

Carbon and Its Compounds

1. Carbon

2. Allotropes of carbon

3. Hydrocarbons

4. Chemical properties of carbon

5. Ethanol

6. Ethanoic acid

7. Saponification

1. Carbon

1.1 Covalent Bonding in Carbon

Note: Usually, carbon does not form ionic bonds as losing or gaining four electrons requires a large amount of energy

1.2 Catenation

Carbon bonding with other atoms of carbon $- \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$

= 2. Allotropes of Carbon

Allotropes are different forms of a chemical element

Fullehene Diamond Graphite 🖈 Regular <mark>tetrahedral</mark> Hollow molecules forming Hexagonal arrangement of arrangement of atoms atoms in a single plane (2D) a closed cage or cylinder (3D)Buckminsterfullerene Each carbon atom bonded Each carbon atom bonded to (C_{60}) was the first three other carbon atoms to four other carbon atoms fullerene to be discovered Extremely hard Soft and slipperu Bad conductor of electricity Good conductor of electricity

3. Hydrocarbons

Saturated

Alkanes

Only <mark>single</mark> covalent bonds between carbon atoms

Unsaturated

Alkenes

At least one carbon-carbon double bond

Alkynes

At least one carbon-carbon triple bond

3.1 Heteroatoms and Functional Groups

Heteroatom	Oxygen			
Functional group	Alcohol	Aldehyde	Ketone	Carboxylic acid
Formula of functional group	— 0H	0 = -C-H	-C-	0 -C-0H

3.2 Structural Isomers

Identical molecular formula but different arrangement of atoms

Structural isomers of CaH10

3.3 Homologous Series

- Same functional group
- Successive members differ by a -CH2 unit
- Different physical properties but similar chemical properties

General formula for homologous series of:

3.4 Heteroatoms and Functional Groups

Prefix Word root Primary Secondary suffix

Prefix

Functional group	Chlorine	Bromine
p _{refix}	Chloro	Bromo

Word root

# Carbo	n atoms	1	2	3	4	5	6	7	8
Word	root	Meth	Eth	p _{rop}	But	Pent	Hex	Hept	0ct

Primary suffix

Hydrocarbon	Alkane	Alkene	Alkyne
Primary suffix	ane	ene	yne

Secondary suffix

Functional group	Alcohol	Aldehyde	Ketone	Carboxylic acid	
Secondary suffix	ol	al	one	oic acid	

^{*} If the secondary suffix starts with a vowel, delete 'e' from primary suffix

4. Chemical Properties of Carbon

4.1 Combustion Reaction

Carbon and most of carbon compounds burn in oxygen to give carbon dioxide along with the release of heat and light

$$C + O_2 \longrightarrow CO_2 + \text{Heat} + \text{Light}$$

$$\leftarrow$$
 CH₄ + 20₂ \rightarrow CO₂ + 2H₂O + Heat + Light

4.2 Oxidation Reaction

In the presence of oxidising agents, alcohols oxidise to carboxylic acid

CH₃CH₂OH
$$\xrightarrow{\text{OR}}$$
 acidified K₂Cr₂O₇ + Heat $\xrightarrow{\text{OR}}$ CH₃COOH

4.3 Addition Reaction

Hydrogen can be <mark>added</mark> to unsaturated hydrocarbons in the presence of catalysts to give <mark>saturated</mark> hydrocarbons

4.4 Substitution Reaction

One atom or a group of atoms substitute another
$$H = \begin{array}{c} H \\ I \\ H - C - H \end{array} + \begin{array}{c} CI - CI \end{array} \longrightarrow \begin{array}{c} Sunlight \\ H - C - CI \end{array} \longrightarrow \begin{array}{c} H - C - CI \\ H \end{array} \longrightarrow \begin{array}{c} H - C - CI \\ H \end{array}$$

5. Important Reactions of Ethanol

$$2Na + 2CH_3CH_2OH \longrightarrow 2CH_3CH_2O^-Na^+ + H_2$$

Sodium ethoxide

$$CH_3CH_2OH \xrightarrow{Hot conc. H_2SO_4} CH_2 = CH_2 + H_2O$$

b. Important Reactions of Ethanoic Acid

$$\begin{array}{c} \text{CH}_3\text{COOH} + \text{CH}_3\text{CH}_2\text{OH} & \stackrel{\text{Acid}}{\longleftarrow} \text{CH}_3 - \text{C} - 0 - \text{CH}_2 - \text{CH}_3 + \text{H}_2\text{O} \\ \text{Ethanoic acid} & \text{Ethanol} & \text{Ester} \end{array}$$

Esterification reaction:— Carboxylic acid reacts with an alcohol in the presence of an acid catalyst to form ester and water

1. Saponification

- Preparation of soap
- When an ester is treated with an alkali like sodium hydroxide, it is converted to an alcohol and a sodium salt of the carboxylic acid

$$CH_3COOC_2H_5$$
 \xrightarrow{NaOH} $C_2H_5OH + CH_3COON_a$

7.1 Soaps and Detergents

Soap

- Sodium or potassium salts of long-chain carboxylic acids
- Produces scum in hard water
- Hard water affects its cleansing action

Detergent

- Sodium salts of sulphonic acids or ammonium salts with chlorides or bromides ions
- Does not produce scum in hard water
- Hard water does not affect its cleansing action

7.2 Cleansing Action of Soap

Hydrophobic tail of soap molecule interacts with oil, the hydrophilic head interacts with water

Hydrophobic tail (Water – fearing) Soap molecule

Hydrophilic head (Water - loving)

When dissolved in water, soap molecules form micelles which remove the oily dirt from the clothes

Dirt free fabric

