic Progressions

Exam Prep 1 Class: X

1. If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of first n terms.

It is given that sum of first 7 terms of an AP is equal to 49 and sum of first 17 terms is equal to 289.

Applying formula, $S_n = \frac{n}{2}(2a + (n-1) d)$ to find sum of n terms of AP, we get

$$49 = \frac{7}{2}(2a + (7-1) d)$$

$$\Rightarrow$$
98=7(2a+6d)

And,
$$289 = \frac{17}{2}(2a + (17-1) d)$$

Putting equation (1) in the above equation, we get

$$\Rightarrow$$
d= $\frac{10}{5}$ =2

Putting value of d in equation (1), we get

Again applying formula, $S_n = \frac{n}{2}(2a + (n-1) d)$ to find sum of n terms of AP , we get

$$S_n = \frac{n}{2}[2(1) + (n-1)(2)]$$

$$\Rightarrow S_n = \frac{n}{2}[2+2n-2]$$

$$\Rightarrow S_n = \frac{n}{2} [2n]$$

$$\Rightarrow S_n$$
= n^2

Therefore, sum of n terms of AP is equal to n^2

2. Check whether -150 is a term of the AP: 11,8,5,2...

Let -150 is the n^{th} of AP 11,8,5,2... Which means that a_n =-150

Here, First term = a = 11

Common difference = d = 8 - 11 = -3

Using formula a_n =a+ (n-1) d, to find nth term of arithmetic progression, we get

$$-150=11+(n-1)(-3)$$

$$\Rightarrow$$
 -150=11-3n+3

$$\Rightarrow$$
 n= $\frac{164}{3}$

But, n cannot be in fraction. Therefore, our supposition is wrong. -150 cannot be term in AP.

- 3. Write first four terms of the AP, when the first term a and common difference d are given as follows:
 - (i) a = -2, d = 0
 - (ii) a=4, d=-3
 - (iii) a = -1.25, d = -0.25
 - (i)

Here, difference between any two consecutive terms which is also called common difference is equal to 0.

First term =
$$a = -2$$
, $d=0$

Second term =
$$a+d = -2 + 0 = -2$$

Third term = second term +
$$d = -2 + 0 = -2$$

Fourth term = third term +
$$d = -2 + 0 = -2$$

Therefore, first four terms are: -2, -2, -2, -2

First term =
$$a = 4$$
, $d=-3$

Second term =
$$a + d = 4 - 3 = 1$$

Third term = second term +
$$d = 1-3 = -2$$

Fourth term = third term +
$$d = -2 - 3 = -5$$

Therefore, first four terms are: 4, 1, -2, -5

(iii)

First term = a = -1.25, d = -0.25

Second term = a + d = -1.25 - 0.25 = -1.50

Third term = second term + d = -1.50 - 0.25 = -1.75

Fourth term = third term + d = -1.75 - 0.25 = -2

Therefore, first four terms are: -1.25, -1.50, -1.75,-2

BYJU'S The Learning App

Practice Challenge - Subjective

4. Determine the AP whose third term is 16 and the 7^{th} term exceeds the 5^{th} term by 12.

Let first term of AP = a

Let common difference of AP = d

It is given that its term is equal to 16. It means a_3 =16, where a_3 is the 3^{rd} term of AP.

Using formula a_n =a+ (n-1) d, to find n^{th} term of arithmetic progression, we can say that

$$16 = a + (3-1)(d)$$

$$\Rightarrow 16 = a + 2d$$

It is also given that 7^{th} term exceeds 5^{th} term by12. Again using formula $a_n = a + (n-1) d$, which is used to find n^{th} term of arithmetic progression, we can say that

$$a_7 = a + (7-1)d = a + 6d$$
 and, $a_5 = a + (5-1)d = a + 4d$ (1)

According to the given condition, we can say that

$$a_7 = a_5 + 12$$

Putting (1) in the above equation, we get

$$\Rightarrow a + 6d = a + 4d + 12$$

$$\Rightarrow 2d = 12$$

$$\Rightarrow d = \frac{12}{2} = 6$$

Putting value of d in equation 16=a+2d, we get

$$16 = a + 2(6)$$

$$\Rightarrow a = 4$$

Therefore first term = a = 4

And, common difference = d = 6

Therefore, AP is 4, 10, 16, 22....

5. The ratio of the sums of m and n terms of an A.P. is $m^2 : n^2$. Show that the ratio of the m^{th} and n^{th} term is (2m-1):(2n-1).

Let a be the first term and d the common difference of the given A.P. Then, the sums of m and n terms are given by

$$S_m = (\frac{m}{2})$$
 [2a + (m – 1) d], and

$$S_n = (\frac{n}{2}) [2a + (n-1) d]$$

$$\frac{S_m}{S_n} = \frac{m^2}{n^2}$$

$$\frac{\frac{m}{2}[2a+(m-1)d]}{\frac{n}{2}[2a+(n-1)d]} = \frac{m^2}{n^2}$$

$$\Rightarrow \frac{2a+(m-1)d}{2a+(n-1)d} = \frac{m}{n}$$

$$\Rightarrow [2a + (m-1)d]n = [2a + (n-1)d]m$$

$$\Rightarrow 2a(n-m) = d((n-1)m - (m-1)n)$$

$$\Rightarrow 2a(n-m) = d(n-m)$$

$$\Rightarrow d=2a$$

$$\frac{T_m}{T_n} = \frac{a + (m-1) \times 2a}{a + (n-1) \times 2a} = \frac{a + (m-1) \times 2a}{a + (n-1) \times 2a} = \frac{2m-1}{2n-1}$$
 (: d = 2a)

6. In the following APs, find the missing term in the boxes.

For this A.P.,

$$a = 2$$

$$a_3 = 26$$

We know that,
$$a_n = a + (n-1)d$$

$$a_3 = 2 + (3-1)d$$

$$26 = 2 + 2d$$

$$24 = 2d$$

$$d = 12$$

$$a_2 = 2 + (2 - 1)12$$

$$= 14$$

Therefore, 14 is the missing term.

7. If the sum of the first 2n terms of the AP 2, 5, 8, ... is equal to the sum of the first n terms of A.P. 57, 59, 61, ... then what is the value of n?

$$egin{aligned} S_n &= rac{n}{2}[2a + (n-1)d \ &\Rightarrow rac{2n}{2}[2(2) + (2n-1)3] = rac{n}{2}[2(57) + (n-1)2] \ &\Rightarrow n[4+6n-3] = n[57+n-1] \ &\Rightarrow 6n+1 = n+56 \end{aligned}$$

$$\Rightarrow 5n = 55$$

$$\Rightarrow n = 11$$

8. The sum of n terms of an A.P is written as $S_n = pn + qn^2$. What is the common difference d of the A.P.?

Let a be the first term of the AP. We have

$$S_n=rac{n}{2}(2a+(n-1)d)$$

$$S_n = an + rac{n(n-1)d}{2}$$

$$S_n = \left(a - rac{d}{2}
ight)n + rac{d}{2}n^2$$

$$S_n = pn + qn^2$$

$$pn+qn^2=\left(a-rac{d}{2}
ight)n+rac{d}{2}n^2$$

On comparing the coefficients of n and n^2 , we get

$$\frac{d}{2} = q$$

$$\Rightarrow d = 2q$$